Skip to main content

A Few Characteristic Features of the Geomagnetic Field During Reversals

  • Chapter
  • First Online:
The Earth's Magnetic Interior

Part of the book series: IAGA Special Sopron Book Series ((IAGA,volume 1))

Abstract

Volcanic records of reversals are mostly exempt of complications linked to their magnetization process and thus potentially tell us the most significant story about the field variations prevailing during these periods. We have found no convincing indication supporting the presence of long-term non-zonal features governing the transitional field. A few VGP paths seem to be controlled by flux patches of the present non-axial dipole field lying immediately below the sites, but the detailed reversal records are characterized by scattered VGPs that are not related to anomalies of the present non axial dipole field. Assuming that clusters of VGPs over Australia would be associated with an hypothetical time persistence of the present anomaly in this area, then the geometry of the transitional field would have to be controlled by the equatorial dipole, since it is responsible for the present Australian patch. This is difficult to reconcile with our present knowledge of the variability of the equatorial dipole as well as with the structure of most detailed VGP paths. In fact, the existence of complex directional changes with rebounds and precursors in the detailed volcanic records reflect the persistence and the amplification of secular variation following the collapse of the axial dipole. We have now learned much more about the evolution of the axial dipole from studies of relative paleointensity in sediments but also from the records of absolute paleointensity that have been obtained for a few volcanic records. The data converge to indicate asymmetrical pre- and post-reversal phases but also a systematic overshoot marking the end of the recovery phase. These features can be explained by a dynamical model assuming a coupling of the Earth’s dipole with the quadrupolar mode during reversals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barton CE, McFadden PL (1996) Inclination shallowing and preferred transitional VGP paths. Earth Planet Sci Lett 140:147–157

    Article  Google Scholar 

  • Berhanu M, Monchaux R, Fauve S, Mordant N, PĂ©trĂ©lis F, Chiffaudel A, Daviaud F, Dubrulle B, MariĂ© L, Ravelet F, Bourgoin M, Odier P, Pinton JF, Volk R (2007) Magnetic field reversals in an experimental turbulent dynamo. Europhys Lett 77:59001

    Article  Google Scholar 

  • Bogue SW, Paul HA (1993) Distinctive field behaviour following geomagnetic reversals. Geophys Res Lett 20:2399–2402

    Article  Google Scholar 

  • Carcaillet JT, Thouveny N, Bourlès DL (2003) Geomagnetic moment instability between 0.6 and 1.3 Ma from cosmonuclide evidence. Geophys Res Lett 30:1792–1795

    Article  Google Scholar 

  • Carlut J, Courtillot V (1998) How complex is the time-averaged geomagnetic field over the last 5 million years? Geophys J Int 134:527–544

    Article  Google Scholar 

  • Channell JET, Lehman B (1997) The last two geomagnetic polarity reversals recorded in high deposition-rate sediments drifts. Nature 389:712–715

    Article  Google Scholar 

  • Chauvin A, Roperch P, Duncan RA (1990) Records of geomagnetic reversals from volcanic islands of French Polynesia. J Geophys Res 95:2727–2752

    Article  Google Scholar 

  • Clement BM (1991) Geographical distribution of transitional VGPs: evidence for non zonal equatorial symmetry during the Matuyama-Brunhes geomagnetic reversal. Earth Planet Sci Lett 104:48–58

    Article  Google Scholar 

  • Constable CG, Tauxe L, Parker RL (1998) Analysis of 11 Myr of geomagnetic intensity variation. J Geophys Res 103:17735–17748

    Article  Google Scholar 

  • Courtillot V, Valet J-P, Hulot G, Le MouĂ«l J-L (1992) The earth’s magnetic field: which geometry? Eos Trans AGU 73:32337

    Article  Google Scholar 

  • Dagley P, Lawley E (1974) Paleomagnetic evidence for the transitional behaviour of the geomagnetic field. Geophys J R Astron Soc 36:577–598

    Google Scholar 

  • Fuller MD, Williams I, Hoffman KA (1979) Paleomagnetic records of geomagnetic field reversals and the morphology of the transitional fields. Rev Geophys 17:179–203

    Article  Google Scholar 

  • Genevey A, Gallet Y, Constable CG, Korte M, Hulot G (2008) Archeoint: an upgraded compilation of geomagnetic field intensity data for the past ten millenia and its application to the recovery of the past dipole moment. Geochem Geophys Geosyst 9:Q04038. doi:10.1029/2007GC001881

    Article  Google Scholar 

  • Gubbins D, Kelly P (1993) Persistent patterns in the geomagnetic field over the past 2.5 Myr. Nature 365:829–832

    Article  Google Scholar 

  • Herrero-Bervera E, Coe RS (1999). Transitional field behavior during the Gilbert-Gauss and Lower Mammoth reversals recorded in lavas from the Wai’anae Volcano, O’ahu, Hawaii. J Geophys Res 104:29157–29173

    Article  Google Scholar 

  • Herrero-Bervera E, Runcorn SK (1997) Transition fields during geomagnetic reversals and their geodynamic significance. Philos Trans R Soc London Ser A 453:1–30

    Google Scholar 

  • Herrero-Bervera E, Theyer F (1986) Non-axisymmetric behaviour of Olduvai and Jaramillo polarity transitions recorded in north-central Pacific deep-sea sediments. Nature 322:159–162

    Article  Google Scholar 

  • Herrero-Bervera E, Valet J-P (1999) Paleosecular variation during sequential geomagnetic reversals from Hawaii. Earth Planet Sci Lett 171:139–148

    Article  Google Scholar 

  • Herrero-Bervera E, Valet J-P (2005) Absolute paleointensity from the Waianae volcanics (Oahu, Hawaii) between the Gilbert-Gauss and the upper Mammoth reversals. Earth Planet Sci Lett 234:279–296

    Article  Google Scholar 

  • Herrero-Bervera E, Helsley CE, Sarna-Wojcicki AM, Lajoie KR, Meyer CE, McWilliams MO, Negrini RM, Turrin BD, Donelly-Nolan JM, Liddicoat JC (1994) Age and correlation of a paleomagnetic episode in the western United States by 40Ar/39AR dating and tephrochronology: the Jamaica, Blake, or a new polarity episode. J Geophys Res 99:24,091–24,103

    Article  Google Scholar 

  • Herrero-Bervera E, Walker GPL, Harrison CGA, Guerrero-Garcia JC, Kristjansson L (1999) Detailed paleomagnetic study of two polarity transitions recorded in Eastern Iceland. Phys Earth Planetary Inter 147:171–182

    Article  Google Scholar 

  • Hillhouse J, Cox A (1976) Brunhes-Matuyama polarity transition. Earth Planet Sci Lett 29:51–64

    Article  Google Scholar 

  • Hoffman KA (1977) Polarity transition records and the geomagnetic dynamo. Science 196:1329–1332

    Article  Google Scholar 

  • Hoffman KA (1991) Long-Lived transitional states of the geomagnetic field and the two dynamo families. Nature 354:273–277

    Article  Google Scholar 

  • Hoffman KA (1992) Dipolar reversal states of the geomagnetic field and core-mantle dynamics. Nature 359:789–794

    Article  Google Scholar 

  • Hoffman KA (1996) Transitional paleomagnetic field behavior: preferred paths or patches? Surv Geophys 17:207–211

    Article  Google Scholar 

  • Hoffman KA, Singer BS (2008) Magnetic separation in Earth’s outer core. Science 321:1800

    Article  Google Scholar 

  • Jackson A, Jonkers A, Walker M (2000) Four centuries of geomagnetic secular variation from historical records. Philos Trans R Soc London 358:957–990. doi:10.1098/ rsta. 2000.0569

    Article  Google Scholar 

  • Johnson CL, Constable CG (1995) The time-averaged geomagnetic field as recorded by lava flows over the past 5 Myr. Geophys J Int 122:489–519

    Article  Google Scholar 

  • Johnson CL, Constable CG (1997) The time-averaged field: Global and regional biases for 0–5 Ma. Geophys J Int 131:643–666

    Article  Google Scholar 

  • Kelly P, Gubbins D (1997) The geomagnetic field over the past 5 million years. Geophys J Int 128:315–330

    Article  Google Scholar 

  • Korte M, Constable CG (2005) Continuous geomagnetic models for the past 7 millennia: 2. CALS7K. Geochem Geophys Geosyst 6(2):Q02H16. doi:10.1029/2004GC000801

    Article  Google Scholar 

  • Kutzner C, Christensen UR (2002) From stable dipolar towards reversing numerical dynamos. Phys Earth Planetary Inter 131:29–45

    Article  Google Scholar 

  • Laj C, Mazaud A, Weeks R, Fuller M, Herrero-Bervera E (1991) Geomagnetic reversal paths. Nature 351:447

    Article  Google Scholar 

  • Langereis CG, van Hoof AAM, Rochette P (1992) Longitudinal confinement of geomagnetic reversal paths. Sedimentary artefact or true field behavior? Nature 358:226–230

    Article  Google Scholar 

  • Leonhardt R, Fabian K (2007) Paleomagnetic reconstruction of the global geomagnetic field evolution during the Matuyama-Brunhes transition: iterative bayesian inversion and independent verification. Earth Planet Sci Lett 253:172–195

    Article  Google Scholar 

  • Levy EH (1972a) On the state of the geomagnetic field and its reversals. Astrophys J 175:573–581

    Article  Google Scholar 

  • Levy EH (1972b) Kinematic reversal schemes for the geomagnetic dipole. Astrophys J 172:635–642

    Article  Google Scholar 

  • Love JJ (1998) Paleomagnetic volcanic data and geometric regularity of reversals and excursions. J Geophys Res 103(B6):12,435–12,452

    Article  Google Scholar 

  • Mankinen EA, PrĂ©vot M, GrommĂ© CS, Coe RS (1985) The Steens Mountain (Oregon) geomagnetic polarity transition 1, Directional history, duration of episodes and rock magnetism. J Geophys Res 90:10,393–10,416

    Article  Google Scholar 

  • Mazaud A (1985) An attempt at reconstructing the geomagnetic field at the core-mantle boundary during the Upper Olduvai polarity transition (1.66 Myr). Phys Earth Planetary Inter 90:211–219

    Article  Google Scholar 

  • McElhinny MW, McFadden PL, Merrill RT (1996) The time-averaged paleomagnetic field 0–5 Ma. J Geophys Res 101:25,007–25,027

    Article  Google Scholar 

  • McElhinny MW, Merrill RT (1975) Geomagnetic secular variation over the past 5 my. Rev Geophys 13:687–708

    Article  Google Scholar 

  • McFadden PL, Barton CE, Merrill RT (1993) Do virtual geomagnetic poles follow preferred paths during geomagnetic reversals? Nature 361:342–344

    Article  Google Scholar 

  • McFadden PL, Merrill RT, McElhinny MW (1988) Dipole/quadrupole family modelling of paleosecular variation. J Geophys Res 93:11,583–11,588

    Article  Google Scholar 

  • McFadden PL, Merrill RT, McElhinny MW, Sunhee L (1991) Reversals of the Earth’s magnetic field and temporal variations of the dynamo families. J Geophys Res 96(B3):3923–3933

    Article  Google Scholar 

  • Merrill RT, McFadden PL (1999) Geomagnetic polarity transitions. Rev Geophys 37:201–226

    Article  Google Scholar 

  • Parker EN (1969) The occasional reversal of the geomagnetic field. Astrophys J 158:815–827

    Article  Google Scholar 

  • Petrellis F, Fauve S, Dormy E, Valet J-P (2009) A simple mechanism for the reversals of Earth’s magnetic field. Phys Rev Lett 102:144503

    Article  Google Scholar 

  • PrĂ©vot M, Camps P (1993) Absence of longitudinal confinement of poles in volcanic records of geomagnetic reversals. Nature 366:53–57

    Article  Google Scholar 

  • PrĂ©vot M, Mankinen E, Coe RS, GrommĂ© CS (1985) The Steens Mountain (Oregon) geomagnetic polarity transition. Field intensity variations and discussion of reversal models. J Geophys Res 90:10,417–10,448

    Article  Google Scholar 

  • Quidelleur X, Courtillot V (1996) On low degree spherical harmonic models of paleosecular variation. Phys Earth Planetary Inter 95:55–77

    Article  Google Scholar 

  • Quidelleur X, Valet J-P (1994) Paleomagnetic records of excursions and reversals: possible biases caused by magnetization artefacts? Phys Earth Planetary Inter 82:27–48

    Article  Google Scholar 

  • Quidelleur X, Holt J, Valet J-P (1995) Confounding influence of magnetic fabric on sedimentary records of a field reversal. Nature 374:246–249

    Article  Google Scholar 

  • Riisager P, Abrahamsen N (2000) Paleointensity of west Greenland Paleocene basalts: asymmetric intensity around the C57n-C26r transition. Phys Earth Planetary Inter 118:53–64

    Article  Google Scholar 

  • Roberts PH, Stix M (1972) Alpha effect dynamos by the Bullard-Gellman formalism. Astron Astrophys 18:453–466

    Google Scholar 

  • Rochette PE (1992) Rationale of geomagnetic reversals versus remanence recording processes in rocks. Earth Planet Sci Lett 98:33–38

    Article  Google Scholar 

  • Valet J-P, Plenier G (2008) Simulations of a time-varying non dipole field during geomagnetic reversals and excursions. Phys Earth Planetary Inter 169:178–193

    Article  Google Scholar 

  • Valet J-P, Tauxe L (1989) Clement BM, Equatorial and mid-latitudes records of the last geomagnetic reversal from the Atlantic Ocean. Earth Planet Sci Lett 94:371–384

    Article  Google Scholar 

  • Valet J-P, Brassart J, Quidelleur X, Soler V, Gillot P-Y, Hongre L (1999) Paleointensity variations across the last geomagnetic reversal at La Palma, Canary islands, Spain. J Geophys Res 104(B4):7577

    Article  Google Scholar 

  • Valet J-P, Herrero-Bervera E, LeMouĂ«l JL, Plenier G (2008) Secular variation of the geomagnetic dipole during the past 2 thousand years. Geochem Geophys Geosyst 9:Q01008. doi: 10.1029/2007GC001728

    Article  Google Scholar 

  • Valet J-P, Meynadier L, Guyodo Y (2005) Geomagnetic field strength and reversal rate over the past 2 Million years. Nature 435:802–805

    Article  Google Scholar 

  • Valet J-P, Tucholka P, Courtillot V, Meynadier L (1992) Paleomagnetic constraints on the geometry of the geomagnetic field during reversals. Nature 356:400–407

    Article  Google Scholar 

Download references

Acknowledgements

Financial support to J-P Valet and L. Meynadier was provided through the CNRS-INSU Interieur de la Terre Program, IPGP contribution # 3010. Financial support to E.H-B was provided by SOEST-HIGP and by the National Science Foundation grants EAR-0510061, EAR-0710571, EAR-1015329, and NSF EPSCoR Program. This is a SOEST 8145 and HIGP 1888 contribution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Pierre Valet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Valet, JP., Herrero-Bervera, E. (2011). A Few Characteristic Features of the Geomagnetic Field During Reversals. In: PetrovskĂ½, E., Ivers, D., Harinarayana, T., Herrero-Bervera, E. (eds) The Earth's Magnetic Interior. IAGA Special Sopron Book Series, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0323-0_10

Download citation

Publish with us

Policies and ethics