Skip to main content

Cardiovascular Protection with Vanadium Compounds

  • Chapter
  • First Online:
Vanadium

Abstract

Protein kinase B/Akt plays a critical role in the regulation of cardiac hypertrophy, angiogenesis and apoptosis. The evidences that elevation of Akt in cardiomyocytes in vivo and in vitro protects against apoptosis after ischemia/reperfusion injury provide possibility that agents targeting Akt activation become a novel therapeutic strategy for limiting myocardial injury following ischemia. Vanadium compounds inhibiting protein tyrosine phosphatases are potent activator of the Akt signaling pathways and elicit cardioprotection in heart ischemia/reperfusion injury along with cardiac functional recovery in rats. In addition, vanadium compounds has strong anti-hypertrophic in the pressure overload-induced hypertrophy in ovariectomized and aortic-banded rats. The elevation of Akt activity and Akt-dependent eNOS phosphorylation are central roles on vanadium compound-induced anti-hypertrophy and heart failure in the ovariectomized and aortic-banded rats. Taken together, vanadium compounds are potential therapeutics for ischemia/reperfusion-induced myocardial injury and heart failure associated with hypertension in the postmenopausal women.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhuiyan MS, Shibuya M, Shioda N, Moriguchi S, Kasahara J, Iwabuchi Y, Fukunaga K (2007) Cytoprotective effect of bis(1-oxy-2-pyridinethiolato)oxovanadium (IV) on myocardial ischemia/reperfusion injury elicits inhibition of Fas ligand and Bim expression and elevation of FLIP expression. Eur J Pharmacol 571:180–188

    Article  CAS  Google Scholar 

  2. Bhuiyan MS, Shioda N, Fukunaga K (2007) Ovariectomy augments pressure overload-induced hypertrophy associated with changes in Akt and nitric oxide synthase signaling pathways in female rats. Am J Physiol Endocrinol Metab 293:E1606–E1614

    Article  CAS  Google Scholar 

  3. Bhuiyan MS, Takada Y, Shioda N, Moriguchi S, Kasahara J, Fukunaga K (2008) Cardioprotective effect of vanadyl sulfate on ischemia/reperfusion-induced injury in rat heart in vivo is mediated by activation of protein kinase B and induction of FLICE-inhibitory protein. Cariovasc Ther 26:10–23

    CAS  Google Scholar 

  4. Bhuiyan MS, Shioda N, Shibuya M, Iwabuchi Y, Fukunaga K (2009) Activation of endothelial nitric oxide synthase by a vanadium compound ameliorates pressure overload-induced cardiac injury in ovariectomized rats. Hypertension 53(1):57–63

    Article  CAS  Google Scholar 

  5. Oudit GY, Sun H, Kerfant BG, Crackower MA, Penninger JM, Backx PH (2004) The role of phosphoinositide-3 kinase and PTEN in cardiovascular physiology and disease. J Mol Cell Cardiol 37:449–471

    Article  CAS  Google Scholar 

  6. Hanada M, Feng J, Hemmings BA (2004) Structure, regulation and function of PKB/AKT: a major therapeutic target. Biochim Biophys Acta 1697:3–16

    CAS  Google Scholar 

  7. Cho H, Thorvaldsen JL, Chu Q, Feng F, Birnbaum MJ (2001) Akt1/PKBalpha is required for normal growth but dispensable for maintenance of glucose homeostasis in mice. J Biol Chem 276:38349–38352

    Article  CAS  Google Scholar 

  8. Yang ZZ, Tschopp O, Hemmings-Mieszczak M, Feng J, Brodbeck D, Perentes E, Hemmings BA (2003) Protein kinase B alpha/Akt1 regulates placental development and fetal growth. J Biol Chem 278:32124–32131

    Article  CAS  Google Scholar 

  9. Woulfe D, Jiang H, Morgans A, Monks R, Birnbaum M, Brass LF (2004) Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest 113:441–450

    CAS  Google Scholar 

  10. Dorn LLGW, Force T (2005) Protein kinase cascades in the regulation of cardiac hypertrophy. J Clin Invest 115:527–537

    CAS  Google Scholar 

  11. Matsui T, Tao J, del Monte F, Lee KH, Li L, Picard M, Force TL, Franke TF, Hajjar RJ, Rosenzweig A (2001) Akt activation preserves cardiac function and prevents injury after transient cardiac ischemia in vivo. Circulation 104:330–335

    CAS  Google Scholar 

  12. Ou H, Yan L, Mustafi D, Makinen MW, Brady MJ (2005) The vanadyl (VO2+) chelate bis(acetylacetonato)oxovanadium(IV) potentiates tyrosine phosphorylation of the insulin receptor. J Biol Inorg Chem 10:874–886

    Article  CAS  Google Scholar 

  13. Theberge JF, Mehdi MZ, Pandey SK, Srivastava AK (2003) Prolongation of insulin-induced activation of mitogen-activated protein kinases ERK 1/2 and phosphatidylinositol 3-kinase by vanadyl sulfate, a protein tyrosine phosphatase inhibitor. Arch Biochem Biophys 420:9–17

    Article  CAS  Google Scholar 

  14. Mehdi MZ, Srivastava AK (2005) Organo-vanadium compounds are potent activators of the protein kinase B signaling pathway and protein tyrosine phosphorylation: mechanism of insulinomimetics. Arch Biochem Biophys 440:158–164

    Article  CAS  Google Scholar 

  15. Takada Y, Hashimoto M, Kasahara J, Aihara K, Fukunaga K (2004) Cytoprotective effect of sodium orthovanadate on ischemia/reperfusion-induced injury in the rat heart involves Akt activation and inhibition of fodrin breakdown and apoptosis. J Pharmacol Exp Ther 311: 1249–1255

    Article  CAS  Google Scholar 

  16. Liem DA, Gho CC, Gho BC, Kazim S, Manintveld OC, Verdouw DD, Duncker DJ (2004) The tyrosine phosphatase inhibitor Bis(Maltolato)oxovanadium attenuates myocardial reperfusion injury by opening ATP-sensitive potassium channels. J Pharmacol Exp Ther 309:1256–1262

    Article  CAS  Google Scholar 

  17. Fryer RM, Schultz JE, Hsu AK, Gross GJ (1999) Importance of PKC and tyrosine kinase in single or multiple cycles of preconditioning in rat hearts. Am J Physiol 276:1229–1235

    Google Scholar 

  18. Przyklenk K, Kloner RA (1998) Ischemic preconditioning: exploring the paradox. Prog Cardiovasc Dis 40:517–547

    Article  CAS  Google Scholar 

  19. Vahlhaus C, Schulz R, Post H, Rose J, Heusch G (1998) Prevention of ischemic preconditioning only by combined inhibition of protein kinase C and protein tyrosine kinase in pigs. J Mol Cell Cardiol 30:197–209

    Article  CAS  Google Scholar 

  20. Sakurai H, Shimomura S, Fukuzawa K, Ishizu K (1980) Detection of oxovanadium (IV) and characterization of its ligand environment in subcellular fractions of the liver of rats treated with pentavalent vanadium (V). Biochem Biophys Res Commun 96:293–298

    Article  CAS  Google Scholar 

  21. Shi X, Dalal SN (1992) Superoxide-independent reduction of vanadate by rat liver microsomes/NAD(P)H: vanadate reductase activity. Arch Biochem Biophys 295:70–75

    Article  CAS  Google Scholar 

  22. Elberg G, Li J, Shechter Y (1994) Vanadium activates or inhibits receptor and non-receptor protein tyrosine kinases in cell-free experiments, depending on its oxidation state. J Biol Chem 269:9521–9527

    CAS  Google Scholar 

  23. Willsky GR, White DA, McCabe BC (1984) Metabolism of added orthovanadate to vanadyl and high-molecular-weight vanadates by Saccharomyces cerevisiae. J Biol Chem 259: 13273–13281

    CAS  Google Scholar 

  24. Huyer G, Liu S, Kelly J, Moffat J, Payette P, Kennedy B, Tsaprailis G, Gresser MJ, Ramachandran C (1997) Mechanism of inhibition of protein-tyrosine phosphatases by Vanadate and pervanadate. J Biol Chem 272:843–851

    Article  CAS  Google Scholar 

  25. Reul BA, Amin SS, Buchet JP, Ongemba LN, Crans DC, Brichard SM (1999) Effect of vanadium complexes with organic ligands on glucose metabolism: a comparison study in diabetic rats. Br J Pharmacol 126:467–477

    Article  CAS  Google Scholar 

  26. Strout HV, Vicario PP, Saperstein R et al (1989) The insulin-mimetic effect of vanadate is not correlated with insulin receptor tyrosine kinase activity or phosphorylation in mouse diaphragm in vivo. Endocrinology 124:1918–1924

    Article  CAS  Google Scholar 

  27. Meyerovitch J, Farfel Z, Sack J et al (1987) Oral administration of vanadate normalizes blood glucose levels in streptozotocin-treated rats: characterization and mode of action. J Biol Chem 262:6658–6662

    CAS  Google Scholar 

  28. Srivastava AK (2000) Anti-diabetic and toxic effects of vanadium compounds. Mol Cell Biochem 206:177–182

    Article  CAS  Google Scholar 

  29. Sakurai H, Sano H, Takino T, Yasui H (2000) An orally active antidiabetic vanadyl complex, bis(1-oxy-2-pyridinethiolato)oxovanadium(IV), with VO(S2O2) coordination mode; in vitro and in vivo evaluations in rats. J Inorg Biochem 80:99–105

    Article  CAS  Google Scholar 

  30. Takeshita S, Kawamura I, Yasuno T et al (2001) Amelioration of insulin resistance in diabetic ob/ob mice by a new type of orally active insulin-mimetic vanadyl complex: bis(1-oxy-2-pyridinethiolato) oxovanadium (IV) with VO(S2O2) coordination mode. J Inorg Biochem 85:179–186

    Article  CAS  Google Scholar 

  31. Fantus IG, Tsiani E (1998) Multifunctional actions of vanadium compounds on insulin signaling pathways: evidence for preferential enhancement of metabolic versus mitogenic effects. Mol Cell Biochem 182:109–119

    Article  CAS  Google Scholar 

  32. Faure R, Vincent M, Dufour M et al (1995) Arrest at the G2/M transition of the cell cycle by protein-tyrosine phosphatase inhibition: studies on a neuronal and a glial cell line. J Cell Biochem 59:389–401

    Article  CAS  Google Scholar 

  33. Djordjevic C (1995) Antitumor activity of vanadium compounds. Met Ions Biol Syst 31: 595–616

    CAS  Google Scholar 

  34. Liasko R, Kabanos TA, Karkabounas S et al (1998) Beneficial effects of a vanadium complex with cysteine, administered at low doses on benzo (alpha) pyrene-induced leiomyosarcomas in Wistar rats. Anticancer Res 18:3609–3613

    CAS  Google Scholar 

  35. Blondel O, Bailbe D, Portha B (1989) In vivo insulin resistance in streptozotocin diabetic rats – evidence for reversal following oral vanadate treatment. Diabetologia 32:185–190

    Article  CAS  Google Scholar 

  36. Al-Bayati MA, Giri SN, Raah OG (1990) Time and dose response study of the effects of vanadate in rats: changes in blood cells, serum enzymes, protein, cholesterol, glucose, calcium and inorganic phosphate. J Environ Pathol Toxicol Oncol 10:206–213

    CAS  Google Scholar 

  37. Bishayee A, Cecchin F (1995) Time course effects of vanadium supplements on cytosolic reduced glutathione level and glutathione S-transferase activity. Biol Trace Elem Res 48: 275–285

    Article  CAS  Google Scholar 

  38. Mongold JJ, Cros GH, Vian L et al (1990) Toxicological aspects of vanadyl sulphate on diabetic rats: effects on vanadium levels and pancreatic B-cell morphology. Pharmacol Toxicol 67:192–198

    Article  CAS  Google Scholar 

  39. Goldfine AB, Simonson DC, Folli F et al (1995) In vivo and in vitro studies of vanadate in human and rodent diabetes mellitus. Mol Cell Biochem 153:217–231

    Article  CAS  Google Scholar 

  40. Kawano T, Fukunaga K, Takeuchi Y, Morioka M, Yano S, Hamada J, Ushio Y, Miyamoto E (2001) Neuroprotective effect of sodium orthovanadate on delayed neuronal death after transient forebrain ischemia in gerbil hippocampus. J Cereb Blood Flow Metab 21: 1268–1280

    Article  CAS  Google Scholar 

  41. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, Greenberg ME (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–241

    Article  CAS  Google Scholar 

  42. Burgering BMT, Kops GJPL (2002) Cell cycle and death control: long live Forkheads. Trends Biochem Sci 27:352–360

    Article  CAS  Google Scholar 

  43. Fukunaga K, Ishigami T, Kawano T (2005) Transcriptional regulation of neuronal genes and its effect on neural functions: expression and function of forkhead transcription factors in neurons. J Pharmacol Sci 98:205–211

    Article  CAS  Google Scholar 

  44. Shioda N, Han F, Moriguchi S, Fukunaga K (2007) Constitutively active calcineurin mediates delayed neuronal death through Fas-ligand expression via activation of NFAT and FKHR transcriptional activities in mouse brain ischemia. J Neurochem 102:1506–1517

    Article  CAS  Google Scholar 

  45. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS, Anderson MJ, Arden KC, Blenis J, Greenberg ME (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    Article  CAS  Google Scholar 

  46. Skurk C, Maatz H, Kim HS, Yang J, Abid MR, Aird WC, Walsh K (2004) The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 279:1513–1525

    Article  CAS  Google Scholar 

  47. Suhara T, Mano T, Oliveira BE, Walsh K (2001) Phosphatidylinositol 3-Kinase/Akt signaling controls endothelial cell sensitivity to fas-mediated apoptosis via regulation of FLICE-inhibitory protein (FLIP). Circ Res 89:13–19

    Article  CAS  Google Scholar 

  48. Rasper DM, Vaillancourt JP, Hadano S, Houtzager VM, Seiden I, Keen SL, Tawa P, Xanthoudakis S, Nasir J, Martindale D, Koop BF, Peterson EP, Thornberry NA, Huang J, MacPherson DP, Black SC, Hornung F, Lenardo MJ, Hayden MR, Roy S, Nicholson DW (1998) Cell death attenuation by ‘Usurpin’, a mammalian DED-caspase homologue that precludes caspase-8 recruitment and activation by the CD-95 (Fas, APO-1) receptor complex. Cell Death Differ 5:271–288

    Article  CAS  Google Scholar 

  49. Imanishi T, Murry CE, Reinecke H, Hano T, Nishio I, Liles WC, Hofsta L, Kim K, O’Brien KD, Schwartz SM, Han DK (2000) Cellular FLIP is expressed in cardiomyocytes and down-regulated in TUNEL-positive grafted cardiac tissues. Cardiovasc Res 48:101–110

    Article  CAS  Google Scholar 

  50. Gottilieb RA, Engler RL (1999) Apoptosis in myocardial ischemia–reperfusion. Ann NY Acad Sci 874:412–426

    Article  Google Scholar 

  51. Belchetz PE (1994) Hormonal treatment of postmenopausal women. N Engl J Med 330: 1062–1071

    Article  CAS  Google Scholar 

  52. Turgeon JL, McDonnell DP, Martin KA, Wise PM (2004) Hormone therapy: physiological complexity belies therapeutic simplicity. Science 304:1269–1273

    Article  CAS  Google Scholar 

  53. Gorodeski GI (2002) Update on cardiovascular disease in post-menopausal women. Best Pract Res Clin Obstet Gynaecol 16:329–355

    Article  Google Scholar 

  54. Mosca L, Manson JE, Sutherland SE, Langer RD, Manolio T, Barrett-Connor E (1997) Cardiovascular disease in women: a statement for healthcare professionals from the American Heart Association. Writing Group. Circulation 96:2468–2482

    CAS  Google Scholar 

  55. Kannel WB (1983) Prevalence and natural history of electrocardiographic left ventricular hypertrophy. Am J Med 3:4–11

    Article  Google Scholar 

  56. Howe HL (1984) Age-specific hysterectomy and oophorectomy prevalence rates and the risks for cancer of the reproductive system. Am J Public Health 74:560–563

    Article  CAS  Google Scholar 

  57. Howard BV, Kuller L, Langer R, Manson JE, Allen C, Assaf A, Cochrane BB, Larson JC, Lasser N, Rainford M, Van Horn L, Stefanick ML, Trevisan M (2005) Risk of cardiovascular disease by hysterectomy status, with and without oophorectomy: the Women’s Health Initiative Observational Study. Circulation 111: 1462–1470

    Article  Google Scholar 

  58. Melton LJ 3rd, Bergstralha QEJ, Malkasian GD, O’Fallon WM (1991) Bilateral oophorectomy trends in Olmsted County, Minnesota, 1950–1987. Epidemiology 2:149–152

    Article  Google Scholar 

  59. Whiteman MK, Hillis SD, Jamieson DJ, Morrow B, Podgornik MN, Brett KM, Marchbanks PA (2008) Inpatient hysterectomy surveillance in the United States, 2000–2004. Am J Obstet Gynecol 198(34):e1–e7

    Google Scholar 

  60. Keshavarz H, Hillis SD, Kieke BA, Marchbanks PA (2002) Hysterectomy surveillance-United States, 1994–1999. MMWR Surveill Summ 51:1–8

    Google Scholar 

  61. Shuster LT, Gostout BS, Grossardt BR, Rocca WA (2008) Prophylactic oophorectomy in pre-menopausal women and long term health- a review. Menopause Int 14:111–116

    Article  Google Scholar 

  62. Lobo RA (2007) Surgical menopause and cardiovascular risks. Menopause 14:562–566

    Article  Google Scholar 

  63. Lokkegaard E, Jovanovic Z, Heitmann BL, Keiding N, Ottesen B, Pedersen AT (2006) The association between early menopause and risk of ischaemic heart disease: influence of hormone therapy. Maturitas 53:226–233

    Article  CAS  Google Scholar 

  64. Rossouw JE, Prentice RL, Manson JE, Wu L, Barad D, Barnabei VM, Ko M, LaCroix AZ, Margolis KL, Stefanick ML (2007) Postmenopausal hormone therapy and risk of cardiovascular disease by age and years since menopause. JAMA 297:1465–1477

    Article  CAS  Google Scholar 

  65. Dubey RK, Imthurn B, Barton M, Jackson EK (2005) Vascular consequences of menopause and hormone therapy: importance of timing of treatment and type of estrogen. Cardiovasc Res 66:295–306

    Article  CAS  Google Scholar 

  66. Leinwand LA (2003) Sex is a potent modifier of the cardiovascular system. J Clin Invest 112:302–307

    CAS  Google Scholar 

  67. Hayward CS, Kelly RP, Collins P (2000) The roles of gender, the menopause and hormone replacement on cardiovascular function. Cardiovasc Res 46:28–49

    Article  CAS  Google Scholar 

  68. Patten RD, Pourati I, Aronovitz MJ, Baur J, Celestin F, Chen X, Michael A, Haq S, Nuedling S, Grohe C, Force T, Mendelsohn ME, Karas RH (2004) 17beta-estradiol reduces cardiomyocyte apoptosis in vivo and in vitro via activation of phospho-inositide-3 kinase/Akt signaling. Circ Res 95:692–699

    Article  CAS  Google Scholar 

  69. Van Eickels M, Grohe C, Cleutjens JP, Janssen BJ, Wellens HJ, Doevendans PA (2001) 17beta-estradiol attenuates the development of pressure-overload hypertrophy. Circulation 104:1419–1423

    Article  Google Scholar 

  70. Thorndike EA, Turner AS (1998) In search of an animal model for postmenopausal diseases. Front Biosci 3:c17–c26

    CAS  Google Scholar 

  71. Fang Z, Carlson S, Chen Y, Oparil S, Wyss J (2001) Estrogen depletion induces NaCl-sensitive hypertension in female spontaneously hypertensive rats. Am J Physiol Regul Integr Comp Physiol 281:R1934–R1939

    CAS  Google Scholar 

  72. Peng N, Clark J, Wei C, Wyss J (2003) Estrogen depletion increases blood pressure and hypothalamic norepinephrine in middle-aged spontaneously hypertensive rats. Hypertension 41:1164–1167

    Article  CAS  Google Scholar 

  73. Fortepiani LA, Zhang H, Racusen LC, Roberts LJ II, Reckelhoff JF (2003) Characterization of an animal model of postmenopausal hypertension in SHR. Hypertension 41:640–645

    Article  CAS  Google Scholar 

  74. Hinojosa-Laborde C, Craig T, Zheng W, Ji H, Haywood JR, Sandberg K (2004) Ovariectomy augments hypertension in aging female Dahl salt sensitive rats. Hypertension 44:405–409

    Article  CAS  Google Scholar 

  75. Javeshghani D, Touyz R, Sairam M, Virdis A, Neves M, Schiffrin E (2003) Attenuated responses to angiotensin II in follitropin receptor knockout mice, a model of menopause-associated hypertension. Hypertension 42:761–767

    Article  CAS  Google Scholar 

  76. Bhuiyan MS, Fukunaga K (2010) Characterization of an animal model of post menopausal cardiac hypertrophy and novel mechanisms responsible for cardiac decompensation using ovariectomized pressure-overloaded rats. Menopause 17:213–221

    Article  Google Scholar 

  77. Haynes MP, Sinha D, Russell KS, Collinge M, Fulton D, Morales-Ruiz M, Sessa WC, Bender JR (2000) Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ Res 87:677–682

    CAS  Google Scholar 

  78. Ciric O, Susic D (1980) Effect of isoprenaline on blood pressure and heart rate in different phases of the oestrous cycle. Endokrinologie 76:274–278

    CAS  Google Scholar 

  79. Thawornkaiwong A, Preawnim S, Wattanapermpool J (2003) Upregulation of beta 1-adrenergic receptors in ovariectomized rat hearts. Life Sci 72:1813–1824

    Article  CAS  Google Scholar 

  80. Kam KW, Kravtsov GM, Liu J, Wong TM (2005) Increased PKA activity and its influence on isoprenaline-stimulated L-type Ca2+ channels in the heart from ovariectomized rats. Br J Pharmacol 144:972–981

    Article  CAS  Google Scholar 

  81. Cambotti LJ, Cole FE, Gerall AA, Frolich ED, Macphee AA (1984) Neonatal gonadal hormones and blood pressure in the spontaneously hypertensive rat. Am J Physiol 247: E258–E264

    CAS  Google Scholar 

  82. Crofton JT, Share L (1997) Gonadal hormones modulate deoxycorticosterone-salt hypertension in male and female rats. Hypertension 29:494–499

    CAS  Google Scholar 

  83. David FL, Carvalho MHC, Cobra ALN, Nigro D, Fortes ZB, Rebouças NA, Tostes RCA (2001) Ovarian hormones modulate endothelin-1 vascular reactivity and mRNA expression in DOCA-salt hypertensive rats. Hypertension 38:692–696

    CAS  Google Scholar 

  84. Kureishi Y, Luo Z, Shiojima I, Bialik A, Fulton D, Lefer DJ, Sessa WC, Walsh K (2000) The HMG-CoA reductase inhibitor simvastatin activates the protein-kinase Akt and promotes angiogenesis in normocholesterolemic animals. Nat Med 6:1004–1010

    Article  CAS  Google Scholar 

  85. Fujio Y, Nguyen T, Wencker D, Kitsis RN, Walsh K (2000) Akt promotes survival of cardiomyocytes in vitro and protects against ischemia-reperfusion injury in mouse heart. Circulation 101:660–667

    CAS  Google Scholar 

  86. Kemi OJ, Celi M, Wisloff U, Grimaldi S, Gallo P, Smith GL, Condorelli G, Ellingsen O (2008) Activation or inactivation of cardiac Akt/mTOR signaling diverges physiological from pathological hypertrophy. J Cell Physiol 214:316–321

    Article  CAS  Google Scholar 

  87. Simoncini T, Hafezi-Moghadam A, Brazil DP, Ley K, Chin WW, Liao JK (2000) Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol-3′-OH kinase. Nature 407:538–541

    Article  CAS  Google Scholar 

  88. Camper-Kirby D, Welch S, Walker A, Shiraishi I, Setchell KD, Schaefer E, Kajstura J, Anversa P, Sussman MA (2001) Myocardial Akt activation and gender: increased nuclear activity in females versus males. Circ Res 88:1020–1027

    Article  CAS  Google Scholar 

  89. Ren J, Hintz KK, Roughead ZK, Duan J, Colligan PB, Ren BH, Lee KJ, Zeng H (2003) Impact of estrogen replacement on ventricular myocyte contractile function and protein kinase B/Akt activation. Am J Physiol Heart Circ Physiol 284:H1800–H1807

    CAS  Google Scholar 

  90. Wang M, Wang Y, Weil B, Abarbanell A, Herrmann J, Tan J, Kelly M, Meldrum DR (2009) Estrogen receptor beta mediates increased activation of PI3K/Akt signaling and improved myocardial function in female hearts following acute ischemia. Am J Physiol Regul Integr Comp Physiol 296:R972–R978

    Article  CAS  Google Scholar 

  91. Hsu JT, Kan WH, Hsieh CH, Chowdhry MA, Bland KI, Chaudry IH (2009) Mechanism of salutary effects of estrogen on cardiac function following trauma-hemorrhage: Akt-dependent HO-1 up-regulation. Crit Care Med 37:1–7

    Article  Google Scholar 

  92. Chen Z, Yuhanna IS, Galcheva-Gargova Z, Karas RH, Mendelsohn ME, Shaul PW (1999) Estrogen receptor alpha mediates the nongenomic activation of endothelial nitric oxide synthase by estrogen. J Clin Invest 103:401–406

    Article  CAS  Google Scholar 

  93. Chambliss KL, Yuhanna IS, Mineo C, Liu P, German Z, Sherman TS, Mendelsohn ME, Anderson RG, Shaul PW (2000) Estrogen receptor alpha and endothelial nitric oxide synthase are organized into a functional signaling module in caveolae. Circ Res 87:e44–e52

    CAS  Google Scholar 

  94. Grasselli ANS, Colussi C, Aiello A, Benvenuti V, Moretti F, Sacchi A, Bacchtt S, Gaetano C, Capogrossi MC, Pontecrvi A, Farsetti A (2008) Estrogen receptor alpha and endothelial nitric oxide synthase nuclear complex regulates transcription of human teromerase. Circ Res 103:34–42

    Article  CAS  Google Scholar 

  95. Majmudar NG, Robson SC, Ford GA (2000) Effects of the menopause, gender, and estrogen replacement therapy on vascular nitric oxide activity. J Clin Endocrinol Metab 85:1577–1583

    Article  CAS  Google Scholar 

  96. Higashi Y, Sanada M, Sasaki S, Nakagawa K, Goto C, Matsuura H, Ohama K, Chayama K, Oshima T (2001) Effect of estrogen replacement therapy on endothelial function in peripheral resistance arteries in normotensive and hypertensive postmenopausal women. Hypertension 37:651–657

    CAS  Google Scholar 

  97. Virdis A, Ghiadoni L, Pinto S, Lombardo M, Petraglia F, Gennazzani A, Buralli S, Taddei S, Salvetti A (2000) Mechanisms responsible for endothelial dysfunction associated with acute estrogen deprivation in normotensive women. Circulation 101:2258–2263

    CAS  Google Scholar 

  98. Sanada M, Higashi Y, Nakagawa K, Tsuda M, Kodama I, Kimura M, Chayama K, Ohama K (2002) Hormone replacement effects on endothelial function measured in the forearm resistance artery in normocholesterolemic and hypercholesterolemic postmenopausal women. J Clin Endocrinol Metab 87:4634–4641

    Article  CAS  Google Scholar 

  99. Herrington DM (1995) Dehydroepiandrosterone and coronary atherosclerosis. Ann NY Acad Sci 774:271–280

    Article  CAS  Google Scholar 

  100. Kelemen M, Vaidya D, Waters DD, Howard BV, Cobb F, Younes N, Tripputti M, Ouyang P (2005) Hormone therapy and antioxidant vitamins do not improve endothelial vasodilator function in postmenopausal women with established coronary artery disease: a substudy of the Women’s Angiographic Vitamin and Estrogen (WAVE) trial. Atherosclerosis 179: 193–200

    Article  CAS  Google Scholar 

  101. Guo X, Razandi M, Pedram A, Kassab G, Levin ER (2005) Estrogen induces vascular wall dilation: mediation through kinase signaling to nitric oxide and estrogen receptors a and b. J Biol Chem 280:19704–19710

    Article  CAS  Google Scholar 

  102. Fulton D, Gratton J-P, Sessa WC (2001) Post-translational control of endothelial nitric oxide synthase: why isn’t calcium/calmodulin enough? J Pharmacol Exp Ther 299:818–824

    CAS  Google Scholar 

  103. Solaro RJ (1986) Protein phosphorylation and cardiac myofilaments. In: Solaro RJ (ed) Protein phosphorylation in heart muscle. CRC, Boca Raton, pp 129–156

    Google Scholar 

  104. Pabla R, Curtis MJ (1996) Effect of endogenous nitric oxide on cardiac systolic and diastolic function during ischemia and reperfusion in the rat isolated perfused heart. J Mol Cell Cardiol 28:2111–2121

    Article  CAS  Google Scholar 

  105. Schmidt HHHW, Lohmann SM, Walter U (1993) The nitric oxide and cGMP signal transduction system: regulation and mechanism of action. Biochim Biophys Acta 1178: 153–175

    Article  CAS  Google Scholar 

  106. Pedram A, Razandi M, Aitkenhead M, Levin ER (2005) Estrogen inhibits cardiomyocyte hypertrophy in vitro. Antagonism of calcineurin-related hypertrophy through induction of MCIP1. J Biol Chem 280:26339–26348

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kohji Fukunaga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Fukunaga, K., Bhuiyan, M.S. (2012). Cardiovascular Protection with Vanadium Compounds. In: Michibata, H. (eds) Vanadium. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-0913-3_9

Download citation

Publish with us

Policies and ethics