Skip to main content

Part of the book series: Theoretical and Mathematical Physics ((TMP))

Abstract

In this chapter we consider that the unit sphere \(\mathbb {S}^{2}\) of the Euclidean space ℝ3 with its canonical symplectic structure is a phase space. Then coherent states are labeled by points on \(\mathbb {S}^{2}\) and allow us to build a quantization of the two sphere \(\mathbb {S}^{2}\). They are defined in each finite-dimensional space of an irreducible unitary representation of the symmetry group SO(3) (or its covering SU(2)) of \(\mathbb {S}^{2}\) and give a semi-classical interpretation for the spin.

As an application we state the Berezin–Lieb inequalities and compute the thermodynamic limit for large spin systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    An isometry in an Euclidean space is automatically linear so that O(3) is a subgroup of GL(ℝ3).

  2. 2.

    Multiplication by i gives self-adjoint generators instead of anti-self-adjoint operators.

References

  1. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  2. Aravind, P.K.: Spin coherent states as anticipators of the geometric phase. Am. J. Phys. 10(October), 899–904 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. Arecchi, F.T., Courtens, E., Gilmore, R., Thomas, H.: Atomic coherent states in quantum optics. Phys. Rev. A 6, 2211–2237 (1972)

    Article  ADS  Google Scholar 

  4. Berry, M.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A, Math. Phys. Sci. 292, 47–57 (1984)

    Google Scholar 

  5. Boya, L.J., Perelomov, A.M., Santander, M.: Berry phase in homogeneous Kähler manifolds with linear Hamiltonians. J. Math. Phys. 42(11), 5130–5142 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Erikson, F.: On the measure of solid angles. Math. Mag. 63, 184–185 (1999)

    Article  Google Scholar 

  7. Glauber, R.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  8. Inönü, E., Wigner, E.: On the contraction of groups and their representations. Proc. Natl. Acad. Sci. USA 39, 510–524 (1953)

    Article  ADS  MATH  Google Scholar 

  9. Kosmann-Schwarzbach, Y.: Groups and Symmetries. Universitext. Springer, New York (2010). From finite groups to Lie groups, Translated from the 2006 French 2nd edition by Stephanie Frank Singer

    Book  MATH  Google Scholar 

  10. Lieb, E.H.: The classical limit of quantum spin systems. Commun. Math. Phys. 31, 327–340 (1973)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Mukada, N., Aravind, P., Simon, R.: Wigner rotations, Bargmann invariants and geometric phases. J. Phys. A, Math. Gen. 36, 2347–2370 (2003)

    Article  ADS  Google Scholar 

  12. Onofri, E.: A note on coherent state representations of Lie groups. J. Math. Phys. 16, 1087–1089 (1975)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Pancharatnam, S.: Generalized theory of interference and its applications. Proc. Indian Acad. Sci., Sect. A, Phys. Sci. 44, 247–262 (1956)

    MathSciNet  Google Scholar 

  14. Pauli, W.: General Principles of Quantum Mechanics. Springer, Berlin (1980). Translated from the German by P. Achuthan and K. Venkatesan, with an introduction by Charles P. Enz

    Book  Google Scholar 

  15. Perelomov, A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Rudin, W.: Real and Complex Analysis. McGraw-Hill, New York (1966)

    MATH  Google Scholar 

  17. Simon, B.: The classical limit of quantum partition functions. Commun. Math. Phys. 71, 247–276 (1980)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Combescure, M., Robert, D. (2012). Spin-Coherent States. In: Coherent States and Applications in Mathematical Physics. Theoretical and Mathematical Physics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0196-0_7

Download citation

Publish with us

Policies and ethics