Skip to main content

Introduction to Ion Exchange Processes

  • Chapter
  • First Online:
Ion Exchange Technology I

Abstract

Ion exchange technology remains the workhorse of various chemical, petrochemical, food, power, and pharmaceutical industries. The success of ion exchange process depends literally on understanding of its basic principles and applying them in a way suiting the nature of the treated feed. This chapter reviews the basic fundamentals and key components of ion exchange process taking into consideration the latest progress taking place in the field. The variation in the ion exchange materials, their nature, forms, and functions are reviewed. The kinetics, sorption equilibrium, operating modes, and engineering configurations for ion exchange processes are also discussed. A brief encounter for the various applications utilizing ion exchange processes is also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dardel F, Arden TV (2005) Ion exchangers. In: Ullmann F, Gerhartz W, Yamamoto YS, Campbell FT, Pfefferkorn R, Rounsaville JF (eds) Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH/GmbH & Co. KGaA, Weinheim

    Google Scholar 

  2. Badawy SM (2003) Uranium isotope enrichment by complexation with chelating polymer adsorbent. Radiat Phys Chem 66:67–71

    Article  CAS  Google Scholar 

  3. Harland CE (1994) Ion exchange: theory and practice. Royal Society of Chemistry, Cambridge

    Google Scholar 

  4. Zagorondni AA (2006) Ion exchange materials: properties and application. Elsevier, Amsterdam

    Google Scholar 

  5. Thompson HS (1850) On the absorbent power of soils. Roy Agric Soc Engl 11:68–74

    Google Scholar 

  6. Way JT (1850) On the power of soils to absorb manure. J Roy Agric Soc Engl 11:68–74

    Google Scholar 

  7. Gans R (1905) Zeolithe und ahnliche Verbindungen, ihre Konstitution und Bedeutung fiir Technik und Landwiertschafi. Jahrb Preuss Geol Landesandstadt 26:179–21

    Google Scholar 

  8. Liebknecht O (1940) Carbonaceous zeolite and the preparation thereof. US Patent 2,191,060

    Google Scholar 

  9. Smith P (1940) Manufacture of absorbent and ion exchanging materials. US Patent 2,191,063

    Google Scholar 

  10. Adams BA, Holmes EL (1935) Absorptive properties of synthetic resins. Part I. J Soc Chem Ind 54:1T–9T

    Article  Google Scholar 

  11. D’ Alelio GF (1944) Production of synthetic polymeric compositions comprising sulphonated polymerizates of poly-vinyl aryl compounds and treatment of liquid media therewith. US Patent 2,366,007

    Google Scholar 

  12. D’ Alelio GF (1944) Production of synthetic polymeric compositions comprising aminated polymerizates of poly-vinyl aryl compounds and treatment of liquid media therewith. US Patent 2,366,008

    Google Scholar 

  13. McBurney CH (1952) Resinous insoluble reaction products of tertiary amines with haloalkylated vinyl aromatic hydrocarbon copolymers. US Patent 2,591,573

    Google Scholar 

  14. Michaelis L (1926) Die Permeabilitate von Membranen. Nutunvissen schuften 14:33–42

    Article  Google Scholar 

  15. Meyer KH, Sievers JF (1936) La permeabilite des membranes I. Theorie de la permeabilite ionique. Helv Chim Acta 19:649–665

    Article  CAS  Google Scholar 

  16. Juda W, McRae WA (1950) Coherent ion-exchange gels and membranes. J Am Chem Soc 72:1044–1053

    Google Scholar 

  17. Grubb WT (1959) Fuel cell. US Patent 2,913,511

    Google Scholar 

  18. Mauritz KA, Moore RB (2004) State of understanding of nafion. Chem Rev 104:4535–4585

    Article  CAS  Google Scholar 

  19. Nasef MM (2008) In separation and purification. In: Battacharya A, Rawlins JW, Ray P (eds) Grafting and crosslinking of polymers. Wiley, New Jersey

    Google Scholar 

  20. Helfferich F (1995) Ion exchange. General Publishing Company, Toronto

    Google Scholar 

  21. De Silva F (1999) Essentials of ion exchange. In: An article presented at the 25th annual WQA conference. Lisle, USA

    Google Scholar 

  22. Garg BS, Sharma RK, Bhojak N, Mittal S (1999) Chelating resins and their applications in the analysis of trace metal ions. Microchem J 61:94–114

    Article  CAS  Google Scholar 

  23. Goto A, Kusakabe K, Morooka S, Kago T (1993) A test of uranium recovery from seawater with a packed bed of amidoxime fiber adsorbent. Sep Sci Technol 28:1273–1285

    Article  Google Scholar 

  24. Egawa H, Kabay N, Jyo A, Hirono M, Shuto T (1994) Recovery of uranium from seawater I. Development of amidoxime resins with high sedimentation velocity for passively driver fluidized bed adsorbers. Ind Eng Chem Res 33:657–661

    Article  CAS  Google Scholar 

  25. Das S, Pandey AK, Athawale A, Kumar V, Bhardwaj YK, Sabharwal S, Manchanda VK (2008) Chemical aspects of uranium recovery from seawater by amidoximated electron-beam-grafted polypropylene membranes. Desalination 232:243–253

    Article  CAS  Google Scholar 

  26. Nilchi A, Rafiee R, Babalou AA (2008) Adsorption behavior of metal ions by amidoxime chelating resins. Macromol Symp 274:101–108

    Article  CAS  Google Scholar 

  27. Agrawal A, Sahu KK (2006) Separation and recovery of lead from a mixture of some heavy metals using Amberlite IRC 718 chelating resin. J Hazard Mater 133:299–303

    Article  CAS  Google Scholar 

  28. Janin A, Blais J-F, Mercier G, Drogu P (2009) Selective recovery of Cr and Cu in leachate from chromated copper arsenate treated wood using chelating and acidic ion exchange resins. J Hazard Mater 169:1099–1105

    Article  CAS  Google Scholar 

  29. Hubicki Z, Wołowicz A (2009) A comparative study of chelating and cationic ion exchange resins for the removal of palladium(II) complexes from acidic chloride media. J Hazard Mater 164:1414–1419

    Article  CAS  Google Scholar 

  30. Kantipuly C, Katragadda S, Chow A, Gesser HD (1990) Chelating polymers and related supports for separation and preconcentration of trace metals. Talanta 37:491–517

    Article  CAS  Google Scholar 

  31. Chen CY, Chiang CL, Huang PC (2006) Absorptions of heavy metal ions by a magnetic chelating resin containing hydroxyl and iminodiacetate groups. Sep Purif Technol 50:15–21

    Article  CAS  Google Scholar 

  32. Crini G (2005) Recent developments in polysaccharide-based materials used as adsorbents in waste water treatment. Prog Polym Sci 30:38–70

    Article  CAS  Google Scholar 

  33. Bolto B, Gregory J (2007) Organic polyelectrolytes in water treatment. Water Res 41:2301–2324

    Article  CAS  Google Scholar 

  34. Casey JT, O’Cleirigh C, Walsh PK, O’ Shea DG (2004) Development of a robust microtiter plate-based assay method for assessment of bioactivity. J Microbiol Methods 58:327–334

    Article  CAS  Google Scholar 

  35. Guo W, Ruckenstein E (2003) Cross-linked glass fiber affinity membrane chromatography and its application to fibronectin separation. J Chromatogr B 795:61–72

    Article  CAS  Google Scholar 

  36. Gordon NF, Moore CMV, Cooney CL (1990) An overview of continuous protein purification processes. Biotechnol Adv 8:471–762

    Article  Google Scholar 

  37. Voser W (1982) Isolation of hydrophilic fermentation products by adsorption chromatography. J Chem Technol Biotechnol 32:109–118

    Article  CAS  Google Scholar 

  38. Tadashi A, Isobe E (2004) Fundamental characteristics of synthetic adsorbents intended for industrial chromatographic separations. J Chromatogr 1063:33–44

    Google Scholar 

  39. Leonard M (1997) New packing materials for protein chromatography. J Chromatogr B 699:3–27

    Article  CAS  Google Scholar 

  40. Kawai T, Saito K, Lee W (2003) Protein binding to polymer brush, based on ion-exchange, hydrophobic, and affinity interactions. J Chromatogr B 790:131–142

    Article  CAS  Google Scholar 

  41. Banki MR, Wood DW (2005) Inteins and affinity resin substitutes for protein purification and scale up. Microb Cell Factor 4:32–38

    Article  Google Scholar 

  42. Hess M, Jones RG, Kahovec J, Kitayama T, Kratochvíl P, Kubisa P, Mormann W, Stepto RFT, Tabak D, Vohlídal J, Wilks ES (2006) Terminology of polymers containing ionizable or ionic groups and of polymers containing. Pure Appl Chem 78:2067–2074

    Article  CAS  Google Scholar 

  43. Neagu V, Vasiliu S, Racovita S (2010) Adsorption studies of some inorganic and organic salts on new zwitterionic ion exchangers with carboxybetaine moieties. Chem Eng J 162:965–973

    Article  CAS  Google Scholar 

  44. Knaebel KS, Cobb DD, Shih TT, Pigford RL (1979) Ion-exchange rates in bifunctional resins. Ind Eng Chem Fundam 18:175–180

    Article  CAS  Google Scholar 

  45. Warshawsky P (1982) Selective ion exchange polymers. Die Angew Makromolekul Chemie 10:171–196

    Article  Google Scholar 

  46. Bernahl WE, Rossow CE (2002) Current trends in ion exchange operations-what the resins are telling us. In: Proceedings of the 63rd annual international water conference, Pittsburgh, 20–24 Oct 2002

    Google Scholar 

  47. Biswas M, Packirisamy S (1985) Synthetic ion-exchange resins. Adv Polym Sci 70:71–118

    Article  CAS  Google Scholar 

  48. Kabay N, Yilmaz I, Bryjak M, Yüksel M (2004) Removal and recovery of boron from geothermal wastewater by selective ion-exchange resins- field tests. Desalination 167:427–438

    Article  CAS  Google Scholar 

  49. Wang L, Qi T, Zhang Y (2006) Synthesis of novel chelating adsorbents for boron uptake from aqueous solutions. Chinese J Process Eng 6:375–379

    CAS  Google Scholar 

  50. Liu H, Ye X, Li Q, Kim T, Qing B, Guo M, Ge F, Wu Z, Lee K (2009) Boron adsorption using a new boron-selective hybrid gel and the commercial resin D564. Colloids Surf A Physicochem Eng Asp 341:118–126

    Article  CAS  Google Scholar 

  51. Vernon F, Shah T (1983) The extraction of uranium from seawater by poly(amidoxime)/poly(hydroxamic acid) resins and fiber. React Polym Ion Exch Sorb 1:301–308

    Article  CAS  Google Scholar 

  52. Seko N, Katakai A, Tamada M, Sugo T, Yoshii F (2004) Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater. Sep Sci Technol 39:3753–3767

    Article  CAS  Google Scholar 

  53. Pal S, Satpati SK, Hareendran KN, Kumar SA, Thalor KL, Roy SB, Tewari PK (2010) Recovery and pre-concentration of uranium from secondary effluent using novel resin. Int J Nucl Desalination 4:28–36

    CAS  Google Scholar 

  54. Alexandratos SD (2009) Ion-exchange resins: a retrospective from industrial and engineering chemistry research. Ind Eng Chem Res 48:388–398

    Article  CAS  Google Scholar 

  55. Nasef MM, Saidi H, Nor HM (1999) Radiation-induced graft copolymerization for preparation of cation exchange membranes: a review. J Nucl Sci Malaysia 1:39–54

    Google Scholar 

  56. Sata T (2004) Ion exchange membranes: preparation, characterization, modification and application. The Royal Society of Chemistry, Cambridge

    Google Scholar 

  57. Hideo K, Tsuzura K, Shimizu H (1991) Ion exchange membranes. In: Dorfner K (ed) Ion exchangers. Walter de Gruyter Berlin, New York

    Google Scholar 

  58. Strathmann H (1995) Electrodialysis and related processes. In: Nobe RD, Stern SA (eds) Membrane separation technology-principles and applications. Elesevier Science B.V, Amsterdam/The Netherlands

    Google Scholar 

  59. Nasef MM, Hegazy EA (2004) Ion exchange membranes by radiation induced graft copolymerization of polar monomers onto non-polar films: preparations and applications. Prog Polym Sci 29:499–561

    Article  CAS  Google Scholar 

  60. Nagarale RK, Gohil GS, Shahi VK (2006) Recent developments on ion-exchange membranes and electro-membrane processes. Adv Colloid Interface Sci 119:97–130

    Article  CAS  Google Scholar 

  61. Yaroslavtsev AB, Nikonenko VV (2009) Ion-exchange membrane materials: properties, modification, and practical application. Nanotechnol in Russia 4:137–159

    Article  Google Scholar 

  62. Klein E (2000) Affinity membranes: a 10 year review. J Membr Sci 179:1–27

    Google Scholar 

  63. Zou H, Lou Q, Zhou D (2001) Affinity membrane chromatography for the analysis and purification of proteins. J Biochem Biophys Methods 49:199–240

    Article  CAS  Google Scholar 

  64. Ruckenstei E, Guo W (2004) Cellulose and glass fiber affinity membranes for the chromatographic separation of biomolecules. Biotechnol Prog 20:13–25

    Article  Google Scholar 

  65. Strathmann H (2004) Ion-exchange membrane separation processes. Elsevier, Amsterdam

    Google Scholar 

  66. Nasef MM, Saidi H, Ujang Z (2007) Ion exchange technology for water and wastewater treatment: principles and progress in materials development. In: Manan ZA, Nasef MM, Setapar SHM (eds) Advances in separation processes. UTM press, Johor

    Google Scholar 

  67. Xu T (2005) Ion exchange membranes: state of the development and their perspective. J Membr Sci 263:1–29

    Article  CAS  Google Scholar 

  68. Kariduraganavar MY, Nagarale RK, Kittur AA, Kulkarni SS (2006) Ion-exchange membranes preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–246

    Article  CAS  Google Scholar 

  69. Tanaka Y (2007) Ion exchange membranes: fundamentals and applications. Elsevier, Amsterdam/The Netherlands

    Google Scholar 

  70. Wheaton RM, Lefevre LJ (1981) Ion exchange. In: Kir-Othmer (ed) Encyclopedia of chemical technology, vol 13, 3rd edn. Wiley, New York

    Google Scholar 

  71. Seko N, Tamada M (2005) Current status of adsorbent for metal ions with radiation grafting and crosslinking techniques. Nucl Instr Meth B 236:21–29

    Article  CAS  Google Scholar 

  72. Seko N, Bang LT, Tamada M (2007) Syntheses of amine-type adsorbents with emulsion graft polymerization of glycidyl methacrylate. Nucl Instr Meth B 265:146–149

    Article  CAS  Google Scholar 

  73. Li Y-S, Dong Y-L (2004) Determination of anion-exchange resin performance based on facile chloride-ion monitoring by FIA-spectrophotometry with applications to water treatment operation. Anal Sci 20:831–835

    Article  CAS  Google Scholar 

  74. Nasef MM, Saidi H, Ujang Z, Dahlan KZM (2011) Adsorption of Co(II), Cu(II), Ni(II), Pb(II) and Ag(I) ions from aqueous solutions using crosslinked polyethylene-graft-polystyrene sulfonic acid membrane prepared by radiation grafting. J Chil Chem Soc 55:421–427

    Article  Google Scholar 

  75. Baker R (2004) Membrane technology and applications. Wiley, Chichester

    Book  Google Scholar 

  76. Tamada M (2009) In: 2nd RCM meeting on development of novel adsorbents and membranes by radiation grafting for environmental and industrial applications, International Atomic Energy Agency, Aargau

    Google Scholar 

Download references

Acknowledgment

The authors wish to acknowledge the financial support by the Malaysian Ministry of Science, Technology and Innovation (MOSTI) under the Science Fund program (vote # 79283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Mahmoud Nasef .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Nasef, M.M., Ujang, Z. (2012). Introduction to Ion Exchange Processes. In: Dr., I., Luqman, M. (eds) Ion Exchange Technology I. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1700-8_1

Download citation

Publish with us

Policies and ethics