Skip to main content

Biosorption and Metal Removal Through Living Cells

  • Chapter
  • First Online:
Microbial Biosorption of Metals

Abstract

Unicellular and higher organisms have a variety of properties that can affect chemical speciation, mobility and toxicity of metals and radionuclides. Apart from their importance in the environmental cycling of elements, the passive and active interactions of microbes, fungi, algae and plants with metals and radionuclides could have beneficial consequences in context of bioremediation of polluted water, soils and sediments. The capacity of living cells to remove metals and radionuclides from waste waters is well documented. Besides biosorption, the bioremediation using living organisms may exploit their bioaccumulation capacity or metabolic pathways. Useful microbial properties exploited to immobilize or volatize metals and radionuclides involve mainly production of phosphates, carbonates of sulphides that precipitate soluble toxic species and reductive transformations to insoluble ionic or metallic forms, including production of catalytically active nanoparticles directly from waste water. Various bioprocesses, bioreactor setups or in situ bioremediation approaches employing isolated microbes or microbial consortia were proposed and brought to pilot scale. One of the approaches achieving compliance using mixed-function consortia at low cost is construction of artificial wetlands, the systems that rely on collective action of physical, chemical and biological processes. Besides the microbial activities promoting in wetlands formation of insoluble metal sediments, the heavy metal removal performance of wetland is largely contributed by plants, namely through metal biosorption, root uptake and precipitation induced by changes in redox potential within the rhizosphere. The possibility of altering the microbes and plants to improve their bioremediation potential by genetic engineering is under study in many laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aken BV, Correa PA, Schnoor JL (2010) Phytoremediation of polychlorinated biphenyls: new trends and promises. Environ Sci Technol 44:2767–2776

    Article  PubMed  CAS  Google Scholar 

  • Aksu Z, Yener J (1998) Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge. Process Biochem 33:649–655

    Article  CAS  Google Scholar 

  • Alloway BJ (1995) Heavy metals in soils, 2nd edn. Blackie, Glasgow

    Google Scholar 

  • Anderson RT, Vrionis HA, Ortiz-Bernad I, Resch CT, Long PE, Dayvault R, Karp K, Marutzky S, Metzler DR, Peacock A, White DC, Lowe M, Lovley DR (2003) Stimulating the in situ activity of Geobacter species to remove uranium from the groundwater of a uranium-contaminated aquifer. Appl Environ Microbiol 69:5884–5891

    Article  PubMed  CAS  Google Scholar 

  • Andrade JCM, Mahler CF (2002) Soil phytoremediation. 4th International Conference of Engineering Geotechnology. Rio de Janeiro, Brazil

    Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm H (1999) A tobacco plasma membrane calmodulin-binding transporter confers Ni2+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:171–182

    Article  PubMed  CAS  Google Scholar 

  • Arican B, Gokcay CF, Yetis U (2002) Mechanistics of nickel sorption by activated sludge. Process Biochem 37:1307–1315

    Article  CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1996) Bioremediation of metal-contaminated industrial effluents using waste materials. Water Sci Technol 34:9–15

    CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998a) Consideration for application of biosorption technology to remediate metal-contaminated industrial effluents. Water SA 24:129–135

    CAS  Google Scholar 

  • Atkinson BW, Bux F, Kasan HC (1998b) Waste activated sludge remediation of metal-plating effluents. Water SA 24:355–359

    CAS  Google Scholar 

  • Bailey NJC, Oven M, Holmes E, Nicholson JK, Zenk MH (2003) Metabolomic analysis of the consequences of cadmium exposure in Silene cucubalus cell cultures via H-1 NMR spectroscopy and chemometrics. Phytochemistry 62:851–858

    Article  PubMed  CAS  Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements—a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: a review of the ecology and physiology of a biological source for phytoremediation of metal-polluted soil. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 85–107

    Google Scholar 

  • Barazani O, Sathiyamoorthy P, Manandhar U, Vulkan R, Golan-Goldhirsh A (2004) Heavy metal accumulation by Nicotiana glauca Graham in a solid waste disposal site. Chemosphere 54:867–872

    Article  PubMed  CAS  Google Scholar 

  • Bargar JR, Bernier-Latmani R, Giammar DE, Tebo BM (2008) Biogenic uraninite nanoparticles and their importance for uranium remediation. Elements 4:407–412

    Article  CAS  Google Scholar 

  • Barkay T, Miller SM, Summers AO (2003) Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol Rev 27:355–384

    Article  PubMed  CAS  Google Scholar 

  • Barley RW, Hutton C, Brown MME, Cusworth JE, Hamilton TJ (2005) Trends in biomass and metal sequestration associated with reeds and algae at Wheel Jane Biorem pilot passive treatment plant. Sci Total Environ 338:107–114

    Article  PubMed  CAS  Google Scholar 

  • Barnes LJ (1993) Process for their microbial oxidation of sulphidic wastes. United States Patent 5840191

    Google Scholar 

  • Battaglia-Brunet F, Foucher S, Ignatiadis I, Michel C, Morin D (2002) Reduction of chromate by fixed films of sulphate-reducing bacteria using hydrogen as electron source. J Ind Microbiol Biotechnol 28:154–159

    Article  PubMed  CAS  Google Scholar 

  • Battaglia-Brunet F, Foucher S, Denamur A, Margraff M, Morin D, Ignatiadis I (2004a) Chromate reduction at low sulphate concentration in hydrogen-fed bioreactors. Environ Technol 25:101–109

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Foucher S, Morin D, Ignatiadis I (2004b) Chromate (CrO4 2−) reduction in ground waters by using reductive bacteria in fixed-bed bioreactors. Water Air Soil Pollut: Focus 4:127–135

    CAS  Google Scholar 

  • Battaglia-Brunet F, Touze S, Michel C, Ignatiadis I (2006) Treatment of a chromate-polluted groundwater in a 200-dm3 pilot bio-reactor fed with hydrogen. J Chem Technol Biotechnol 81:1506–1513

    Article  CAS  Google Scholar 

  • Battaglia-Brunet F, Michel C, Joulian C, Ollivier B, Ignatiadis I (2007) Relationship between sulphate starvation and chromate reduction in a H2-fed fixed-film bioreactor. Water Air Soil Pollut 183:341–353

    Article  CAS  Google Scholar 

  • Bennett LE, Burkhead JL, Hale KL, Terry N, Pilon M, Pilon-Smits EAH (2003) Analysis of transgenic Indian mustard plants for phytoremediation of metal-contaminated mine tailings. J Environ Q 32:432–440

    CAS  Google Scholar 

  • Bittsánszky A, Kömives T, Gullner G, Gyulai G, Kiss J, Heszky L, Radimszky L, Rennenberg H (2005) Ability of transgenic poplars with elevated glutathione content to tolerate Zn2+ stress. Environ Int 31:251–254

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP, Rugh CL, Summers AO, Meagher RB (1999) Phytoremediation of methylmercury pollution: merB expression in Arabidopsis thaliana confers resistance to organomercurials. Proc Natl Acad Sci U S A 96:6808–6813

    Article  PubMed  CAS  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    Article  PubMed  CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Article  Google Scholar 

  • Bonthrone KM, Basnakova G, Lin F, Macaskie LE (1996) Bioaccumulation of nickel by intercalation into polycristalline hydrogen uranyl phosphate deposited via an enzymatic mechanism. Nat Biotechnol 14:635–638

    Article  PubMed  CAS  Google Scholar 

  • Boruvka L, Vacha R (2006) Litavka river alluvium as a model area heavily polluted with potentially risk elements. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminated soils. IV. Earth and environmental sciences, vol 68. NATO Science Series. Springer, Dordrecht, pp 267–298

    Google Scholar 

  • Bovet L, Feller U, Martinoia E (2005) Possible involvement of plant ABC transporters in cadmium detoxification: a cDNA sub-microarray approach. Environ Int 31:263–267

    Article  PubMed  CAS  Google Scholar 

  • Brim H, McFarlan SC, Fredrickson JK, Minton KW, Zhai M, Wackett LP, Daly MJ (2000) Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments. Nat Biotechnol 18:85–90

    Article  PubMed  CAS  Google Scholar 

  • Brix H (1993) Macrophytes-mediated oxygen transfer in wetlands: transport mechanism and rate. In: Moshiri TA (ed) Constructed wetlands for water quality improvement. CRC-Press, Boca Raton

    Google Scholar 

  • Brodie GA, Hammer DA, Tomljanovich DA (1989a) Treatment of acid drainage with a constructed wetland at the Tennessee Valley Authority 950 coal mine. In: Hammer DA (ed) Constructed wetlands for waste water treatment. Lewis Publishers Inc., Chelsea, pp 201–210

    Google Scholar 

  • Brodie GA, Hammer DA, Tomljanovich DA (1989b) Constructed wetlands for treatment of an ash pond seepage. In: Hammer DA (ed) Constructed wetlands for waste water treatment. Lewis Publishers Inc., Chelsea, pp 211–220

    Google Scholar 

  • Brooks RR, Lee J, Reeves RD, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor J 7:49–57

    Article  CAS  Google Scholar 

  • Brooks RR (1998) General introduction. In: Brooks RR (ed) Plants that Hyperaccumulate Heavy Metals, CABI, Wallingford, pp 1–14

    Google Scholar 

  • Brunet J, Repellin A, Varrault G, Terryn N, Zuily-Fodil Y (2008) Lead accumulation in the roots of grass pea (Lathyrus sativus L.): a novel plant for phytoremediation systems? C R Biol 331:859–864

    Article  PubMed  CAS  Google Scholar 

  • Brunke M, Deckwer W-D, Frischmuth A, Horn JM, Lunsdorf H, Rhode M, Rohricht KN, Timmis KN, Weppen P (1993) Microbial retention of mercury from waste streams in a laboratory column containing merA gene of bacteria. FEMS Microbiol Rev 11:145–152

    Article  PubMed  CAS  Google Scholar 

  • Bux F, Atkinson B, Kasan HC (1999) Zinc biosorption by waste activated and digested sludge. Water Sci Technol 39:127–130

    CAS  Google Scholar 

  • Camargo FAO, Bento FM, Okeke BC, Frankenberger WT (2003) Chromate reduction by chromium-resistant bacteria isolated from soils contaminated with dichromate. J Environ Q 32:1228–1233

    Article  CAS  Google Scholar 

  • Chaney RL (1983) Plant uptake of inorganic waste constituents. In: Parr JF, Marsh PB, Kla JM (eds) Land treatment of hazardous wastes. Noyes Data Corporation, Park Ridge, pp 50–77

    Google Scholar 

  • Chaney RL, Li YM, Angle JS, Baker AJM, Reeves RD, Brown SL, Homer FA, Malik M, Chin M (2000) Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress. In: Terry N, Bañuelos GS (eds) Phytoremediation of contaminated soil and water. CRC Press, Boca Raton, pp 131–160

    Google Scholar 

  • Chaney RL, Angle JS, McIntosh MS, Reeves RD, Li YM, Brewer EP, Chen K-Y, Rosenberg RJ, Perner H, Synkowski EC, Broadhurst CL, Wang S, Baker AJM (2005) Using hyperaccumulator plants to phytoextract soil Ni and Cd. Z Naturforsch 60:190–198

    CAS  Google Scholar 

  • Chang D, Fukushi K, Ghosh S (1995) Stimulation of activated sludge cultures for enhanced heavy metal removal. Water Environ Res 67:822–827

    Article  CAS  Google Scholar 

  • Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311–319

    Article  PubMed  CAS  Google Scholar 

  • Cheng S, Grosse W, Karrenbrock F, Thoennessen M (2002) Efficiency of constructed wetlands in decontamination of water polluted by heavy metals. Ecol Eng 18:317–325

    Article  Google Scholar 

  • Cherian S, Oliveira MM (2005) Transgenic plants in phytoremediation: recent advances and new possibilities. Environ Sci Technol 39:9377–9390

    Article  PubMed  CAS  Google Scholar 

  • Chirwa EMN, Wang Y (1997) Hexavalent chromium reduction by Bacilus sp. in a packed-bed bioreactor. Environ Sci Technol 31:1446–1451

    Article  CAS  Google Scholar 

  • Clemens S (2006) Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie 88:1707–1719

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Palghren MG, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    Article  PubMed  CAS  Google Scholar 

  • Cole S (1998) The emergence of treatment wetlands. J Environ Sci Technol 32:218–223

    Article  Google Scholar 

  • Collins BS, Sharitz RR, Coughlin DP (2005) Elemental composition of native wetland plants in constructed mesocosm treatment wetlands. Biores Technol 96:937–948

    Article  CAS  Google Scholar 

  • Córdoba A, Vargas P, Dussan J (2008) Chromate reduction by Arthrobacter CR47 in biofilm packed bed reactors. J Hazard Mater 151:274–279

    Article  PubMed  CAS  Google Scholar 

  • Costa MC, Duarte JC (2005) Bioremediation of acid mine drainage using acidic soil and organic wastes for promoting sulphate-reducing bacteria activity on a column reactor. Water Air Soil Pollut 165:325–345

    Article  CAS  Google Scholar 

  • Costa MC, Martins M, Jesus C, Duarte JC (2008) Treatment of acid mine drainage by sulphate-reducing bacteria using low cost matrices. Water Air Soil Pollut 189:149–162

    Article  CAS  Google Scholar 

  • Costley SC, Wallis FM (2001) Bioremediation of heavy metals in a synthetic wastewater using a rotating biological contactor. Water Res 35:3715–3723

    Article  PubMed  CAS  Google Scholar 

  • Cunningham SD, Ow DW (1996) Promises and prospects of phytoremediation. Plant Physiol 110:715–719

    PubMed  CAS  Google Scholar 

  • Cunningham SC, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    Article  CAS  Google Scholar 

  • Czakó M, Feng X, He Y, Liang D, Márton L (2006) Transgenic Spartina alterniflora for phytoremediation. Environ Geochem Health 28:103–110

    Article  PubMed  CAS  Google Scholar 

  • D’Souza SF, Sar P, Kazy SK, Kubal BS (2006) Uranium sorption by Pseudomonas biomass immobilized in radiation polymerized polyacrylamide bio-beads. J Environ Sci Health A Tox Hazard Subst Environ Eng. 41:487–500

    Article  PubMed  CAS  Google Scholar 

  • De la Fuente JM, Ramírez-Rodríguez V, Cabrera-Ponce JL, Herrera-Estrella L (1997) Aluminium tolerance in transgenic plants by alteration of citrate synthesis. Science 276:1566–1568

    Article  PubMed  CAS  Google Scholar 

  • De Windt W, Aelterman P, Verstraete W (2005) Bioreductive deposition of palladium (0) nanoparticles on Shewanella oneidenis with catalytic activity towards reductive dechlorination of polychlorinated biphenyls. Environ Microbiol 7:314–325

    Article  PubMed  CAS  Google Scholar 

  • Debusk AT, Laughlin RB, Schwartz LN (1996) Retention and compartmentalization of lead and cadmium in wetland microcosms. Water Res 30:2707–2716

    Article  CAS  Google Scholar 

  • Denny P, Bailey R, Tukahirwa E, Mafabi P (1995) Heavy metal contamination of Lake George (Uganda) and its wetlands. Hydrobiologia 297:229–239

    Article  CAS  Google Scholar 

  • Dermou E, Velissariou A, Xenos D, Vayenas DV (2005) Biological chromium(VI) reduction using a trickling filter. J Hazard Mater B 126:78–85

    Article  CAS  Google Scholar 

  • Dickinson NM, Pulford ID (2005) Cadmium phytoextraction using short-rotation coppice Salix: the evidence trail. Environ Int 31:609–613

    Google Scholar 

  • Diels L, VanRoy S, Mergeay M, Doyen W, Taghavi S, Leysen R (1993a) Immobilization of bacteria in composite membranes and development of tubular membrane reactors for heavy metal recuperation. In: Paterson R (ed) Effective membrane processes: new perspectives. Kluwer Academic Publishers, The Netherlands, pp 275–293

    Google Scholar 

  • Diels L, VanRoy S, Taghavi S, Doyen W, Leysen R, Mergeay M (1993b) The use of Alcaligenes eutrophus immobilized in a tubular membrane reactor for heavy metal recuperation. In: Torma AE, Apel ML, Brieley CL (eds) Biohydrometallurgical technologies, vol 2. The Minerals, Metals & Materials Society, Warrendale, pp 133–144

    Google Scholar 

  • Diels L, Dong Q, van der Lelie D, Baeyens W, Mergeay M (1995) The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J Ind Microbiol 14:142–153

    Article  PubMed  CAS  Google Scholar 

  • Diels L, De Smet M, Hooyberghs L, Kinaer L, Brox G (2001) Bioremediation of heavy metal contaminated soils with a biometal sludge reactor (BSMR). Process Metall 11B:479–486

    CAS  Google Scholar 

  • Diels L, Spaans PH, Van Roy S, Hooyberghs L, Ryngaert A, Wouters H, Walter E, Winters J, Macaskie L, Finlay J, Pernfuss B, Woebking H, Pümpel T, Tsezos M (2003) Heavy metals removal by sand filters inoculated with metal sorbing and precipitating bacteria. Hydrometallurgy 71:235–241

    Article  CAS  Google Scholar 

  • Dieluweit S, Pum D, Sleytr UB (1998) Formation of a gold superlattice on an S-layer with square lattice symmetry. Supramol Sci 5:15–19

    Article  CAS  Google Scholar 

  • Dorlhac de Borne F, Elmayan T, de Roton C, de Hys L, Tepfer M (1998) Cadmium partitioning in transgenic tobacco plants expressing a mammalian metallothionein gene. Mol Breed 4:83–90

    Article  CAS  Google Scholar 

  • Doty SL (2008) Enhancing phytoremediation through the use of transgenics and endophytes. New Phytol 179:318–333

    Article  PubMed  CAS  Google Scholar 

  • Dunbabin JS, Bowmer KH (1992) Potential use of constructed wetlands for treatment of industrial waste waters containing metals. Sci Total Environ 3:151–68

    Article  Google Scholar 

  • Dushenkov V, Nanda Kumar PBA, Motto H, Raskin I (1995) Rhizofiltration: the use of plants to remove heavy metals from aqueous streams. Environ Sci Technol 29:1239–1245

    Article  PubMed  CAS  Google Scholar 

  • Dushenkov S, Vasudev D, Kapulnik Y, Gleba D, Fleisher D, Ting KC, Ensley B (1997) Removal of uranium from water using terrestrial plants. Environ Sci Technol 31:3468–3474

    Article  CAS  Google Scholar 

  • Evanko CR, Dzombak DA (1997) Remediation of metals-contaminated soils and groundwater. Technology evaluation report. Ground Water Remediation Technology Analysis Center, Pittsburgh, PA, USA

    Google Scholar 

  • Evans K, Gatehouse J, Lindsay W, Shi J, Tommey A, Robinson N (1992) Expression of the pea metallothionein-like gene PsMTa in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation: implications for PsMTa function. Plant Mol Biol 20:1019–1028

    Article  PubMed  CAS  Google Scholar 

  • Faisal M, Hasnain S (2004) Microbial conversion of Cr(VI) in to Cr(III) in industrial effluent. Afr J Biotech 3:610–617

    CAS  Google Scholar 

  • Finlay JA, Allan VJ, Conner A, Callow ME, Basnakova G, Macaskie LE (1999) Phosphate release and heavy metal accumulation biofilm-immobilized and chemicalli-coupled cells of Citrobacter sp. pre-grown in continuous culture. Biotechnol Bioeng 63:87–97

    Article  PubMed  CAS  Google Scholar 

  • Fuji E, Toda K, Ohtake H (1990) Bacterial reduction of toxic hexavalent chromium using a fed batch culture of Enterobacter cloacae (strain HO1). J Ferment Bioeng 69:365–367

    Article  Google Scholar 

  • Gadd GM (1992) Microbial control of heavy metal pollution. In: Fry JC, Gadd GM, Herbert RA, Jones CW, Watson-Craik IA (eds) Microbial control of pollution. Cambridge University Press, Cambridge, pp 59–87

    Google Scholar 

  • Gadd GM (2000) Bioremediation potential of microbial mechanisms of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathwering and bioremediation. Mycol Res 111:3–49

    Article  PubMed  CAS  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 153:609–643

    Article  CAS  Google Scholar 

  • Gail MT, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320

    Article  CAS  Google Scholar 

  • Gonçalves MMM, da Costa ACA, Leite SGF, Sant’Anna GL Jr (2007) Heavy metal removal from synthetic wastewaters in an anaerobic bioreactor using stillage from ethanol distilleries as a carbon source. Chemosphere 69:1815–1820

    Article  PubMed  CAS  Google Scholar 

  • Gong J, Lee DA, Schroeder JI (2003) Long-distance root-to-shoot transport of phytochelatins and cadmium in Arabidopsis. Proc Natl Acad Sci U S A 100:10118–10123

    Article  PubMed  CAS  Google Scholar 

  • Gray S, Kinross J, Read P, Marland A (2000) The nutrient assimilative capacity of Mareal as a substrate for waste treatment. Water Res 34:2183–2190

    Article  CAS  Google Scholar 

  • Greenway M (1997) Nutrient content of wetland plants in constructed wetlands receiving municipal effluent in tropical Australia. Water Sci Technol 35:135–142

    CAS  Google Scholar 

  • Greenway M, Simpson JS (1996) Artificial wetlands for wastewater treatment, water reuse and wildlife in Queens Land, Australia. Water Sci Technol 33:221–229

    CAS  Google Scholar 

  • Grill E, Loffler S, Winnacker EL, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesised from glutathione by a specific g-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci U S A 84:6838–6846

    Article  Google Scholar 

  • Györvary E, Schroedter A, Talapin DV, Weller H, Pum D, Sleytr UB (2004) Formation of nanoparticle arrays on S-layer protein lattices. J Nanosci Nanotechnol 4:115–120

    Article  PubMed  CAS  Google Scholar 

  • Hammer DA, Bastian RK (1989) Wetland ecosystems: natural water purifiers? In: Hammer DA (ed) Constructed wetlands for waste water treatment. Lewis Publishers Inc., Chelsea, pp 5–19

    Google Scholar 

  • Hansen CL, Zwolinski G, Martin D, Williams JW (1984) Bacterial removal of mercury from sewage. Biotechnol Bioeng 26:1330–1333

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A, Nakajima M, Yazaki J (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUP1). Plant Soil 196:277–281

    Article  CAS  Google Scholar 

  • He YK, Sun JG, Feng XZ, Czakó M, Márton L (2001) Differential mercury volatilization by tobacco organs expressing a modified bacterial merA gene. Cell Res 11:231–236

    Article  PubMed  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Wang NJ, Meagher RB (1998) Phytoremediation of Hg-polluted soils by genetically engineered plants. J Soil Cont 7:497–509

    Article  CAS  Google Scholar 

  • Heaton ACP, Rugh CL, Kim T, Wang NJ, Meagher RB (2003) Toward detoxifying mercury-polluted aquatic sediments with rice genetically engineered for mercury resistance. Environ Toxicol Chem 22:2940–2947

    Article  PubMed  CAS  Google Scholar 

  • Hennebel T, Gusseme BD, Verstraete W (2009) Biogenic metals in advanced water treatment. Trends Biotechnol 27:90–98

    Article  PubMed  CAS  Google Scholar 

  • Higuchi K, Suzuki K, Nakanishi H, Yamaguchi H, Nishizawa N-K, Mori S (1999) Cloning of nicotianamine synthase genes, novel genes involved in the synthesis of phytosiderophores. Plant Physiol 119:471–479

    Article  PubMed  CAS  Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco. Altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    Article  PubMed  CAS  Google Scholar 

  • Horn JM, Brunke M, Deckwer WD, Timmis KN (1994) Pseudomonas putida strains which constitutively overexpress mercury resistance for biodetoxification of organomercurial pollutants. Appl Environ Microbiol 60:357–362

    PubMed  CAS  Google Scholar 

  • Huang JW, Cunningham SD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    Article  CAS  Google Scholar 

  • Huisman JL, Schouten G, Schultz C (2006) Biologicaly produced sulphide for purification of process streams, effluent treatment and recovery of the metals in the metal and mining industry. Hydrometallurgy 83:106–113

    Article  CAS  Google Scholar 

  • Ike A, Sriprang R, Ono H, Murooka Y, Yamashita M (2007) Bioremediation of cadmium contaminated soil using symbiosis between leguminous plant and recombinant rhizobia with the MTL4 and the PCS genes. Chemosphere 66:1670–1676

    Article  PubMed  CAS  Google Scholar 

  • Jaffre T, Brooks RR, Lee J, Reeves RD (1976) Sebertia acuminata, a hyperaccumulator of nickel from New Caledonia. Science 193:579–580

    Article  PubMed  CAS  Google Scholar 

  • Jayaweera MW, Kasturiarachchi JC, Kularatne RK, Wijeyekoon SL (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manager 87:450–460

    Article  CAS  Google Scholar 

  • Jeong BC, Hawes C, Bonthrone KM, Macaskie LE (1997) Localization of enzymatically enhanced heavy metal accumulation by Citrobacter sp. and metal accumulation in vitro by liposomes containing entrapped enzyme. Microbiology 143:2497–2507

    Article  PubMed  CAS  Google Scholar 

  • Jeong BC, Poole PS, Willis AC, Macaskie LE (1998) Purification and characterization of acid-type phosphatases from a heavy-metal-accumulating Citrobacter sp. Arch Microbiol 169:166–173

    Article  PubMed  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005a) Biogeochemistry of the compost bioreactor components of a composite acid mine drainage passive remediation system. Sci Total Environ 338:81–93

    Article  CAS  Google Scholar 

  • Johnson DB, Hallberg KB (2005b) Acid mine drainage remediation options: a review. Sci Total Environ 338:3–14

    Article  CAS  Google Scholar 

  • Johnston CA (1993) Mechanisms of water wetland water quality interaction. In: Moshiri GA (ed) Constructed wetlands for water quality improvement. CRC-Press, Boca Raton, pp 293–300

    Google Scholar 

  • Jorand F, Boue-Binge F, Block JC, Urbain V (1998) Hydrophobic/hydrophilic properties of activated sludge exopolymeric substances. Water Sci Technol 37:307–315

    CAS  Google Scholar 

  • Kaksonen AH, Puhakka JA (2007) Sulfate reduction based bioprocesses for the treatment of acid mine drainage and recovery of metals. Eng Life Sci 6:541–564

    Article  CAS  Google Scholar 

  • Kalin M (2001) Biogeochemical and ecological consideration in designing wetland treatment systems in post-mining landscapes. Waste Manag 21:191–196

    Article  PubMed  CAS  Google Scholar 

  • Kalin M, Fyson A, Smith MP (1993) ARUM-acid reduction using microbiology. In: Torma AE, Apel ML, Brierley CL (eds) Biohydrometallurgical technologies. The Minerals, Metals & Materails Society, Warrendale, pp 319–328

    Google Scholar 

  • Kalin M, Caetano, Chaves WL (2003) Acid reduction using microbiology: treating AMD effluent emerging from an abandoned mine portal. Hydrometallurgy 71:217–225

    Google Scholar 

  • Kasan HC (1993) The role of waste activated sludge and bacteria in metal ion removal from solution. Crit Rev Environ Sci Technol 23:79–117

    Article  CAS  Google Scholar 

  • Kayser A, Felix HR (1998) Five years of phytoremediation in the field. In: Timmis KN (ed) Book of ext. abstr int workshop–innovative potential of advanced biological systems for remediation. Technical University Hamburg, Harburg, pp 81–86

    Google Scholar 

  • Kazy SK, D’Souza SFD, Sar P (2009) Uranium and thorium sequestration by a Pseudomonas sp.: mechanism and chemical characterization. J Hazard Mater 163:65–72

    Article  PubMed  CAS  Google Scholar 

  • Keiding K, Nielsen PH (1997) Desorption of organic macromolecules from activated sludge: effect of ionic composition. Water Res 31:1665–1672

    Article  CAS  Google Scholar 

  • Kodukula PS, Patterson JW, Surampalli RY (1994) Sorption and precipitation of metals in activated sludge. Biotechnol Bioeng 43:874–880

    Article  PubMed  CAS  Google Scholar 

  • Komori K, Rivas A, Toda K, Ohtake H (1990) A method for removal of toxic chromium using dialysis-sac cultures of a chromate-reducing strain of Enterobacter cloacae. Appl Microbiol Biotechnol 33:117–119

    Article  PubMed  CAS  Google Scholar 

  • Koprivova A, Kopriva S, Jäger D, Will B, Jouanin L, Rennenberg H (2002) Evaluation of transgenic poplars over-expressing enzymes of glutathione synthesis for phytoremediation of cadmium. Plant Biol 4:664–670

    Article  CAS  Google Scholar 

  • Korenkov V, Hirschi K, Crutchfield JD, Wagner GJ (2007a) Enhancing tonoplast Cd/H antiport activity increases Cd, Zn, and Mn tolerance, and impacts root/shoot Cd partitioning in Nicotiana tabacum L. Planta 226:1379–1387

    Article  CAS  Google Scholar 

  • Korenkov V, Park S, Cheng N, Sreevidya C, Lachmansingh J, Morris J, Hirschi K, Wagner GJ (2007b) Enhanced Cd2+ -selective root-tonoplast-transport in tobaccos expressing Arabidopsis cation exchangers. Planta 225:403–411

    Article  CAS  Google Scholar 

  • Kotrba P, Macek T, Ruml T (1999) Heavy-metal binding peptides and proteins in plants. Coll Czech Chem Commun 64:1057–1086

    Article  CAS  Google Scholar 

  • Kotrba P, Najmanova J, Macek T, Ruml T, Mackova M (2009) Genetically modified plants in phytoremediation of heavy metal and metalloid soil and sediment pollution. Biotechnol Adv 27:799–810

    Article  PubMed  CAS  Google Scholar 

  • Krämer U, Chardonnens A (2001) The use of transgenic plants in the bioremediation of soils contaminated with trace elements. Appl Microbiol Biotechnol 55:661–672

    Article  PubMed  Google Scholar 

  • Krämer U, Talke I, Hanikenne M (2007) Transition metal transport. FEBS Lett 581:2263–2272

    Article  PubMed  CAS  Google Scholar 

  • LeCooper EM, Sims JT, Cunningham SD, Huang JW, Berti WR (1999) Chelate-assisted phytoextraction of lead from contaminated soils. J Environ Qual 28:1709–1719

    Google Scholar 

  • Lee M, Yang M (2010) Rhizofiltration using sunflower (Helianthus annuus L.) and bean (Phaseolus vulgaris L. var. vulgaris) to remediate uranium contaminated groundwater. J Hazard Mater 173:589–596

    Article  PubMed  CAS  Google Scholar 

  • Li ZS, Lu YP, Zhen RG, Szczypka M, Thiele DJ, Rea PA (1997) A new pathway for vacuolar cadmium sequestration in Saccharomyces cerevisiae: YCF1-catalyzed transport of bis(glutathionato)cadmium. Proc Natl Acad Sci U S A 94:42–47

    Article  PubMed  CAS  Google Scholar 

  • Lloyd JR, Yong P, Macaskie LE (1998) Enzymatic recovery of elemental palladium by using sulfate-reducing bacteria. Appl Environ Microbiol 64:4607–4609

    PubMed  CAS  Google Scholar 

  • Lloyd JR, Lovley DR, Macaskie LE (2003) Biotechnological application of metal-reducing microorganisms. Adv Appl Microbiol 53:85–128

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR (1995) Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J Ind Microbiol 14:85–93

    Article  PubMed  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  PubMed  CAS  Google Scholar 

  • Lyyra S, Meagher RB, Kim T, Heaton A, Montello P, Balish RS, Merkle SA (2007) Coupling two mercury resistance genes in eastern cottonwood enhances the processing of organomercury. Plant Biotechnol J 5:254–262

    Article  PubMed  CAS  Google Scholar 

  • Mabbet AN, Yong P, Farr JP, Macaskie LE (2004) Reduction of Cr(VI) by “palladized” biomass of Desulfovibrio desulfuricans ATCC 29577. Biotechnol Bioeng 87:104–109

    Article  CAS  Google Scholar 

  • Macaskie LE, Dean ACR (1984) Cadmium accumulation by immobilized cells of a Citrobacter sp. Biotechnol Lett 5:177–186

    CAS  Google Scholar 

  • Macaskie LE, Dean ACR (1985) Uranium accumulation by immobilized cells of a Citrobacter sp. Biotechnol Lett 7:457–462

    Article  CAS  Google Scholar 

  • Macaskie LE, Empson RM, Cheetham AK, Grey CP, Skarnulis AJ (1992) Uranium bioaccumulation by a Citrobacter sp. as a result of an ezymatically mediated growth of polycrystalline HUO2PO4. Science 257:782–784

    Article  PubMed  CAS  Google Scholar 

  • Macaskie LE, Bonthrone KM, Yong P, Goddard DT (2000) Enzymically mediated bioprecipitation of uranium by a Citrobacter sp.: a concerted role for exocellular lipopolysaccharide and associated phosphatase in biomineral formation. Microbiology 146:1855–1867

    PubMed  CAS  Google Scholar 

  • Macek T, Macková M, Truksa M, Singh-Cundy A, Kotrba P, Yancey N, Scouten WH (1996) Preparation of transgenic tobacco with a yeast metallothionein combined with a polyhistidine tail. Chem Listy 90:690

    CAS  Google Scholar 

  • Macek T, Macková M, Burkhard J, Demnerová K (1998) Introduction of green plants for the control of metals and organics in remediation. In: Holm FW (ed) Effluents from alternative demilitarization technologies. NATO PS Ser. 1, vol 22. Kluwer Academic Publishers, Dordrecht, pp 71–85

    Google Scholar 

  • Macek T, Macková M, Káš J (2000) Exploitation of plants for the removal of organics in environmental remediation. Biotechnol Adv 18:23–35

    Article  PubMed  Google Scholar 

  • Macek T, Macková M, Pavliková D, Száková J, Truksa M, Singh Cundy A, Kotrba P, Yancey N, Scouten WH (2002) Accumulation of cadmium by transgenic tobacco. Acta Biotechnol 22:101–106

    Article  CAS  Google Scholar 

  • Macek T, Pavlikova D, Mackova M (2004) Phytoremediation of metals and inorganic pollutants. In: Singh A, Ward OP (eds) Applied bioremediation and phytoremediation. Springer, Berlin, pp 135–157

    Google Scholar 

  • Macek T, Kotrba P, Svatos A, Novakova M, Demnerova K, Mackova M (2008) Novel roles for genetically modified plants in environmental protection. Trends Biotechnol 26:146–152

    Article  PubMed  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  PubMed  CAS  Google Scholar 

  • Malik A (2007) Environmental challenge vis a vis opportunity: the case of water hyacinth. Environ Int 33:122–138

    Article  PubMed  CAS  Google Scholar 

  • Martínez M, Bernal P, Almela C, Vélez D, García-Agustín P, Serrano R, Navaro-Aviño J (2006) An engineered plant that accumulates higher levels of heavy metals than Thlaspi caerulescens, with yields of 100 times more biomass in mine soils. Chemosphere 64:478–485

    Article  PubMed  CAS  Google Scholar 

  • Martins M, Santos ES, Pires C, Barros RJ, Costa MC (2010) Production of irrigation water from bioremediation of acid mine drainage: comparing the performance of two representative systems. J Clean Prod 18:248–253

    Article  CAS  Google Scholar 

  • Mashauri DA, Mulugu DMM, Abdul Hussein BS (2000) Constructed wetland at the University of Dar Es Salaam. Water Res 24:1135–1144

    Article  Google Scholar 

  • Matagi SV, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:23–35

    Article  Google Scholar 

  • Meyers DE, Auchterlonie GJ, Webb RI, Wood B (2008) Uptake and localisation of lead in the root system of Brassica juncea. Environ Pollut 153:323–332

    Article  PubMed  CAS  Google Scholar 

  • Mays PA, Edwards GS (2001) Comparison of heavy metal accumulation in a natural wetland and constructed wetlands receiving acid mine drainage. Ecol Eng 16:487–500

    Article  Google Scholar 

  • Mishra VK, Tripathi BD, Kim KH (2009) Removal and accumulation of mercury by aquatic macrophytes from an open cast coal mine effluent. J Hazard Mater 172:749–754

    Article  PubMed  CAS  Google Scholar 

  • McLean J, Beveridge TJ (2001) Chromate reduction by a Pseudomonad isolated from a site contaminated with chromated copper arsenate. Appl Environ Microbiol 67:1076–1084

    Article  PubMed  CAS  Google Scholar 

  • Meagher RB (2000) Phytoremediation of toxic elemental and organic pollutants. Curr Opin Plant Biol 3:153–162

    Article  PubMed  CAS  Google Scholar 

  • Mergeay M, Monchy S, Vallaeys T, Auquier V, Benotmane A, Bertin P, Taghavi S, Dunn J, van der Lelie D, Wattinez R (2003) Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol Rev 27:385–410

    Article  PubMed  CAS  Google Scholar 

  • Nedelkoska TV, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    Article  PubMed  CAS  Google Scholar 

  • Newman LA, Doty SL, Gery KL, Heilman PE, Muiznieks I, Shang TQ, Siemieniec ST, Strand SE, Wang X, Wilson AM, Gordon MP (1998) Phytoremediation research at the University of Washington. J Soil Cont 7:531–542

    Article  CAS  Google Scholar 

  • Novak JT, Higgins MJ, Love NG (1999) The effect of cationic salt addition on the settling and dewatering properties of an industrial activated sludge. Water Environ Res 71:252–254

    CAS  Google Scholar 

  • Ohtake H, Fuji E, Toda K (1990) A survey of effective electron-donors for reduction of toxic hexavalent chromium by Enterobacter cloacae (strain-HO1). J Gen Appl Microbiol 36:203–208

    Article  CAS  Google Scholar 

  • Pattanapipitpaisal P, Brown NL, Macaskie LE (2001) Chromate reduction by Microbacterium liquefaciens immobilized in polyvinyl alcohol. Biotech Lett 23:61–65

    Article  CAS  Google Scholar 

  • Pavlíková D, Macek T, MacKová M, Száková J, Balík J (2004) Cadmium tolerance and accumulation in transgenic tobacco plants with a yeast metallothionein combined with a polyhistidine tail. Int Biodeteior Biodegrad 54:233–237

    Article  CAS  Google Scholar 

  • Pilon-Smits, Hwang, Mel Lytle C, Zhu, Tai, Bravo, Chen Y, Leustek T, Terry N (1999) Overexpression of ATP sulfurylase in Indian mustard leads to increased selenate uptake, reduction, and tolerance. Plant Physiol 119:123–132

    Google Scholar 

  • Pilon-Smith E, Pilon M (2002) Phytoremediation of metals using transgenic plants. Crit Rev Plant Sci 21:439–456

    Article  Google Scholar 

  • Pip E, Stepaniuk J (1992) Cadmium, copper and lead in sediments. Arch Hydrobiol 124:337–355

    CAS  Google Scholar 

  • Pol LW, Lens PNL, Weijma J, Stams AJM (2001) New developments in reactor and process technology for sulphate reduction. Water Sci Technol 44:67–76

    Google Scholar 

  • Pollmann K, Raff J, Merroun M, Fahmy K, Selenska-Pobell S (2006) Metal binding by bacteria from uranium mining waste piles and its technological applications. Biotechnol Adv 24:58–68

    Article  PubMed  CAS  Google Scholar 

  • Polprasert C, Dan NP, Thayalakumaran N (1996) Application of constructed wetlands to treat some toxic wastewaters under tropical conditions. Water Sci Technol 34:165–171

    CAS  Google Scholar 

  • Pujol R, Cantler JP (1992) Biosorption and dynamics of bacterial populations in activated sludge. Water Res 26:209–212

    Article  CAS  Google Scholar 

  • Pümpel T, Ebner C, Pernfuss B, Schinner F, Diels L, Keszthelyi Z, Stankovic A, Finlay JA, Macaskie LE, Tsezos M, Wouters H (2001) Treatment of rinsing water from electroless nickel plating with a biologically active moving-bed sand filter. Hydrometallurgy 59:383–293

    Article  Google Scholar 

  • Reeves RD (2006) Hyperaccumulation of trace elements by plants. In: Morel JL, Echevarria G, Goncharova N (eds) Phytoremediation of metal contaminated soils, IV. Earth and Environmental Sciences, vol 68. NATO Science Series, Springer, Dordrecht, pp 25–52

    Google Scholar 

  • Reith F, Lengke MF, Falconer D, Craw D, Southam G (2007) The geomicrobiology of gold. ISME J 1:567–584

    Article  PubMed  CAS  Google Scholar 

  • Reith F, Etschmann B, Grosse C, Moors H, Benotmane MA, Monsieurs P, Grass G, Doonan C, Vogt S, Martinez-Criado G, George GN, Nies DH, Mergeay M, Pring A, Southam G, Brugger J (2009) Mechanisms of gold biomineralization in the bacterium Cupriavidus metallidurans. Proc Natl Acad Sci U S A 106:17757–17762

    Article  PubMed  CAS  Google Scholar 

  • Renninger N, McMahon KD, Knopp R, Nitsche H, Clark DS, Keasling JD (2001) Uranyl precipitation by biomass from an enhanced biological phosphorus removal reactor. Biodegradation 12(6):401–410

    Article  PubMed  CAS  Google Scholar 

  • Renninger N, Knopp R, Nitsche H, Clark DS, Keasling JD (2004) Uranyl precipitation by Pseudomonas aeruginosa via controlled polyphosphate metabolism. Appl Environ Microbiol 70:7404–7412

    Article  PubMed  CAS  Google Scholar 

  • Roosens NHCJ, Willems G, Saumitou-Laprade P (2008) Using Arabidopsis to explore zinc tolerance and hyperaccumulation. Trends Plant Sci 5:208–215

    Article  CAS  Google Scholar 

  • Rudolph A, Becker E, Scholz G, Prochazka Z, Toman J, Macek T, Herout V (1985) The occurence of the amino acid nicotianamine in plants and microorganisms. A reinvestigation. Biochem Physiol Pflanzen 180:557–563

    CAS  Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci U S A 93:3182–3187

    Article  PubMed  CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    Article  PubMed  CAS  Google Scholar 

  • Ruiz ON, Hussein HS, Terry N, Daniell H (2003) Phytoremediation of organomercurial compounds via chloroplast genetic engineering. Plant Physiol 132:1344–1352

    Article  PubMed  CAS  Google Scholar 

  • Ruml T, Kotrba P (2003) Microbial control of metal pollution: an overview. In: Fingerman M, Nagabhushanam R (eds) Recent advances in marine biotechnology. Bioremediation, vol 8. Science Publishers, Enfield, pp 81–153

    Google Scholar 

  • Russell RA, Holden PJ, Wilde KL, Neilan BA (2003) Demonstration of the use of Scenedesmus and Carteria biomass to drive bacterial sulfate reduction by Desulfovibrio alcoholovorans isolated from an artificial wetland. Hydrometallurgy 71:227–234

    Article  CAS  Google Scholar 

  • Salt DE, Pickering IJ, Prince RC, Gleba D, Dushenkov S, Smith RD, Raskin I (1997) Metal accumulation by aquacultured seedlings of Indian mustard. Environ Sci Technol 31:1636–1644

    Article  CAS  Google Scholar 

  • Salt DE, Smith RD, Raskin I (1998) Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol 49:643–68

    Article  PubMed  CAS  Google Scholar 

  • Sar P, D’Souza SF (2001) Biosorptive uranium uptake by a Pseudomonas strain: characterization and equilibrium studies. J Chem Technol Biotechnol 76:1286–1294

    Article  CAS  Google Scholar 

  • Sar P, D’Souza SF (2002) Biosorption of thorium by a Pseudomonas biomass. Biotechnol Lett 24:239–243

    Article  CAS  Google Scholar 

  • Scholes L, Shutes RBE, Revitt DM, Forshaw M, Purchase D (1998) The treatment of metals in urban runoff by constructed wetlands. Sci Total Environ 214:211–219

    Article  CAS  Google Scholar 

  • Scholz M (2003) Performance predictions of mature experimental constructed wetlands which treat urban water receiving high loads of lead and copper. Water Res 37:1270–1277

    Article  PubMed  CAS  Google Scholar 

  • Serporylov NS, Ponomaryev YE, Korenkov VN, Zhukov IM, Sukhoverova LL, Ksandopulo BA (1981) Biochemical removal of chromium (VI) compounds from wastewater under anaerobic conditions in the presence of substrate. IC:CO2F003-28. Appl. SU 81-3306746

    Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A, Vairavamurthy MA (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulfide. Appl Environ Microbiol 66:3083–3087

    Article  PubMed  CAS  Google Scholar 

  • Shen H, Wang Y (1995) Hexavalent chromium removal in two-stage bioreactor system. J Environ Eng 121:798–804

    Article  CAS  Google Scholar 

  • Shenton W, Pum D, Sleytr UB, Mann S (1997) Synthesis of cadmium sulphide superlattices using self-assembled bacterial S-layers. Nature 389:585–587

    Article  CAS  Google Scholar 

  • Sheoran AS, Sheoran V (2006) Heavy metal removal mechanism of acid mine drainage in wetlands: a critical review. Mineral Eng 19:105–116

    Article  CAS  Google Scholar 

  • Silver S, Phung LT (2005) A bacterial view of periodic table: genes and proteins for toxic inorganic ions. J Ind Microbiol Biotechnol 32:587–605

    Article  PubMed  CAS  Google Scholar 

  • Skousen J, Sexstone A, Garbutt K, Sencindiver J (1992) Wetlands for treating acid mine drainage. Green Lands 22:31–39

    Google Scholar 

  • Smith W, Gadd G (2000) Reduction and precipitation of chromate by mixed culture sulphate-reducing bacterial biofilms. J Appl Microbiol 88:983–991

    Article  PubMed  CAS  Google Scholar 

  • Sobolewski A (1996) Metal species indicate the potential of constructed wetlands for long-term treatment of mine drainage. J Ecol Eng 6:259–271

    Article  Google Scholar 

  • Song W, Sohn EJ, Martinoia E, Lee YJ, Yang Y, Jasinski M, Forestier C, Hwang I, Lee Y (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    Google Scholar 

  • Southam G, Lengke MF, Fairbrother L, Reith F (2009) The biogeochemistry of gold. Elements 5:303–307

    Article  CAS  Google Scholar 

  • Sunkar R, Kaplan B, Bouché N, Arazi T, Dolev D, Talke IN, Maathuis FJ, Sanders D, Bouchez D, Fromm H (2000) Expression of a truncated tobacco NtCBP4 channel in transgenic plants and disruption of the homologous Arabidopsis CNGC1 gene confer Pb2+ tolerance. Plant J 24:533–542

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Koizumi N, Sano H (2001) Screening of cadmium-responsive genes in Arabidopsis thaliana. Plant Cell Environ 24:1177–1188

    Article  CAS  Google Scholar 

  • Tabak HH, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 2. Membrane bioreactor system for sulfate reduction. Biodegradation 14:437–452

    Article  PubMed  CAS  Google Scholar 

  • Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in treatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436

    Article  PubMed  CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszl C, Williams CR, Abbas M, Petrella S, Swisher K, Perron M, Edwards R, Osenkowski P, Urbanczyk N, Wiesend WN, Murray KS (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    Article  PubMed  CAS  Google Scholar 

  • Tomé FV, Rodríguez PB, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:351–357

    Article  PubMed  CAS  Google Scholar 

  • USEPA (2005a) Annual report. http://www.epa.gov/ORD/NRMRL/std/mtb/mwt/annual/annual2005/adwt/passivebiotreat.htm

  • USEPA (2005b) Annual report. http://www.epa.gov/ORD/NRMRL/std/mtb/mwt/annual/annual2005/adwt/sulfatereducingbacteriademo.htm

  • Utkgikar V, Chen B, Tabak HH, Bishop DF, Govind R (2000) Treatment of acid mine drainage. I. Equilibrium biosorption of zinc and copper on non-viable activated sludge. Int Biodeter Biodegrad 46:19–28

    Google Scholar 

  • Vangronsveld J, Herzig R, Weyens N, Boulet J, Adriaensen K, Ruttens A, Thewys T, Vassilev A, Meers E, Nehnevajova E, van der Lelie D, Mench M (2009) Phytoremediation of contaminated soils and groundwater: lessons from the field. Environ Sci Pollut Res Int 16:765–794

    Article  PubMed  CAS  Google Scholar 

  • Vasák M (2005) Advances in metallothionein structure and functions. J Trace Elem Med Biol 19:13–17

    Article  PubMed  CAS  Google Scholar 

  • Veeken AHM, Rulkens WH (2003) Innovative developments in the selective removal and reuse of heavy metals from wastewaters. Water Sci Technol 47:9–16

    PubMed  CAS  Google Scholar 

  • von Canstein H, Kelly S, Li Y, Wagner-Dobler I (2002a) Species diversity improves the eficiency of mercury-reducing biofilms under changing environmental conditions. Appl Environ Microbiol 68:2829–2837

    Article  CAS  Google Scholar 

  • von Canstein H, Li Y, Leonhauser J, Haase E, Felske A, Deckwer WD, Wagner-Dobler I (2002b) Spatially oscillating activity and microbial succession of mercury-reducing biofilms in a technical-scale bioremediation system. Appl Environ Microbiol 68:1938–1946

    Article  CAS  Google Scholar 

  • Wagner-Döbler I, van Canstein HF, Li Y, Timmis KN, Deckwer WD (2000a) Removal of mercury from chemical wastewater by microorganisms in technical scale. Environ Sci Technol 34:4628–4634

    Article  Google Scholar 

  • Wagner-Döbler I, Lunsdorf H, Lubbehusen T, von Canstein HF, Li Y (2000b) Structure and species composition of mercury-reducing biofilms. Appl Environ Microbiol 66:4559–4563

    Article  Google Scholar 

  • Wahl R, Mertig M, Raff J, Selenska-Pobell S, Pompe W (2001) Electronbeam induced formation of highly ordered palladium and platinum nanoparticle arrays on the S-layer of Bacillus sphaericus NCTC 9602. Adv Mater 13:736–740

    Article  CAS  Google Scholar 

  • Wall JD, Krumholz LR (2006) Uranium reduction. Annu Rev Microbiol 60:149–166

    Article  PubMed  CAS  Google Scholar 

  • Watanabe ME (1997) Phytoremediation on the brink of commercialization. Environ Sci Technol 31:182–186

    Article  Google Scholar 

  • Wächtershäuser G (2006) From volcanic origins of chemoautotrophic life to Bacteria, Archea and Eukarya. Phil Trans Soc B 361:1787–1808

    Article  CAS  Google Scholar 

  • Weis JS, Weis P (2004) Metal uptake, transport and release by wetland plants: implications for phytoremediation and restoration. Environ Int 30:685–700

    Article  PubMed  CAS  Google Scholar 

  • White C, Gadd GM (1998) Accumulation and effects of cadmium on sulphate-reducing bacterial biofilms. Microbiology 144:1407–1415

    Article  CAS  Google Scholar 

  • White C, Gadd GM (2000) Copper accumulation by sulphate-reducing bacterial biofilms. FEMS Microbiol Lett 183:313–318

    Article  PubMed  CAS  Google Scholar 

  • Whitlock JL (1990) Biological detoxification of precious metal processing wastewaters. Geomicrobiol J 8:241–249

    Article  CAS  Google Scholar 

  • Williams JB (2002) Phytoremediation in wetland ecosystems: progress, problems, and potential. Crit Rev Plant Sci 21:607–635

    Article  CAS  Google Scholar 

  • Wood B, McAtamney C (1994) The use of macrophytes in bioremediation. Biotechnol Adv 12:653–662

    Article  PubMed  CAS  Google Scholar 

  • Yang H, Nairn J, Ozias-Akins P (2003) Transformation of peanut using a modified bacterial mercuric ion reductase gene driven by an actin promoter from Arabidopsis thaliana. J Plant Physiol 160:945–952

    Article  PubMed  CAS  Google Scholar 

  • Yang X, Feng Y, He Z, Stoffella PJ (2005) Molecular mechanisms of heavy metal hypeaccumulation and phytoremediation. J Trace Elem Med Biol 18:339–353

    Google Scholar 

  • Ye ZH, Whiting SN, Qian JH, Lytle CM, Lin ZQ, Terry N (2001) Wetlands and aquatic processes, trace elements removal from coal ash leachate by a 10 year old constructed wetland. J Environ Qual 30:1710–1719

    Article  PubMed  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE (2002a) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601

    Article  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JP, Harris IR, Macaskie LE (2002b) Bioreduction and biocrystallization of palladium by Desulfovibrio desulfuricans NCIMB 8307. Biotechnol Bioeng 80:369–379

    Article  CAS  Google Scholar 

  • Yong P, Mikheenko IP, Deplanche K, Sargent F, Macaskie LE (2009) Biorecovery of precious metals from wastes and conversion into fuel cell catalyst for electricity production. Adv Materials Res 71–73:729–732

    Google Scholar 

  • Yuncu B, Sanin FD, Yetis U (2006) An investigation of heavy metal biosorption in relation to C/N ratio of activated sludge. J Hazard Mater B 137:990–997

    Article  CAS  Google Scholar 

  • Zita A, Hermanso M (1997) Effects of bacterial cell surface structures and hydrophobicity on attachment to activated sludge flocs. Appl Environ Microbiol 63:1168–1170

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This chapter was processed with the help of grant Centrum 1M06030, MSM 6046137305 and 1M6837805002 from Czech Ministry of Education, Youth and Sports

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Kotrba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Kotrba, P., Mackova, M., Fišer, J., Macek, T. (2011). Biosorption and Metal Removal Through Living Cells. In: Kotrba, P., Mackova, M., Macek, T. (eds) Microbial Biosorption of Metals. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0443-5_9

Download citation

Publish with us

Policies and ethics