Skip to main content

Mechanisms Regulating Airway Nucleotides

  • Chapter
  • First Online:
Purinergic Regulation of Respiratory Diseases

Part of the book series: Subcellular Biochemistry ((SCBI,volume 55))

Abstract

In the respiratory system, extracellular nucleotides and nucleosides serve as signaling molecules for a wide spectrum of biological functions regulating airway defenses against infection and toxic material. Their concentrations are controlled by a complex network of cell surface enzymes named ectonucleotidases. This highly integrated metabolic network combines the activities of three dephosphorylating ectonucleotidases, namely nucleoside triphosphate diphosphohydrolases (NTPDases), nucleotide pyrophosphatase/phosphodiesterases (NPPs) and alkaline phosphatases (APs). Extracellular nucleotides are also inter-converted by the transphosphorylating activities of ecto adenylate kinase (ectoAK) and nucleoside diphosphokinase (NDPK). Different cell types use specific combinations of ectonucleotidases to regulate local concentrations of P2 receptor agonists (ATP, UTP, ADP and UDP). In addition, they provide AMP for the activity of ecto 5′-nucleotidase (ecto 5′-NT; CD73), which produces the P1 receptor agonist: adenosine (ADO). Finally, mechanisms are in place to prevent the accumulation of airway ADO, namely adenosine deaminases and nucleoside transporters. This chapter reviews the properties of each enzyme and transporter, and the current knowledge on their distribution and regulation in the airways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Enjyoji K, Sevigny J, Lin Y, Frenette PS, Christie PD, Esch JS II, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD, Imai M, Edelberg JM, Rayburn H, Lech M, Beeler DL, Csizmadia E, Wagner DD, Robson SC, Rosenberg RD (1999) Targeted disruption of cd39/ATP diphosphohydrolase results in disordered hemostasis and thromboregulation. Nat Med 5:1010–1017

    PubMed  CAS  Google Scholar 

  2. Goepfert C, Imai M, Brouard S, Csizmadia E, Kaczmarek E, Robson SC (2000) CD39 modulates endothelial cell activation and apoptosis. Mol Med 6:591–603

    PubMed  CAS  Google Scholar 

  3. Jhandier MN, Kruglov EA, Lavoie EG, Sevigny J, Dranoff JA (2005) Portal fibroblasts regulate the proliferation of bile duct epithelia via expression of NTPDase2. J Biol Chem 280:22986–22992

    PubMed  CAS  Google Scholar 

  4. Zimmermann H (2000) Extracellular metabolism of ATP and other nucleotides. Naunyn Schmiedeberg’s Arch Pharmacol 362:299–309

    CAS  Google Scholar 

  5. Moss DW (1992) Perspective in alkaline phosphatase research. Clin Chem 38:2486–2492

    PubMed  CAS  Google Scholar 

  6. Henderson RF (2005) Use of bronchoalveolar lavage to detect respiratory tract toxicity of inhaled material. Exp Toxicol Pathol 57:155–159

    PubMed  CAS  Google Scholar 

  7. Van Belle H (1976) Alkaline phosphatase. I. Kinetics and inhibition by levamisole of purified isoenzymes from humans. Clin Chem 22:972–976

    PubMed  Google Scholar 

  8. Millán J (2006) Alkaline phosphatases. Purinergic Signal 2:335–341

    PubMed  Google Scholar 

  9. Van Hoof VO, De Broe ME (1994) Interpretation and clinical significance of alkaline phosphatase isoenzyme patterns. Crit Rev Clin Lab Sci 31:197–293

    PubMed  Google Scholar 

  10. Ali M, Gawin AZ, Baraniuk JN (1996) Effects of bombesin family peptides and antagonists on guinea pig nasal mucosal secretion. J Pharmacol Exp Ther 276:1266–1271

    PubMed  CAS  Google Scholar 

  11. Brindley DN, English D, Pilquil C, Buri K, Ling ZC (2002) Lipid phosphate phosphatases regulate signal transduction through glycerolipids and sphingolipids. Biochim Biophys Acta 1582:33–44

    PubMed  CAS  Google Scholar 

  12. Borgers M, Thoné F (1975) The inhibition of alkaline phosphatase by L-p-bromotetramisole. Histochemistry 44:277–280

    PubMed  CAS  Google Scholar 

  13. Goldstein DJ, Rogers C, Harris H (1982) A search for trace expression of placental-like alkaline phosphatase in non-malignant human tissues: demonstration of its occurrence in lung, cervix, testis and thymus. Clin Chim Acta 125:63–75

    PubMed  CAS  Google Scholar 

  14. Nouwen EJ, Buyssens N, De Broe ME (1990) Heat-stable alkaline phosphatase as a marker for human and monkey type-I pneumocytes. Cell Tissue Res 260:321–335

    PubMed  CAS  Google Scholar 

  15. Miyanaga M, Sugimoto H, Komoda T, Nosjean O, Honma K, Nemoto K, Sato T (1996) A variant alkaline phosphatase detected in a patient with lung cancer. Enzyme Protein 49:313–320

    PubMed  CAS  Google Scholar 

  16. Sergienko E, Su Y, Chan X, Brown B, Hurder A, Narisawa S, Millán JL (2009) Identification and characterization of novel tissue-nonspecific alkaline phosphatase inhibitors with diverse modes of action. J Biomol Screen 14:824–837

    PubMed  CAS  Google Scholar 

  17. Sidique S, Ardecky R, Su Y, Narisawa S, Brown B, Millán JL, Sergienko E, Cosford ND (2009) Design and synthesis of pyrazole derivatives as potent and selective inhibitors of tissue-nonspecific alkaline phosphatase (TNAP). Bioorg Med Chem Lett 19:222–225

    PubMed  CAS  Google Scholar 

  18. Lanier M, Sergienko E, Simão AM, Su Y, Chung T, Millán JL, Cashman JR (2009) Design and synthesis of selective inhibitors of placental alkaline phosphatase. Bioorg Med Chem 18:573–579

    PubMed  Google Scholar 

  19. Ikehara Y, Mansho K, Takahashi K, Kato K (1978) Purification and characterization of alkaline phosphatase from plasma membranes of rat ascites hepatoma. J Biochem 83:1471–1483

    PubMed  CAS  Google Scholar 

  20. Say JC, Ciuffi K, Furriel RP, Ciancaglini P, Leone FA (1991) Alkaline phosphatase from rat osseous plates: purification and biochemical characterization of a soluble form. Biochim Biophys Acta 1074:256–262

    PubMed  CAS  Google Scholar 

  21. Fortuna R, Anderson HC, Carty RP, Sajdeja SW (1980) Enzymatic characterization of the matrix vesicle alkaline phosphatase isolated from bovine epiphyseal cartilage. Calcif Tissue Int 30:217–225

    PubMed  CAS  Google Scholar 

  22. Demenis MA, Furriel RPM, Leone FA (2003) Characterization of an ectonucleoside triphosphate diphosphohydrolase 1 activity in alkaline phosphatase-depleted rat osseous plate membranes: possible functional involvement in the calcification process. Biochim Biophys Acta 1646:216–225

    PubMed  CAS  Google Scholar 

  23. Pizauro JM, Ciancaglini P, Leone FA (1993) Allosteric modulation by ATP, calcium and magnesium ions of rat osseous plate alkaline phosphatase. Biochim Biophys Acta 1202:22–28

    PubMed  CAS  Google Scholar 

  24. Corbic M, de Couët G, Bertrand O, Cochet S, Erlinger S (1985) Bicarbonate-stimulated ATPase activity of bovine liver alkaline phosphatase. J Hepatol 1:167–178

    PubMed  CAS  Google Scholar 

  25. Nouwen EJ, Pollet DE, Eerdekens MW, Hendrix PG, Briers TW, De Broe ME (1986) Immunohistochemical localization of placental alkaline phosphatase, carcinoembryonic antigen, and cancer antigen 125 in normal and neoplastic human lung. Cancer Res 46:866–876

    PubMed  CAS  Google Scholar 

  26. Picher M, Burch LH, Hirsh AJ, Spychala J, Boucher RC (2003) Ecto 5′-nucleotidase and nonspecific alkaline phosphatase. Two AMP-hydrolyzing ectoenzymes with distinct roles in human airways. J Biol Chem 278:13468–13479

    PubMed  CAS  Google Scholar 

  27. Picher M, Burch LH, Boucher RC (2004) Metabolism of P2 receptor agonists in human airways: implications for mucociliary clearance and cystic fibrosis. J Biol Chem 279:20234–20241

    PubMed  CAS  Google Scholar 

  28. Capelli A, Cerutti CG, Lusuardi M, Donner CF (1997) Identification of human pulmonary alkaline phosphatase isoenzymes. Am J Respir Crit Care Med 155:1448–1452

    PubMed  CAS  Google Scholar 

  29. Henderson RF, Scott GG, Waide JJ (1995) Source of alkaline phosphatase activity in epithelial lining fluid of normal and injured F344 rat lungs. Toxicol Appl Pharmacol 134:170–174

    PubMed  CAS  Google Scholar 

  30. DiAugustine RP (1974) Lung concentric laminar organelle. Hydrolase activity and compositional analysis. J Biol Chem 249:584–593

    PubMed  CAS  Google Scholar 

  31. Edelson JD, Shannon JM, Mason RJ (1988) Alkaline phosphatase: a marker of alveolar type II cell differentiation. Am Rev Respir Dis 138:1268–1275

    PubMed  CAS  Google Scholar 

  32. Xie E, Yang ZQ, Li A (1996) Determination of placental alkaline phosphatase (PLAP) for detecting the damages of alveolar type I cells caused by smoke inhalation. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi 12:427–430

    PubMed  CAS  Google Scholar 

  33. Swain RJ, Kemp SJ, Goldstraw P, Tetley TD, Stevens MM (2008) Spectral monitoring of surfactant clearance during alveolar epithelial type II cell differentiation. Biophys J 95:5978–5987

    PubMed  CAS  Google Scholar 

  34. Fedde KN, Lane CC, Whyte MP (1988) Alkaline phosphatase is an ectoenzyme that acts on micromolar concentrations of natural substrates at physiologic pH in human osteosarcoma (SAOS-2) cells. Arch Biochem Biophys 264:400–409

    PubMed  CAS  Google Scholar 

  35. Marquez C, Toribio ML, Marcos MA, de la Hera A, Barcena A, Pezzi L, Martinez C (1989) Expression of alkaline phosphatase in murine B lymphocytes. Correlation with B cell differentiation into Ig secretion. J Immunol 142:3187–3192

    PubMed  CAS  Google Scholar 

  36. Baggiolini M (1972) The enzymes of the granules of polymorphonuclear leukocytes and their functions. Enzyme 13:132–160

    PubMed  CAS  Google Scholar 

  37. Garattini E, Gianni M (1996) Leukocyte alkaline phosphatase a specific marker for the post-mitotic neutrophilic granulocyte: regulation in acute promyelocytic leukemia. Leuk Lymphoma 23:493–503

    PubMed  CAS  Google Scholar 

  38. Jiang X, Kobayashi T, Nahirney PC, García del Saz E, Seguchi H (1998) An ultracytochemical study on the dynamics of alkaline phosphatase-positive granules in rat neutrophils. Histol Histopathol 13:57–65

    PubMed  CAS  Google Scholar 

  39. Jiang X, Kobayashi T, Nahirney PC, del Garcia SE, Seguchi H (1996) Ultracytochemical localization of alkaline phosphatase (ALPase) activity in neutrophils of the rat lung following injection of lipopolysaccharide. Kaibogaku Zasshi 71:183–194

    PubMed  CAS  Google Scholar 

  40. Day DF, Ingram JM (1973) Purification and characterization of Pseudomonas aeruginosa alkaline phosphatase. Can J Microbiol 19:1225–1233

    PubMed  CAS  Google Scholar 

  41. Kadurugamuwa JL, Beveridge TJ (1997) Natural release of virulence factors in membrane vesicles by Pseudomonas aeruginosa and the effect of aminoglycoside antibiotics on their release. J Antimicrob Chemother 40:615–621

    PubMed  CAS  Google Scholar 

  42. Bomberger JM, Maceachran DP, Coutermarsh BA, Ye S, O’Toole GA, Stanton BA (2009) Long-distance delivery of bacterial virulence factors by Pseudomonas aeruginosa outer membrane vesicles. PLoS Pathog 5:e1000382

    PubMed  Google Scholar 

  43. Rietschel ET, Kirikae T, Schade FU, Mamat U, Schmidt G, Loppnow H, Ulmer AJ, Zahringer U, Seydel U, Di Padova F (1994) Bacterial endotoxin: molecular relationships of structure to activity and function. FASEB J 8:217–225

    PubMed  CAS  Google Scholar 

  44. Holst O, Thomas-Oates JE, Brade H (1994) Preparation and structural analysis of oligosaccharide monophosphates obtained from the lipopolysaccharide of recombinant strains of Salmonella minnesota and Escherichia coli expressing the genus-specific epitope of Chlamydia lipopolysaccharide. Eur J Biochem 222:183–194

    PubMed  CAS  Google Scholar 

  45. Poelstra K, Bakker WW, Klok PA, Kamps JA, Hardonk M, Meijer DK (1997) Dephosphorylation of endotoxin by alkaline phosphatase in vivo. Am J Pathol 151:1163–1169

    PubMed  CAS  Google Scholar 

  46. Bentala H, Verweij WR, Huizinga-van der Vlag A, Huizinga-vander Vlag A, van Loenen-Weemaes AM, Meijer DK, Meijer DK, Poelstra K (2002) Removal of phosphate from lipid A as a strategy to detoxify lipopolysaccharide. Shock 18:561–566

    PubMed  Google Scholar 

  47. Beumer C, Wulferink M, Raaben W, Raaben W, Fiechter Dl, Brands R, Seinen W (2003) Calf intestinal alkaline phosphatase, a novel therapeutic drug for lipopolysaccharide (LPS)-mediated diseases, attenuates LPS toxicity in mice and piglets. J Pharmacol Exp Ther 307:737–744

    PubMed  CAS  Google Scholar 

  48. Koyama I, Matsunaga T, Harada T, Hokari S, Komoda T (2002) Alkaline phosphatases reduce toxicity of lipopolysaccharide in vivo and in vitro through dephosphorylation. Clin Biochem 36:455–461

    Google Scholar 

  49. Poelstra K, Bakker WW, Klok PA, Hardonk MJ, Meijer DK (1997) A physiologic function for alkaline phosphatase: endotoxin detoxification. Lab Invest 76:319–327

    PubMed  CAS  Google Scholar 

  50. Geddes K, Philpott DJ (2008) A new role for intestinal alkaline phosphatase in gut barrier maintenance. Gastroenterology 135:8–12

    PubMed  CAS  Google Scholar 

  51. Tuin A, Poelstra K, de Jager-Krikken A, Bok L, Raaben W, Velders MP, Dijkstra G (2009) Role of alkaline phosphatase in colitis in man and rats. Gut 58:379–387

    PubMed  CAS  Google Scholar 

  52. Goldberg RF, Austen WGJ, Zhang X, Munene G, Mostafa G, Biswas S, McCormack M, Eberlin KR, Nguyen JT, Tatlidede HS, Warren HS, Narisawa S, Millán JL, Hodin RA (2008) Intestinal alkaline phosphatase is a gut mucosal defense factor maintained by enteral nutrition. Proc Natl Acad Sci USA 105:3551–3556

    PubMed  CAS  Google Scholar 

  53. Picher M, Boucher RC, Picher M, Boucher RC, Picher M, Boucher RC (2003) Detoxification of Pseudomonas aeruginosa lipopolysaccharide in human airways: an inflammatory response mediated by non-specific alkaline phosphatase. Pediatr Pulmonol Suppl 25:271

    Google Scholar 

  54. Beaudoin AR, Sevigny J, Picher M (1996) ATP-diphosphohydrolases, apyrases and nucleotide phosphohydrolases: biochemical properties and functions. JAI Press, Greenwich

    Google Scholar 

  55. Robson SC, Sevigny J, Zimmermann H (2006) The E-NTPDase family of ectonucleotidases: structure function relationships and pathological significance. Purinergic Signal 2:409–430

    PubMed  CAS  Google Scholar 

  56. Christoforidis S, Papamarcaki T, Galaris D, Kellner R, Tsolas O (1995) Purification and properties of human placental ATP diphosphohydrolase. Eur J Biochem 234:66–74

    PubMed  CAS  Google Scholar 

  57. Sevigny J, Sundberg C, Braun N, Guckelberger O, Csizmadia E, Qawi I, Imai M, Zimmermann H, Robson SC (2002) Differential catalytic properties and vascular topography of murine nucleoside triphosphate diphosphohydrolase 1 (NTPDase1) and NTPDase2 have implications for thromboregulation. Blood 99:2801–2809

    PubMed  CAS  Google Scholar 

  58. Kukulski F, Levesque SA, Lavoie EG, Lecka J, Bigonnesse F, Knowles AF, Robson S, Kirley TL, Sevigny J (2005) Comparative hydrolysis of P2 receptor agonists by NTPDase 1, 2, 3 and 8. Purinergic Signal 1:193–204

    PubMed  CAS  Google Scholar 

  59. Mateo J, Harden TK, Boyer JL (1999) Functional expression of a cDNA encoding a human ecto-ATPase. Br J Pharmacol 128:396–402

    PubMed  CAS  Google Scholar 

  60. Knowles AF, Chiang WC (2003) Enzymatic and transcriptional regulation of human ecto-ATPase/E-NTPDase 2. Arch Biochem Biophys 418:217–227

    PubMed  CAS  Google Scholar 

  61. Sevigny J, Robson SC, Waelkens E, Csizmadia E, Smith RN, Lemmens R (2000) Identification and characterization of a novel hepatic canalicular ATP diphosphohydrolase. J Biol Chem 275:5640–5647

    PubMed  CAS  Google Scholar 

  62. Zimmermann H (2001) Ectonucleotidases: some recent developments and a note on nomenclature. Drug Dev Res 52:44–56

    CAS  Google Scholar 

  63. Kirley TL, Crawford PA, Smith TM (2006) The structure of the nucleoside triphosphate diphosphohydrolases (NTPDases) as revealed by mutagenic and computational modeling analyses. Purinergic Signal 2:379–389

    PubMed  CAS  Google Scholar 

  64. Gendron FP, Benrezzak O, Krugh BW, Kong Q, Weisman GA, Beaudoin AR (2002) Purine signaling and potential new therapeutic approach: possible outcomes of NTPDase inhibition. Curr Drug Targets 3:229–245

    PubMed  CAS  Google Scholar 

  65. Munkonda MN, Kauffenstein G, Kukulski F, Levesque SA, Legendre C, Pelletier J, Lavoie EG, Lecka J, Sevigny J (2007) Inhibition of human and mouse plasma membrane bound NTPDases by P2 receptor antagonists. Biochem Pharmacol 74:1524–1534

    PubMed  CAS  Google Scholar 

  66. Leal DBR, Streher CA, Neu TN, Bittencourt FP, Leal CAM, da Silva JEP, Morsch VM, Schetinger MRC (2005) Characterization of NTPDase (NTPDase1; ecto-apyrase; ecto-diphosphohydrolase; CD39; EC 3.6.1.5) activity in human lymphocytes. Biochim Biophys Acta 1721:9–15

    PubMed  CAS  Google Scholar 

  67. Smith TM, Kirley TL (1998) Cloning, sequencing and expression of a human brain ecto-apyrase related to both the ecto-ATPase and CD39 ecto-apyrase1. Biochim Biophys Acta 1386:65–78

    PubMed  CAS  Google Scholar 

  68. Shi XJ, Knowles AF (1994) Prevalence of the mercurial-sensitive ectoATPase in human small cell lung carcinoma: characterization and partial purification. Arch Biochem Biophys 315:177–184

    PubMed  CAS  Google Scholar 

  69. Fausther M, Lecka J, Kukulski F, Levesque SA, Pelletier J, Zimmermann H, Dranoff JA, Sevigny J (2007) Cloning, purification, and identification of the liver canalicular ecto-ATPase as NTPDase8. Am J Physiol 292:G785–G795

    CAS  Google Scholar 

  70. Iqbal J, Vollmayer P, Braun N, Zimmermann H, Müller CE (2005) A capillary electrophoresis method for the characterization of ecto-nucleoside triphosphate diphosphohydrolases (NTPDases) and the analysis of inhibitors by in-capillary enzymatic microreaction. Purinergic Signal 1:349–358

    PubMed  CAS  Google Scholar 

  71. Müller CE, Iqbal J, Baqi Y, Zimmermann H, Röllich A, Stephan H (2006) Polyoxometalates-a new class of potent ecto-nucleoside triphosphate diphosphohydrolase (NTPDase) inhibitors. Bioorg Med Chem Lett 16:5943–5947

    PubMed  Google Scholar 

  72. Munkonda MN, Pelletier J, Ivanenkov VV, Fausther M, Tremblay A, Künzli B, Kirley TL, Sévigny J (2009) Characterization of a monoclonal antibody as the first specific inhibitor of human NTP diphosphohydrolase-3. FEBS J 276:479–496

    PubMed  CAS  Google Scholar 

  73. Baqi Y, Weyler S, Iqbal J, Zimmermann H, Müller CE (2009) Structure-activity relationships of anthraquinone derivatives derived from bromaminic acid as inhibitors of ectonucleoside triphosphate diphosphohydrolases (E-NTPDases). Purinergic Signal 5:91–106

    PubMed  CAS  Google Scholar 

  74. Knowles AF, Isler RE, Reece JF (1983) The common occurrence of ATP diphosphohydrolase in mammalian plasma membranes. Biochim Biophys Acta 731:88–96

    PubMed  CAS  Google Scholar 

  75. Kaczmarek E, Koziak K, Sevigny J, Siegel JB, Anrather J, Beaudoin AR, Bach FH, Robson SC (1996) Identification and characterization of CD39/vascular ATP diphosphohydrolase. J Biol Chem 271:33116–33122

    PubMed  CAS  Google Scholar 

  76. Marcus AJ, Broekman MJ, Drosopoulos JH, Islam N, Alyonycheva TN, Safier LB, Hajjar KA, Posnett DN, Schoenborn MA, Schooley KA, Gayle RB, Maliszewski CR (1997) The endothelial cell ecto-ADPase responsible for inhibition of platelet function is CD39. J Clin Invest 99:1351–1361

    PubMed  CAS  Google Scholar 

  77. Ghijsen WE, de Jong MD, van Os CH (1980) Dissociation between Ca2+-ATPase and alkaline phosphatase activities in plasma membranes of rat duodenum. Biochim Biophys Acta 599:538–591

    PubMed  CAS  Google Scholar 

  78. Rücker B, Almeida ME, Libermann TA, Zerbini LF, Wink MR, Sarkis JJ (2007) Biochemical characterization of ecto-nucleotide pyrophosphatase/phosphodiesterase (E-NPP, E.C. 3.1.4.1) from rat heart left ventricle. Mol Cell Biochem 306:247–254

    PubMed  Google Scholar 

  79. Sato E, Suzuki T, Hoshi N, Sugino T, Hasegawa H (2008) Sodium azide induces necrotic cell death in rat squamous cell carcinoma SCC131. Med Mol Morphol 41:211–220

    PubMed  CAS  Google Scholar 

  80. Crack BE, Pollard CE, Beukers MW, Roberts SM, Hunt SF, Ingall AH, McKechnie KC, IJzerman AP, Leff P (2005) Pharmacological and biochemical analysis of FPL 67156, a novel, selective inhibitor of ecto-ATPase. Br J Pharmacol 114:475–481

    Google Scholar 

  81. Westfall TD, Kennedy C, Sneddon P (1996) Enhancement of sympathetic purinergic neurotransmission in the guinea-pig isolated vas deferens by the novel ecto-ATPase inhibitor ARL 67156. Br J Pharmacol 117:867–872

    PubMed  CAS  Google Scholar 

  82. Lévesque SA, Lavoie EG, Lecka J, Bigonnesse F, Sévigny J (2007) Specificity of the ecto-ATPase inhibitor ARL 67156 on human and mouse ectonucleotidases. Br J Pharmacol 152:141–150

    PubMed  Google Scholar 

  83. Kohler D, Eckle T, Faigle M, Grenz A, Mittelbronn M, Laucher S, Hart ML, Robson SC, Muller CE, Eltzschig HK (2007) CD39/ectonucleoside triphosphate diphosphohydrolase 1 provides myocardial protection during cardiac ischemia-reperfusion injury. Circulation 116:1784–1794

    PubMed  Google Scholar 

  84. Reutershan J, Vollmer I, Stark S, Wagner R, Ngamsri K-C, Eltzschig HK (2009) Adenosine and inflammation: CD39 and CD73 are critical mediators in LPS-induced PMN trafficking into the lungs. FASEB J 23:473–482

    PubMed  CAS  Google Scholar 

  85. Martín-Satué M, Lavoie EG, Pelletier J, Fausther M, Csizmadia E, Guckelberger O, Robson SC, Sévigny J (2009) Localization of plasma membrane bound NTPDases in the murine reproductive tract. Histochem Cell Biol 131:615–628

    PubMed  Google Scholar 

  86. Wall MJ, Wigmore G, Lopatár J, Frenguelli BG, Dale N (2008) The novel NTPDase inhibitor sodium polyoxotungstate (POM-1) inhibits ATP breakdown but also blocks central synaptic transmission, an action independent of NTPDase inhibition. Neuropathology 55:1251–1258

    CAS  Google Scholar 

  87. Chadwick B, Frischauf AM (1997) Cloning and mapping of a human and mouse gene with homology to ecto-ATPase genes. Mamm Genome 8:668–672

    PubMed  CAS  Google Scholar 

  88. Chadwick BP, Frischauf AM (1998) The CD39-like gene family: identification of three new human members (CD39L2, CD39L3, and CD39L4), their murine homologues, and a member of the gene family from Drosophila melanogaster. Genomics 50:357–367

    PubMed  CAS  Google Scholar 

  89. Eckle T, Fullbier L, Wehrmann M, Khoury J, Mittelbronn M, Ibla J, Rosenberger P, Eltzschig HK (2007) Identification of ectonucleotidases CD39 and CD73 in innate protection during acute lung injury. J Immunol 178:8127–8137

    PubMed  CAS  Google Scholar 

  90. Sevigny J, Picher M, Grondin G, Beaudoin AR (1997) Purification and immunohistochemical localization of the ATP diphosphohydrolase in bovine lungs. Am J Physiol 272:L939–L950

    PubMed  CAS  Google Scholar 

  91. Fausther M, Pelletier J, Ribeiro CM, Sévigny J, Picher M (2010) Cystic fibrosis remodels the regulation of purinergic signaling by NTPDase1 (CD39) and NTPDase3. Am J Physiol 298:L804–L818

    CAS  Google Scholar 

  92. Kreda SM, Gynn MC, Fenstermacher DA, Boucher RC, Gabriel SE (2001) Expression and localization of epithelial aquaporins in the adult human lung. Am J Respir Cell Mol Biol 24:224–234

    PubMed  CAS  Google Scholar 

  93. Zinchuk VS, Okada T, Seguchi H (2001) Lipopolysaccharide alters ecto-ATP-diphosphohydrolase and causes relocation of its reaction product in experimental intrahepatic cholestasis. Cell Tissue Res 304:103–109

    PubMed  CAS  Google Scholar 

  94. Kreda SM, Okada SF, van Heusden CA, O’Neal W, Gabriel S, Abdullah L, Davis CW, Boucher RC, Lazarowski ER (2007) Coordinated release of nucleotides and mucin from human airway epithelial Calu-3 cells. J Physiol 584:245–259

    PubMed  CAS  Google Scholar 

  95. Davis CW, Lazarowski E (2008) Coupling of airway ciliary activity and mucin secretion to mechanical stresses by purinergic signaling. Respir Physiol Neurobiol 163:208–213

    PubMed  CAS  Google Scholar 

  96. Yegutkin G, Bodin P, Burnstock G (2000) Effect of shear stress on the release of soluble ecto-enzymes ATPase and 5′-nucleotidase along with endogenous ATP from vascular endothelial cells. Br J Pharmacol 129:921–926

    PubMed  CAS  Google Scholar 

  97. Sørensen CE, Amstrup J, Rasmussen HN, Ankorina-Stark I, Novak I (2003) Rat pancreas secretes particulate ecto-nucleotidase CD39. J Physiol 551:881–892

    PubMed  Google Scholar 

  98. Goding JW, Grobben B, Slegers H (2003) Physiological and pathophysiological functions of the ecto-nucleotide pyrophosphatase/phosphodiesterase family. Biochim Biophys Acta 1638:1–19

    PubMed  CAS  Google Scholar 

  99. Stefan C, Jansen S, Bollen M (2005) NPP-type ectophosphodiesterases: unity in diversity. Trends Biochem Sci 30:542–550

    PubMed  CAS  Google Scholar 

  100. Jansen S, Stefan C, Creemers JWM, Waelkens E, Van Eynde A, Stalmans W, Bollen M (2005) Proteolytic maturation and activation of autotaxin (NPP2), a secreted metastasis-enhancing lysophospholipase D. J Cell Sci 118:3081–3089

    PubMed  CAS  Google Scholar 

  101. Boutin J, Ferry G (2009) Autotaxin. Cell Mol Life Sci 66:3009–3021

    PubMed  CAS  Google Scholar 

  102. Murata J, Lee HY, Clair T, Krutzsch HC, Arestad AA, Sobel ME, Liotta LA, Stracke ML (1994) cDNA cloning of the human tumor motility-stimulating protein, autotaxin, reveals a homology with phosphodiesterases. J Biol Chem 269:30479–30484

    PubMed  CAS  Google Scholar 

  103. Lee HY, Murata J, Clair T, Polymeropoulos MH, Torres R, Manrow RE, Liotta LA, Stracke ML (1996) Cloning, chromosomal localization, and tissue expression of autotaxin from human teratocarcinoma cells. Biochem Biophys Res Commun 218:714–719

    PubMed  CAS  Google Scholar 

  104. Kawagoe H, Soma O, Goji J, Nishimura N, Narita M, Inazawa J, Nakamura H, Sano K (1995) Molecular cloning and chromosomal assignment of the human brain-type phosphodiesterase I/nucleotide pyrophosphatase gene (PDNP2). Genomics 30:380–384

    PubMed  CAS  Google Scholar 

  105. Giganti A, Rodriguez M, Fould B, Moulharat N, Cogé F, Chomarat P, Galizzi JP, Valet P, Saulnier-Blache JS, Boutin JA, Ferry G (2008) Murine and human autotaxin alpha, beta, and gamma isoforms: gene organization, tissue distribution, and biochemical characterization. J Biol Chem 283:7776–7789

    PubMed  CAS  Google Scholar 

  106. Rebbe NF, Tong BD, Hickman S (1993) Expression of nucleotide pyrophosphatase and alkaline phosphodiesterase I activities of PC-1, the murine plasma cell antigen. Mol Immunol 30:87–93

    PubMed  CAS  Google Scholar 

  107. Clair T, Lee HY, Liotta LA, Stracke ML (1997) Autotaxin is an exoenzyme possessing 5′-nucleotide phosphodiesterase/ATP pyrophosphatase and ATPase activities. J Biol Chem 272:996–1001

    PubMed  CAS  Google Scholar 

  108. Grobben B, Anciaux K, Roymans D, Stefan C, Bollen M, Esmans EL, Slegers H (1999) An ecto-nucleotide pyrophosphatase is one of the main enzymes involved in the extracellular metabolism of ATP in rat C6 glioma. J Neurochem 72:826–834

    PubMed  CAS  Google Scholar 

  109. Sakura H, Nagashima S, Nakashima A, Maeda M (1998) Characterization of fetal serum 5′-nucleotide phosphodiesterase: a novel function as a platelet aggregation inhibitor in fetal circulation. Thromb Res 91:83–89

    PubMed  CAS  Google Scholar 

  110. Grobben B, Claes P, Roymans D, Esmans EL, Van Onckelen H, Slegers H (2000) Ecto-nucleotide pyrophosphatase modulates the purinoceptor-mediated signal transduction and is inhibited by purinoceptor antagonists. Br J Pharmacol 130:139–145

    PubMed  CAS  Google Scholar 

  111. Joseph SM, Pifer MA, Przybylski RJ, Dubyak GR (2004) Methylene ATP analogs as modulators of extracellular ATP metabolism and accumulation. Br J Pharmacol 142:1002–1014

    PubMed  CAS  Google Scholar 

  112. Iqbal J, Lévesque SA, Sévigny J, Müller CE (2008) A highly sensitive CE-UV method with dynamic coating of silica-fused capillaries for monitoring of nucleotide pyrophosphatase /phosphodiesterase reactions. Electrophoresis 29:3685–3693

    PubMed  CAS  Google Scholar 

  113. Khan KM, Fatima N, Rasheed M, Jalil S, Ambreen N, Perveen S, Choudhary MI (2009) 1, 3, 4-Oxadiazole-2(3 H)-thione and its analogues: a new class of non-competitive nucleotide pyrophosphatases /phosphodiesterases 1 inhibitors. Bioorg Med Chem 17:7816–7822

    PubMed  CAS  Google Scholar 

  114. Goldstein LB (2007) Statins for stroke prevention. Curr Atheroscler Rep 9:305–311

    PubMed  CAS  Google Scholar 

  115. Majlesi Y, Samorapoompichit P, Hauswirth AW, Schernthaner G-H, Ghannadan M, Baghestanian M, Rezaie-Majd A, Valenta R, Sperr WR, Buhring H-J, Valent P (2003) Cerivastatin and atorvastatin inhibit IL-3-dependent differentiation and IgE-mediated histamine release in human basophils and downmodulate expression of the basophil-activation antigen CD203c/E-NPP3. J Leukoc Biol 73:107–117

    PubMed  CAS  Google Scholar 

  116. Bühring HJ, Streble A, Valent P (2004) The basophil-specific ectoenzyme E-NPP3 (CD203c) as a marker for cell activation and allergy diagnosis. Int Arch Allergy Immunol 133:317–329

    PubMed  Google Scholar 

  117. Henz SL, Cognato Gde P, Vuaden FC, Bogo MR, Bonan CD, Sarkis JJ (2009) Influence of antidepressant drugs on ecto-nucleotide pyrophosphatase/phosphodiesterases (E-NPPs) from salivary glands of rats. Arch Oral Biol 54:730–736

    PubMed  CAS  Google Scholar 

  118. Dehaye JP, Moran A, Marino A (1999) Purines, a new class of agonists in salivary glands? Arch Oral Biol 44:S39–S43

    PubMed  CAS  Google Scholar 

  119. Scully C (2003) Drug effects on salivary glands: dry mouth. Oral Dis 9:165–176

    PubMed  CAS  Google Scholar 

  120. Brinkmann V (2009) FTY720 (fingolimod) in multiple sclerosis: therapeutic effects in the immune and the central nervous system. Br J Pharmacol 158:1173–1182

    PubMed  CAS  Google Scholar 

  121. Schwab SR, Cyster JG (2007) Finding a way out: lymphocyte egress from lymphoid organs. Nat Immunol 8:1295–1301

    PubMed  CAS  Google Scholar 

  122. van Meeteren LA, Brinkmann V, Saulnier-Blache JS, Lynch KR, Moolenaar W (2008) Anticancer activity of FTY720: phosphorylated FTY720 inhibits autotaxin, a metastasis-enhancing and angiogenic lysophospholipase D. Cancer Lett 266:203–208

    PubMed  Google Scholar 

  123. Zheng T, Meng X, Wang J, Chen X, Yin D, Liang Y, Song X, Pan S, Jiang H, Liu L (2010) PTEN- and p53-mediated apoptosis and cell cycle arrest by FTY720 in gastric cancer cells and nude mice. J Cell Biochem 111:218–228

    PubMed  CAS  Google Scholar 

  124. Jin-Hua P, Goding JW, Nakamura H, Sano K (1997) Molecular cloning and chromosomal localization of PD-Ibeta (PDNP3), a new member of the human phosphodiesterase I genes. Genomics 45:412–415

    PubMed  CAS  Google Scholar 

  125. Fuss B, Baba H, Phan T, Tuohy VK, Macklin WB (1997) Phosphodiesterase I, a novel adhesion molecule and/or cytokine involved in oligodendrocyte function. J Neurosci 17:9095–9103

    PubMed  CAS  Google Scholar 

  126. Stefan C, Gijsbers R, Stalmans W, Bollen M (1999) Differential regulation of the expression of nucleotide pyrophosphatases/phosphodiesterases in rat liver. Biochim Biophys Acta 1450:45–52

    PubMed  CAS  Google Scholar 

  127. Picher M, Boucher RC (2001) Metabolism of extracellular nucleotides in human airways by a multienzyme system. Drug Dev Res 52:66–75

    CAS  Google Scholar 

  128. Picher M, Boucher RC (2000) Biochemical evidence for an ecto alkaline phosphodiesterase I in human airways. Am J Respir Cell Mol Biol 23:255–261

    PubMed  CAS  Google Scholar 

  129. Morley DJ, Hawley DM, Ulbright TM, Butler LG, Culp JS, Hodes ME (1987) Distribution of phosphodiesterase I in normal human tissues. J Histochem Cytochem 35:75–82

    PubMed  CAS  Google Scholar 

  130. Yano Y, Hayashi Y, Sano K, Shinmaru H, Kuroda Y, Yokozaki H, Yoon S, Kasuga M (2003) Expression and localization of ecto-nucleotide pyrophosphatase/phosphodiesterase I-3 (E-NPP3/CD203c/PD-I beta/B10/gp130RB13-6) in human colon carcinoma. Int J Mol Med 12:763–766

    PubMed  CAS  Google Scholar 

  131. Petersen CB, Nygård AB, Viuff B, Fredholm M, Aasted B, Salomonsen J (2007) Porcine ecto-nucleotide pyrophosphatase/phosphodiesterase 1 (NPP1/CD203a): cloning, transcription, expression, mapping, and identification of an NPP1/CD203a epitope for swine workshop cluster 9 (SWC9) monoclonal antibodies. Dev Comp Immunol 31:618–631

    PubMed  CAS  Google Scholar 

  132. Scott LJ, Delautier D, Meerson NR, Trugnan G, Goding JW, Maurice M (1997) Biochemical and molecular identification of distinct forms of alkaline phosphodiesterase I expressed on the apical and basolateral plasma membrane surfaces of rat hepatocytes. Hepatology 25:995–1002

    PubMed  CAS  Google Scholar 

  133. Bello V, Goding JW, Greengrass V, Sali A, Dubljevic V, Lenoir C, Trugnan G, Maurice M (2001) Characterization of a di-leucine-based signal in the cytoplasmic tail of the nucleotide-pyrophosphatase NPP1 that mediates basolateral targeting but not endocytosis. Mol Biol Cell 12:3004–3015

    PubMed  CAS  Google Scholar 

  134. Meerson NR, Bello V, Delaunay JL, Slimane TA, Delautier D, Lenoir C, Trugnan G, Maurice M (2000) Intracellular traffic of the ecto-nucleotide pyrophosphatase/phosphodiesterase NPP3 to the apical plasma membrane of MDCK and Caco-2 cells: apical targeting occurs in the absence of N-glycosylation. J Cell Sci 113:4193–4202

    PubMed  CAS  Google Scholar 

  135. Davis CW, Dickey BF (2008) Regulated airway goblet cell mucin secretion. Annu Rev Physiol 70:487–512

    PubMed  CAS  Google Scholar 

  136. Hirsh AJ, Stonebraker J, van Heusden CA, Lazarowski ER, Boucher RC, Picher M (2007) Adenosine deaminase 1 and concentrative nucleoside transporters 2 and 3 regulate adenosine on the apical surface of human airway epithelia: implications for inflammatory lung diseases. Biochemistry 46:10373–10383

    PubMed  CAS  Google Scholar 

  137. Saleh A, Picher M, Kammouni W, Figarella C, Merten MD (1999) Characterization of a diadenosine tetraphosphate-receptor distinct from the ATP-purinoceptor in human tracheal gland cells. Eur J Pharmacol 384:91–98

    PubMed  CAS  Google Scholar 

  138. Lazarowski ER, Boucher RC (2009) Purinergic receptors in airway epithelia. Curr Opin Pharmacol 9:262–267

    PubMed  CAS  Google Scholar 

  139. Yang Y, Mou L-j, Liu N, Tsao M-S (1999) Autotaxin expression in non-small-cell lung cancer. Am J Respir Cell Mol Biol 21:216–222

    PubMed  Google Scholar 

  140. Gijsbers R, Ceulemans H, Stalmans W, Bollen M (2001) Structural and catalytic similarities between nucleotide pyrophosphatases/phosphodiesterases and alkaline phosphatases. J Biol Chem 276:1361–1368

    PubMed  CAS  Google Scholar 

  141. van Meeteren LA, Moolenaar WH (2007) Regulation and biological activities of the autotaxin-LPA axis. Prog Lipid Res 46:145–160

    PubMed  Google Scholar 

  142. Toews ML, Ediger TL, Romberger DJ, Rennard SI (2002) Lysophosphatidic acid in airway function and disease. Biochim Biophys Acta 1582:240–250

    PubMed  CAS  Google Scholar 

  143. Zhao Y, Natarajan V (2009) Lysophosphatidic acid signaling in airway epithelium: role in airway inflammation and remodeling. Cell Signal 21:367–377

    PubMed  CAS  Google Scholar 

  144. Balazs L, Okolicany J, Ferrebee M, Tolley B, Tigyi G (2001) Topical application of the phospholipid growth factor lysophosphatidic acid promotes wound healing in vivo. Am J Physiol 280:R466–R472

    CAS  Google Scholar 

  145. Cummings RJ, Parinandi N, Zaiman A, Wang L, Usatyuk PV, Garcia JG, Natarajan V (2002) Phospholipase D activation by sphingosine 1-phosphate regulates interleukin-8 secretion in human bronchial epithelial cells. J Biol Chem 277:30227–30235

    PubMed  CAS  Google Scholar 

  146. Milara J, Mata M, Mauricio MD, Donet E, Morcillo EJ, Cortijo J (2009) Sphingosine-1-phosphate increases human alveolar epithelial IL-8 secretion, proliferation and neutrophil chemotaxis. Eur J Pharmacol 609:132–139

    PubMed  CAS  Google Scholar 

  147. Ryan JJ, Spiegel S (2008) The role of sphingosine-1-phosphate and its receptors in asthma. Drug News Perspect 21:89–96

    PubMed  CAS  Google Scholar 

  148. Van Rompay AR, Johansson M, Karlsson A (2000) Phosphorylation of nucleosides and nucleoside analogs by mammalian nucleoside monophosphate kinases. Pharmacol Ther 87:189–198

    PubMed  Google Scholar 

  149. Lacombe M-LL, Munier A, Mehus JG, Lambeth DO (2000) The human Nm23/nucleoside diphosphate kinases. J Bioenerg Biomembr 32:247–258

    PubMed  CAS  Google Scholar 

  150. Dzeja PP, Terzic A (2003) Phosphotransfer networks and cellular energetics. J Exp Biol 206:2039–2047

    PubMed  CAS  Google Scholar 

  151. Yegutkin GG, Henttinen T, Jalkanen S (2001) Extracellular ATP formation on vascular endothelial cells is mediated by ecto-nucleotide kinase activities via phosphotransfer reactions. FASEB J 15:251–260

    PubMed  CAS  Google Scholar 

  152. Yegutkin GG, Henttinen T, Samburski SS, Spychala J, Jalkanen S (2002) The evidence for two opposite, ATP-generating and ATP-consuming, extracellular pathways on endothelial and lymphoid cells. Biochem J 367:121–128

    PubMed  CAS  Google Scholar 

  153. Fabre AC, Vantourout P, Champagne E, Tercé F, Rolland C, Perret B, Collet X, Barbaras R, Martinez LO (2006) Cell surface adenylate kinase activity regulates the F(1)-ATPase/P2Y13-mediated HDL endocytosis pathway on human hepatocytes. Cell Mol Life Sci 63:2829–2837

    PubMed  CAS  Google Scholar 

  154. Karczewska J, Martyniec L, Dzierzko G, Stepiński J, Angielski S (2007) The relationship between constitutive ATP release and its extracellular metabolism in isolated rat kidney glomeruli. J Physiol Pharmacol 58:321–333

    PubMed  CAS  Google Scholar 

  155. Burrell HE, Wlodarski B, Foster BJ, Buckley KA, Sharpe GR, Quayle JM, Simpson AWM, Gallagher JA (2005) Human keratinocytes release ATP and utilize three mechanisms for nucleotide interconversion at the cell surface. J Biol Chem 280:29667–29676

    PubMed  CAS  Google Scholar 

  156. Lazarowski ER, Homolya L, Boucher RC, Harden TK (1997) Identification of an ecto-nucleoside diphosphokinase and its contribution to interconversion of P2 receptor agonists. J Biol Chem 272:20402–20407

    PubMed  CAS  Google Scholar 

  157. Lazarowski ER, Boucher RC, Harden TK (2000) Constitutive release of ATP and evidence for major contribution of ecto-nucleotide pyrophosphatase and nucleoside diphosphokinase to extracellular nucleotide concentrations. J Biol Chem 275:31061–31068

    PubMed  CAS  Google Scholar 

  158. Donaldson SH, Picher M, Boucher RC (2002) Secreted and cell-associated adenylate kinase and nucleoside diphosphokinase contribute to extracellular nucleotide metabolism on human airway surfaces. Am J Respir Cell Mol Biol 26:209–215

    PubMed  CAS  Google Scholar 

  159. Picher M, Boucher RC (2003) Human airway ecto-adenylate kinase. A mechanism to propagate ATP signaling on airway surfaces. J Biol Chem 278:11256–11264

    PubMed  CAS  Google Scholar 

  160. Conway JD, Bartolotta T, Abdullah LH, Davis CW (2003) Regulation of mucin secretion from human bronchial epithelial cells grown in murine hosted xenografts. Am J Physiol 284:L945–L954

    CAS  Google Scholar 

  161. Hunsucker SA, Mitchell BS, Spychala J (2005) The 5′-nucleotidases as regulators of nucleotide and drug metabolism. Pharmacol Ther 107:1–30

    PubMed  CAS  Google Scholar 

  162. Colgan SP, Eltzschig HK, Eckle T, Thompson LF (2006) Physiological roles for ecto-5′-nucleotidase (CD73). Purinergic Signal 2:351–360

    PubMed  CAS  Google Scholar 

  163. Salmi M, Jalkanen S (2005) Cell-surface enzymes in control of leukocyte trafficking. Nat Rev Immunol 5:760–761

    PubMed  CAS  Google Scholar 

  164. Volmer JB, Thompson LF, Blackburn MR (2006) Ecto-5′-nucleotidase (CD73)-mediated adenosine production is tissue protective in a model of bleomycin-induced lung injury. J Immunol 176:4449–4458

    PubMed  CAS  Google Scholar 

  165. Gakis C (1996) Adenosine deaminase (ADA) isoenzymes ADA1 and ADA2: diagnostic and biological role. Eur Respir J 9:632–633

    PubMed  CAS  Google Scholar 

  166. Franco R, Casado V, Ciruela F, Saura C, Mallol J, Canela EI, Lluis C (1997) Cell surface adenosine deaminase: much more than an ectoenzyme. Prog Neurobiol 52:283–294

    PubMed  CAS  Google Scholar 

  167. Cristalli G, Costanzi S, Lambertucci C, Lupidi G, Vittori S, Volpini R, Camaioni E (2001) Adenosine deaminase: functional implications and different classes of inhibitors. Med Res Rev 21:105–128

    PubMed  CAS  Google Scholar 

  168. Hershfield M (2005) New insights into adenosine-receptor-mediated immunosuppression and the role of adenosine in causing the immunodeficiency associated with adenosine deaminase deficiency. Eur J Immunol 35:25–30

    PubMed  CAS  Google Scholar 

  169. Dong RP, Kameoka J, Hegen M, Tanaka T, Xu Y, Schlossman SF, Morimoto C (1996) Characterization of adenosine deaminase binding to human CD26 on T cells and its biologic role in immune response. J Immunol 156:1349–1355

    PubMed  CAS  Google Scholar 

  170. Valenzuela A, Blanco J, Callebaut C, Jacotot E, Lluis C, Hovanessian A, Franco R (1997) HIV-1 envelope gp120 and viral particles block adenosine deaminase binding to CD26. Adv Exp Med Biol 421:185–192

    PubMed  CAS  Google Scholar 

  171. Daddona PE, Kelley WN (1980) Analysis of normal and mutant forms of human adenosine deaminase – a review. Mol Cell Biochem 29:91–101

    PubMed  CAS  Google Scholar 

  172. Matteucci E, Giampietro O (2009) Dipeptidyl peptidase-4 (CD26): knowing the function before inhibiting the enzyme. Curr Med Chem 16:2943–2951

    PubMed  CAS  Google Scholar 

  173. Conlon BA, Law WR (2004) Macrophages are a source of extracellular adenosine deaminase-2 during inflammatory responses. Clin Exp Immunol 138:14–20

    PubMed  CAS  Google Scholar 

  174. Zavialov AV, Engstrom A (2005) Human ADA2 belongs to a new family of growth factors with adenosine deaminase activity. Biochem J 391:51–57

    PubMed  CAS  Google Scholar 

  175. Tsuboi I, Sagawa K, Shichijo S, Yokoyama MM, Ou DW, Wiederhold MD (1995) Adenosine deaminase isoenzyme levels in patients with human T-cell lymphotropic virus type 1 and human immunodeficiency virus type 1 infections. Clin Diagn Lab Immunol 2:626–630

    PubMed  CAS  Google Scholar 

  176. Daddona PE, Kelley WN (1981) Characteristics of an aminohydrolase distinct from adenosine deaminase in cultured human lymphoblasts. Biochim Biophys Acta 658:280–290

    PubMed  CAS  Google Scholar 

  177. Zavialov AV, Gracia E, Glaichenhaus N, Franco R, Zavialov AV, Lauvau G (2010) Human adenosine deaminase 2 induces differentiation of monocytes into macrophages and stimulates proliferation of T helper cells and macrophages. J Leukoc Biol 88:279–290

    PubMed  CAS  Google Scholar 

  178. Sauter C, Lamanna N, Weiss MA (2008) Pentostatin in chronic lymphocytic leukemia. Expert Opin Drug Metab Toxicol 4:1217–1222

    PubMed  CAS  Google Scholar 

  179. Niedzwicki JG, Abernethy DR (1991) Structure-activity relationship of ligands of human plasma adenosine deaminase2. Biochem Pharmacol 41:1615–1624

    PubMed  CAS  Google Scholar 

  180. Iwaki-Egawa S, Namiki C, Watanabe Y (2004) Adenosine deaminase 2 from chicken liver: purification, characterization, and N-terminal amino acid sequence. Comp Biochem Physiol 137:247–254

    Google Scholar 

  181. Andreasyan NA, Hairapetyan HL, Sargisova YG, Mardanyan SS (2005) ADA2 isoform of adenosine deaminase from pleural fluid. FEBS Lett 579:643–647

    PubMed  CAS  Google Scholar 

  182. Ji XD, Ye F, Lin P, Zhao S (2010) Immobilized capillary adenosine deaminase microreactor for inhibitor screening in natural extracts by capillary electrophoresis. Talanta 82:1170–1174

    PubMed  CAS  Google Scholar 

  183. Dilmac A, Ucoluk G, Ugurman F, Gozu A, Akkalyoncu B, Eryilmaz T, Samurkasoglu B (2002) The diagnostic value of adenosine deaminase activity in sputum in pulmonary tuberculosis. Respir Med 96:632–634

    PubMed  CAS  Google Scholar 

  184. Akyol O, Gokbulut I, Koksal N, Akin H, Ozyurt H, Yildirim Z (2001) The activities of purine catabolizing enzymes in plasma and bronchial washing fluid in patients with lung cancer and pneumonia. Clin Biochem 34:251–254

    PubMed  CAS  Google Scholar 

  185. Kayacan O, Karnak D, Delibalta M, Beder S, Karaca L, Tutkak H (2002) Adenosine deaminase activity in bronchoalveolar lavage in Turkish patients with smear negative pulmonary tuberculosis. Respir Med 96:536–541

    PubMed  CAS  Google Scholar 

  186. Albera C, Mabritto I, Ghio P, Solidoro P, Marchetti L, Pozzi E (1993) Adenosine deaminase activity and fibronectin levels in bronchoalveolar lavage fluid in sarcoidosis and tuberculosis. Sarcoidosis 10:18–25

    PubMed  CAS  Google Scholar 

  187. Orphanidou D, Stratakos G, Rasidakis A, Toumbis M, Samara J, Bakakos P, Jordanoglou J (1998) Adenosine deaminase activity and lysozyme levels in bronchoalveolar lavage fluid in patients with pulmonary tuberculosis. Int J Tuberc Lung Dis 2:147–152

    PubMed  CAS  Google Scholar 

  188. Reechaipichitkul W, Lulitanond V, Patjanasoontorn B, Boonsawat W, Phunmanee A (2004) Diagnostic yield of adenosine deaminase in bronchoalveolar lavage. Southeast Asian J Trop Med Public Health 35:730–734

    PubMed  CAS  Google Scholar 

  189. Blackburn MR, Kellems RE, Frederick WA (2005) Adenosine deaminase deficiency: metabolic basis of immune deficiency and pulmonary inflammation. Adv Immunol 86:1–41

    PubMed  CAS  Google Scholar 

  190. Dinjens WN, ten Kate J, van der Linden EP, Wijnen JT, Khan PM, Bosman FT (1989) Distribution of adenosine deaminase complexing protein (ADCP) in human tissues. J Histochem Cytochem 37:1869–1875

    PubMed  CAS  Google Scholar 

  191. Dinjens WN, ten Kate J, Wijnen JT, van der Linden EP, Beek CJ, Lenders MH, Khan PM, Bosman FT (1989) Distribution of adenosine deaminase-complexing protein in murine tissues. J Biol Chem 264:19215–19220

    PubMed  CAS  Google Scholar 

  192. Ben-Shooshan I, Kessel A, Ben-Tal N, Cohen-Luria R, Parola AH (2002) On the regulatory role of dipeptidyl peptidase IV (CD26-adenosine deaminase complexing protein) on adenosine deaminase activity. Biochim Biophys Acta 1587:21–30

    PubMed  CAS  Google Scholar 

  193. Wesley UV, Tiwari S, Houghton AN (2004) Role for dipeptidyl peptidase IV in tumor suppression of human non small cell lung carcinoma cells. Int J Cancer 109:855–866

    PubMed  CAS  Google Scholar 

  194. Iwaki-Egawa S, Yamamoto T, Watanabe Y (2006) Human plasma adenosine 2 is secreted by activated monocytes. Biol Chem 387:319–321

    PubMed  CAS  Google Scholar 

  195. van Waeg G, van den Berghe G (1991) Purine catabolism in polymorphonuclear neutrophils. Phorbol myristate acetate-induced accumulation of adenosine owing to inactivation of extracellularly released adenosine deaminase. J Clin Invest 87:305–312

    PubMed  Google Scholar 

  196. Martinez-Valdez H, Cohen A (1988) Coordinate regulation of mRNAs encoding adenosine deaminase, purine nucleoside phosphorylase, and terminal deoxynucleotidyltransferase by phorbol esters in human thymocytes. Proc Natl Acad Sci USA 85:6900–6903

    PubMed  CAS  Google Scholar 

  197. Baldwin SA, Beal PR, Yao SYM, King AE, Cass CE, Young JD (2004) The equilibrative nucleoside transporter family, SLC29. Pflügers Arch Eur J Physiol 447:735–743

    CAS  Google Scholar 

  198. Gray JH, Owen RP, Giacomini KM (2004) The concentrative nucleoside transporter family, SLC28. Pflügers Arch Eur J Physiol 447:728–734

    CAS  Google Scholar 

  199. Griffith DA, Jarvis SM (1996) Nucleoside and nucleobase transport systems of mammalian cells. Biochim Biophys Acta 1286:153–181

    PubMed  CAS  Google Scholar 

  200. Pastor-Anglada M, Errasti-Murugarren E, Aymerich I, Casado FJ (2007) Concentrative nucleoside transporters (CNTs) in epithelia: from absorption to cell signaling. J Physiol Biochem 63:97–110

    PubMed  CAS  Google Scholar 

  201. Molina-Arcas M, Casado FJ, Pastor-Anglada M (2009) Nucleoside transporter proteins. Curr Vasc Pharmacol 7:426–434

    PubMed  CAS  Google Scholar 

  202. Allen-Gipson DS, Jarrell JC, Bailey KL, Robinson JE, Kharbanda KK, Sisson JH, Wyatt TA (2009) Ethanol blocks adenosine uptake via inhibiting the nucleoside transport system in bronchial epithelial cells. Alcohol Clin Exp Res 33:791–798

    PubMed  CAS  Google Scholar 

  203. Kreda SM, Seminario-Vidal L, van Heusden CA, O’Neal W, Jones L, Boucher RC, Lazarowski ER (2010) Receptor-promoted exocytosis of airway epithelial mucin granules containing a spectrum of adenine nucleotides. J Physiol 588:2255–2267

    PubMed  CAS  Google Scholar 

  204. Kishioka C, Okamoto K, Kim J, Rubin BK (2001) Regulation of secretion from mucous and serous cells in the excised ferret trachea. Respir Physiol 126:163–171

    PubMed  CAS  Google Scholar 

  205. Pitkanen OM, Smith D, O’Brodovich H, Otulakowski G (2001) Expression of alpha-, beta-, and gamma-hENaC mRNA in the human nasal, bronchial and distal lung epithelium. Am J Respir Crit Care Med 163:273–276

    PubMed  CAS  Google Scholar 

  206. Kreda SM, Mall M, Mengos A, Rochelle L, Yankaskas JR, Riordan JR, Boucher RC (2005) Characterization of wild-type and deltaF508 cystic fibrosis transmembrane regulator in human respiratory epithelia. Mol Biol Cell 16:2154–2167

    PubMed  CAS  Google Scholar 

  207. Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58:157–170

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryse Picher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Picher, M. (2011). Mechanisms Regulating Airway Nucleotides. In: Picher, M., Boucher, R. (eds) Purinergic Regulation of Respiratory Diseases. Subcellular Biochemistry, vol 55. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1217-1_2

Download citation

Publish with us

Policies and ethics