Skip to main content

Abstract

The soil is home to an enormous diversity of organisms, many of which are beneficial, while a small and equally diverse proportion contains harmful organisms. Legume cropping and husbandry practices impact negatively or positively on diversity. These changes in biodiversity may be quantitative and/or qualitative. Sustainable management of diversity in soils involves an ecosystem approach which encourages the establishment of equilibria between the organisms in the soil. It is evident that the diversity of beneficial organisms in the soil can be harnessed to improve and sustain crop productivity with minimal external inputs. Legumes will continue to play a central role in the supply of plant nutrients and in the establishment of a self-regulating ecosystem which is based on a diverse range of organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Ghany (Hiffaa) S (1998) Physiological, pathological and biochemical comparative studies on Macrophomina phaseolina isolates from different hosts. Menofia J Agric Res 23(4): 885–906

    Article  Google Scholar 

  • Abul-Nasr S, Assem M (1968) Studies on the biological processes of the bean fly, Melanogromyza phaseoli (Tryon) (Diptera: Agromyzidae). Bulletin de societe entomologique de c Egypte Ser Econ 11:151–159

    Google Scholar 

  • Allen DJ, Ampafo JKO, Wortmann CS (1996) Pests, diseases and nutritional disorders of the common bean in Africa. CIAT, Cali, 132 pp

    Google Scholar 

  • Asawalam DO, Osodeke VE, Kamalu OJ, Ugwa IK (1999) Effects of termites on the physical and chemical properties of the acid sandy soils of Southern Nigeria. Commun Soil Sci Plant Anal 30(11–12):1691–1696

    Article  CAS  Google Scholar 

  • Atayese MO, Awotoye OO, Osonubi O, Mulongoy K (1993) Comparison of the influence of hedgerow woody legumes and cassava at the top and base of a hillslope in alley cropping system. Biol Fertil Soils 16:198–204

    Article  Google Scholar 

  • Ayuke FO (2000) Diversity, abundance and function of soil invertebrate fauna in relation in relation to quality of organic residues. M. Phil thesis of Moi University, Eldoret, Kenya.

    Article  Google Scholar 

  • Azcon-Aguillar C, Barea JA (1996) Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6:457–464

    Article  Google Scholar 

  • Bala A (1999) Diversity of rhizobia which nodulates fast growing tree legumes in tropical soils. Ph.D thesis, Department of Biological Sciences, Nye College, University of London

    Google Scholar 

  • Baylis GTS (1970) Root hairs and phycomycetous mycorrhizas in phosphorus-deficient soil. Plant Soil 33: 713

    Google Scholar 

  • Blanchart E, Albretch A, Alegre J, Duboisset A, Gilot C, Pashanasi B, Lavelle P, Brussaard L (1999) Effects of earthworms on soil structure and physical properties. In: Lavelle P, Brussaard L, Hendrix P (eds.) Earthworm management in tropical agroecosystems. CAB International, Wallingford, pp 149–172

    Google Scholar 

  • Brown RH (1987) Control strategies in low-value crops. In: Brown RH, Kerry BR (eds.) Principles and practice of nematode control in crops. Academic, London, pp 351–387

    Google Scholar 

  • Bull AT (1996) Biotechnology for environmental quality: closing the circles. Biodivers Conserv 5:1–25

    Article  Google Scholar 

  • Cadet P, Duponoss R, Sengor K (1996) Relation between nematodes and Acacia spp. A synthesis of preliminary information in Senegal. Agrofor Abstracts 12:2–6

    Google Scholar 

  • Campbell C, Puri G (2002) Soil bio diversity. Information and advisory notes no 51. Scotish natural heritage publication, 6 pp

    Google Scholar 

  • Cardona C, Karel AK (1990) Key insects and other invertebrate pests of beans. In: Singh SR (ed.) Insect pests of tropical food legumes. Wiley, Chichester

    Google Scholar 

  • Chambers CA, Smith SE, Smith FA (1980a) Effects of ammonium and nitrate ions on mycorrhizal infection, nodulation and growth of Trifolium subterraneum. New Phytol 85:47

    Article  CAS  Google Scholar 

  • Chambers CA, Smith SE, Smith FA, Ramsay MD, Nicholas DJD (1980b) Symbiosis of Trifolium subterraneum with mycorrhizal fungi and Rhizobia trifolii as affected by ammonium sulpahte and nitrification inhibitors. Soil Biol Biochem 12:93

    Article  CAS  Google Scholar 

  • CIAT, Centro Internacional De Agricultura Tropical (1994) Field pests of beans in Africa: study guide to be used as a supplement to the audiotutorial unit on the same topic. Scientific content: Kwasi Ampofo production: Carmen Llanos, Alexandra Walter, CIAT, Cali, 48 p

    Google Scholar 

  • Desaeger J, Rao MR (1999) The root-knot nematode (Meloidogyne spp.) problem in sesbania fallows and scope for managing it in western Kenya. Agrofor Sys 47:273–278

    Article  Google Scholar 

  • Deseager J, Rao MR (2000) Parasitic nematode populations in natural fallows and improved cover crops and their effects on subsequent crops in Kenya. Field Crop Res 65:41–56

    Article  Google Scholar 

  • Frazer NL (1999) One stop mycology. Mycological Research 103, pp 372–384

    Article  Google Scholar 

  • Francis R, Finlay RD, Read DJ (1986) Vesicular-arbuscular mycorrhiza in natural vegetation systems. IV. Transfer of nutrients in inter- and -intra-specific combinations of host plants. New Phytol 102:103–111

    Article  Google Scholar 

  • Galiana A, Grahousa GM, Chaumont J, Lesueur D, Prin Y, Mallet B (1998) Improvement of nitrogen fixation in Acacia mangium through inoculation with Rhizobium. Agrofor Syst 40:297–307

    Google Scholar 

  • Gouws J, Visset JH, Grobbelaar WP (1980) Some aspects of the bidirectional translocation of 14C-labelled metabolites between Alectra vogelii Benth. and Voandzeia subterranea (L.) Thou. Zeitschrift fiir Pfianzen-physiologie 99:225–33

    Google Scholar 

  • Graves JD, Press MC, Smith S, Stewart GR (1992) The carbon canopy economy of the association between cowpea and the parasitic angiosperm Striga gesnerioides. Plant Cell Environ 15:283–8

    Article  Google Scholar 

  • Guardarrama P, Sanchez AFJ (1999) Abundance of arbascular mycorrhizal spores in different environment in a tropical rain forest, Veracruz, Mexico. Mycorrhiza 8:267–270

    Article  Google Scholar 

  • Hamel C, Dalpe Y, Furlan V (1997) Indigenous populations of arbuscular mycorrhizal fungi and soil aggregate stability are major determinants of leek (Allium porrum L) response to inoculation with Glomus intraradices Schenck & Smith or Glomus versiforme (Karsten) Berch. Mycorrhiza 7(4):187–196

    Article  Google Scholar 

  • Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, London

    Google Scholar 

  • Haware MP (1990) Fusarium wilt and other important diseases of chickenpea in the Mediterranean area. OptionsM’editerran’eennes. S’erie S’eminaires 9:63–166

    Google Scholar 

  • Hawksworth DI (1991) The biodiversity of microorganisms and invertebrates: its role in sustainable agriculture. CAB International, Wallingford

    Google Scholar 

  • Haystead A, Malajczuk N, Grove TS (1988) Underground transfer of nitrogen between pasture plants infected with vesicular-arbuscular mycorrhizal fungi. New Phytol 108:417–423

    Article  Google Scholar 

  • Heywood VH (1995) Global biodiversity assessment. Cambridge University Press, Cambridge

    Google Scholar 

  • Hildebrandt U, Kaldorf M, Bothe H (1999) The zinc violet and its colonization by arbuscular mycorrhizal fungi. J Plant Physiol 154:709–717

    CAS  Google Scholar 

  • Howeler RH (1985) Potassium nutrition of cassava. In: Munson RD (ed.) Potassium in agriculrure. American Society of Agronomy, Madison, pp 819–841

    Google Scholar 

  • Iqbal MJ, Yaegashi S, Ahsan R, Shopinski KL, Lightfoot DA (2005). Root response to Fusarium solani f. sp. glycines: temporal accumulation of transcripts in partially resistant and susceptible soybean. Theor Appl Genet 110:1429–1438

    Google Scholar 

  • Jackai LEN, Dashiell KE, Shannon DA, Root WR (1985) Soybean production and utilization in subsaharan Africa. In: Shibles R (ed.) World soybean research conference III. Westview Press, Boulder, pp 1193–1202

    Google Scholar 

  • Jackai LEN, Panizzi AR, Kundu GG, Srivastava KP (1990) Insect pest of soybean in the tropics. In: Singh SR (ed.) Insect pests of tropical food legumes. Wiley, Chichester, pp 91–156

    Google Scholar 

  • Kandji ST, Ogol CKPO, Albrecht A (2001) Diversity of plant-parasitic nematodes and their relationships with some soil physico-chemical characteristics in improved fallows in western Kenya. Appl Soil Ecol 18(2):143–157

    Article  Google Scholar 

  • Kang BT, Caveness FE, Tian G, Kolawale GO (1999) Long term alley cropping with four hedgerow species on an alfisol in S.W. Nigeria. Effect on crop performance, soil chemical properties and nematode populations. Nutr Cycl Agroecosyst 54:145–155

    Article  Google Scholar 

  • Kannaiyan J, Nene YL, Raju TN, Sheila VK (1981) Screening for resistance to Phytophthora blight of pigeon pea. Plant Disease 65:61–62

    Article  Google Scholar 

  • Kawai Y, Yamamoto Y (1986) Increase in the formation and nitrogen fixation of soybean nodules by vescicular-arbuscular mycorrhiza. Plant Cell Physiol 27:399–405

    CAS  Google Scholar 

  • Kibani TH, Msabaha RP (1995) Studies on the effect of crop rotation on nematode and Fusarium wilt of cotton. Research and training newsletter, Dar es Salaam 10:1–4, 19–21

    Google Scholar 

  • Kiprop EK (2001) Characterization of Fusarium udum Butler isolates and pigeonpea (Cajanus cajan (L) Millsp.) resistance in Kenya. PhD thesis. University of Nairobi, Nairobi, p 235

    Google Scholar 

  • Kimenju JW, Karanja NK, Macharia I (1999) Plant parasitic nematodes associated with common bean in Kenya and the effect of Melodogyne infection on bean nodulation. Afr Crop Sci J 7(4):503–510

    Google Scholar 

  • Kloepper JW, Rodriguez-Kabana R, McInvoy JA, Young RA (1992) Rhizosphere bacteria antagonistic to soybean cyst (Heterodera glycines) and root-knot (Meloidogyne incognita) nematodes: identification by fatty acid analysis and frequency of biological control activity. Plant Soil 139:75–84

    Article  CAS  Google Scholar 

  • Lal R (1988) Effects of macrofauna on soil properties in tropical agroecosystems. Agric Ecosyst Environ 24:101–116

    Article  Google Scholar 

  • Lateef SS, Reed W (1990) Insect pests on pigeon pea. In: Singh SR (ed.) Insect pests of tropical food legumes. Wiley, Chichester

    Google Scholar 

  • Li X, George E, Marschner H (1991) Phosphorus depletion and Ph decrease at the root-soil and hyphae-soil interfaces of VA mycorrhizal white clover fertilized with ammonium. New Phytol 119:397–404

    Article  CAS  Google Scholar 

  • Mando A, Stroosnijder L, Brussaard L (1996) Effects of termites on infiltration into crusted soil. Geoderma 74:107–113

    Article  Google Scholar 

  • McSorley R, Dickson DW, Brito JA (1994) Host status of selected tropical rotation crops to four populations of root-knot nematodes. Nematropica 24:45–53

    Google Scholar 

  • Moura RM, Moura AM, Macedo MEA, Sylva EG (1997) Influence of three crop combinations in nematode populations associated with sugar cane. Nematropica-Brasileira 21:75–83

    Google Scholar 

  • Muriungi SJ (1997) Bean root rot complex, its management by microbial agents and plant resistance. MSc thesis, University of Nairobi, Kenya

    Google Scholar 

  • Musselman LJ, Parker C (1981) Studies on indigo witchweed, the American strain of Striga gesnerioides (Scrophulariaceae). Weed Sci 29:594–6

    Google Scholar 

  • Nzungize J, Gepts P, Buruchara R, Male A, Ragama P, Busogoro JP, Baudoin JP (2011) Introgression of Pythium root rot resistance gene into Rwandan susceptible common bean cultivars. African J Plant Sci vol. 5(3):193–200

    Google Scholar 

  • Ocampo JA, Martini J, Hayman DS (1980) Influence of plant interactions on vesicular-arbuscular mycorrhizal infection. I. Host and non-host plants grown together. New Phytol 84: 27

    Article  CAS  Google Scholar 

  • Odee DW, Haukka K, McInroy SG, Sprent JI, Sutherland JM, Young JPW (2002) Genetic and symbiotic characterization of rhizobia isolated from tree and herbaceous legumes grown in soils from ecologically diverse sites in Kenya. Soil Biol Biochem 34:801–811

    Article  CAS  Google Scholar 

  • Odee DW, Sutherland JM, Makatiani ET, McInroy SG, Sprent JI (1997) Phenotypic characteristics and composition of rhizobia associated with woody legumes growing in diverse Kenyan conditions. Plant Soil 188:56–75

    Article  Google Scholar 

  • Osonubi O, Atayese MO, Mulongoy K (1995) The effect of vesicular-arbuscular mycorrhizal inoculation on nutrient uptake and yield of alley-cropped cassava in degraded Alfisol of Southwestern Nigeria. Biol Fertil Soils 20:70–76

    Article  Google Scholar 

  • Osonubi O, Bakare N, Mulongoy K (1992) Interaction between drought stress and vesicular-arbuscular mycorrhiza on the growth of Faidherbia albida (syn. Acacia albida) and Acacia nilotica in sterile and non-sterile soil. Biol Fertil Soils 14:159–165

    Article  Google Scholar 

  • Parker C (1991) Protection of crops against parasitic weeds. Crop Prot 10:6–22

    Article  CAS  Google Scholar 

  • Ponte JJ, Franco A, Leal DB (1992) New host plants of root-knot nematodes. Nematropica 5:21–23

    Google Scholar 

  • Power ME, Mills LS (1995) The keystone cops meet in Hilo. Tree 10:182–184

    PubMed  CAS  Google Scholar 

  • Punja ZK (1988) Sclerotium (Athelia) rolfsii a pathogen of many plant species. In: Sidhu GS (ed.) Advances in Plant Pathology. Vol. 6, Genetics of Plant Pathogenic Fungi, pp 523–534. Academic Press, London

    Google Scholar 

  • Reddell P, Warren P (1986) Inoculation of acacias with mycorrhizal fungi: potential benefits. In: Turnbull JW (ed.) Australian acacias in developing countries, ACIAR proceedings No. 16. Brown Prior Anderson Press, Victoria, pp 50–53

    Google Scholar 

  • Riches CR, Hamilton KA, Parker C (1992) Parasitism of grain legumes by Alectra species. Ann Appl Biol 121:361–70

    Article  Google Scholar 

  • Rusuku G, Buruchara RA, Gatabazi M, Pastor-Corrales MA (1997) Occurrence and distribution in Rwanda of soilborne fungi pathogenic to the common bean. Plant Dis 81:445–449

    Article  Google Scholar 

  • Salina PJ (1976) Presencia de Elasmopalpus lignosellus (Zeller) (Lepidoptera: Pyralidae) en los Andes venezolanos. Agron Trop 26:71–76

    Google Scholar 

  • Samba RT, Lajudie P, Gillis M, Neyra M, Barelto MMS, Dreyfus B (1999) Diversity of rhizobia nodulating Crotalaria spp. from Senegal. Symbiosis 27:259–268

    Google Scholar 

  • Sanginga N, Mulongoy K, Swift MJ (1992) Contribution of soil organisms to the sustainability and productivity cropping systems in the tropics. Agric Ecosyst Environ 41:135–152

    Article  Google Scholar 

  • Santos JHR, Quindere MAW (1988) Biological importance and management of Brazillian cowpea pests. In: Watt EE, Araujo JPP (eds.) Cowpea research in Brazil. IITA/EMBRAPA, Brasilia, pp 267–300

    Google Scholar 

  • Sarr M, Agbogba C, Russell-Smith A, Masse D (2001) Effect of soil faunal activity and woody shrubs on water infiltration rates in a semi-arid fallow of Senegal. Appl Soil Ecol 16:283–290

    Article  Google Scholar 

  • Sauerborn J (1991) Parasitic flowering plants: ecology and management. Verlag joseph Margraf, Weikersheim, 127 p

    Google Scholar 

  • Shepherd KD, Jefwa J, Wilson J, Ndufa J, Ingleby K, Mbuthia KW (1996) Infection potential of farm soils as mycorrhizal inocula for Leucaena leucocephala. Biol Fertil Soils 22:16–21

    Article  Google Scholar 

  • Sieverding E (1991) Vesicular-arbuscular mycorrhiza management in tropical agro systems. German Technical cooperation (GTZ), Eschborn

    Google Scholar 

  • Singh SR, Jackai LEN, dos Santos JHR, Adalla CB (1990) Insect pests of cowpea. In: Singh SR (ed.) Insect pests of tropical food legumes. Wiley, Chichester, pp 43–90

    Google Scholar 

  • Sithanantham S, Kumar Rao JVDK, Reed W, Dart PJ (1981) Studies on nodule damage in pigeon pea. In: ICRISAT, proceedings of the international workshop on pigeon peas, vol 2. ICRISAT, Patancheru, 15–19 Dec 1980, pp 329–335

    Google Scholar 

  • Stribley DP, Tinker PB, Snellgrove RC (1980) Effect of vesicular-arbuscular mycorrhizal fungi on the relations of plant growth, internal phosphorus concentration and soil phosphate analyses. J Soil Sci 31:655–672

    Article  CAS  Google Scholar 

  • Swelim DM, Hashem FM, Kuykendall LD, Hegazi NI, Wahab SMA (1997) Host specificity and phenotypic diversity of Rhizobium strains nodulating Leuceana, Acacia and Sesbania in Egypt. Biol Fertil Soils 25:224–232

    Article  Google Scholar 

  • Sy A et al (2001) Methylotrophic Methylobacterium nodulate and fix nitrogen in symbiosis with legumes. J Bacteriol 183:214–220

    Article  PubMed  CAS  Google Scholar 

  • Talekar NA (1987) Insects damaging soybean in Asia for the tropics, research production and utilization. Wiley, Chichester, pp 25–45

    Google Scholar 

  • Tian G, Olimah JA, Adeoye GO, Kang BT (2000) Regeneration of earthworm populations in a degraded soil by natural and planted fallows under humid tropical conditions. Soil Sci Soc Am J 64:224–228

    Article  Google Scholar 

  • Tomlison H, Taklehaimanot Z, Traore A, Olapade E (1995) Soil amelioration and root symbioses of Parkia biglobosa (Jacq) Benth. in West Africa. Agrofor Syst 19:241–252

    Article  Google Scholar 

  • UNEP (2001) Soil biodiversity and sustainable agriculture. Paper submitted by the Food and Agriculture Organization of the United Nations to the subsidiary body on scientific, technical and technological advice seventh meeting Montreal, 12–16 Nov 2001

    Google Scholar 

  • van der Heijden MAG, Klironomos JN, Ursic M, Moufoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR (1998) Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396:69–72

    Google Scholar 

  • Vincente NE, Acosta N, Schroder EC (1986) Reaction of Leucaena leucocephala to populations of Meloidogyne incognita and M. javanica from Puerto Rico. J Agric Univ Puerto Rico 70:157–158

    Google Scholar 

  • Vogt W, Sauerborn J, Honisch M (1991) Striga hermonthica distribution and infestation in Ghana and Togo on grain crops. In: Ransom JK, Musselman LJ, Worsham AD, Parker C (eds.) Proceedings of the 5th international symposium of parasitic weeds. CIMMYT, Nairobi, pp 373–377

    Google Scholar 

  • Weaving AJS (1980) Observations of Hilda patruelis Stal. (Homoptera: Tettigometridae) and its infestation of the groundnut crop in Rhodesia. J Entomol Soc S Afr 43:151–167

    Google Scholar 

  • Whittingham J, Read DJ (1982) Vesicular-arbuscular mycorrhiza in natural vegetation systems. III Nutrient transfer between plants with mycorrhizal interconnections. New Phytol 90:277–284

    Article  CAS  Google Scholar 

  • Wightman JA (1989) The contribution of insects to low groundnuts yields in Southern Africa. In: ICRISAT, proceedings of the third regional groundnut workshop in Southern Africa, Lilongwe, Malawi, March 1988. ICRISAT, Patancheru

    Google Scholar 

  • Wightman JA, Dick KM, Ranga Rao GV, Shanower TG, Gold CG (1990) Pests of groundnut in the semi arid tropics. In: Singh SR (ed.) Insect pests of tropical food legumes. Wiley, Chichester, pp 243–322

    Google Scholar 

  • Woomer PL, Karanja NK, Mekki EI, Mwakolombe B, Tembo H, Nyika M, Silver M, Nkwiine C, Ndakidemi P, Msumali G (1997) Indigenous populations of rhizobia, legume response to inoculation and farmer awareness of inoculants in East and Southern Africa. African crop science conference proceedings, vol 3, pp 297–308

    Google Scholar 

  • Yuen PM (1979) Nematodes associated with Theobroma cacao. Malaysian Agricultural Resource and Development Institute (MARDI). Malaysian Res Bull 7:54–58

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. K. Karanja .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Karanja, N.K., Kimenju, J.M., Esilaba, A.O., Jefwa, J., Ayuke, F. (2011). Legume Based Cropping and Soil Biodiversity Dynamics. In: Bationo, A., Waswa, B., Okeyo, J., Maina, F., Kihara, J., Mokwunye, U. (eds) Fighting Poverty in Sub-Saharan Africa: The Multiple Roles of Legumes in Integrated Soil Fertility Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1536-3_4

Download citation

Publish with us

Policies and ethics