Skip to main content

The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments

  • Chapter
  • First Online:
Anoxia

Abstract

While many multicellular anaerobes possess mitochondria that resemble those of aerobic eukaryotes, microbial eukaryotes that live exclusively in anoxic and low oxygen environments harbor mitochondrion-related organelles (MROs). Currently, these organelles are broadly classified as either hydrogenosomes (anaerobic ATP-producing organelles that produce molecular hydrogen) or mitosomes (organelles that do not generate ATP); however, ongoing studies of diverse microbial lineages are revealing a wider spectrum of functional types. In adaptation to low oxygen conditions, the MROs of anaerobic eukaryotes have acquired unique characteristics, some of which do not appear to derive from the α-proteobacterium that gave rise to the ancestral mitochondrion. These characteristics include alternative pathways for pyruvate metabolism as well as enzymes such as [FeFe]-hydrogenases that collectively function in anaerobic energy metabolism. In addition to these pathways, the mitochondrial protein import, metabolic exchange, and Fe–S cluster biosynthesis machineries are present in all MROs studied to date; these systems support the protein, solute, and energy requirements of both the organelles and the cells that harbor them. MROs represent a unique class of organelles that have successfully adapted by reduction or alteration of existing pathways as well as by acquisition of novel metabolic machineries that allowed their hosts to thrive in diverse environments without oxygen.

These authors contributed equally in this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304(5669):441–445

    Article  PubMed  CAS  Google Scholar 

  • Akhmanova A, Voncken FG, Hosea KM, Harhangi H, Keltjens JT, op den Camp HJ, Vogels GD, Hackstein JH (1999) A hydrogenosome with pyruvate formate-lyase: anaerobic chytrid fungi use an alternative route for pyruvate catabolism. Mol Microbiol 32(5):1103–1114

    Article  PubMed  CAS  Google Scholar 

  • Ali V, Shigeta Y, Tokumoto U, Takahashi Y, Nozaki T (2004) An intestinal parasitic protist, Entamoeba histolytica, possesses a non-redundant nitrogen fixation-like system for iron-sulfur cluster assembly under anaerobic conditions. J Biol Chem 279(16):16863–16874

    Article  PubMed  CAS  Google Scholar 

  • Arco AD, Satrustegui J (2005) New mitochondrial carriers: an overview. Cell Mol Life Sci 62(19–20):2204–2227

    Article  PubMed  CAS  Google Scholar 

  • Atteia A, van Lis R, Gelius-Dietrich G, Adrait A, Garin J, Joyard J, Rolland N, Martin W (2006) Pyruvate formate-lyase and a novel route of eu-karyotic ATP synthesis in Chlamydomonas mitochondria. J Biol Chem 281(15):9909–9918

    Article  PubMed  CAS  Google Scholar 

  • Barbera MJ, Ruiz-Trillo I, TJY A, Bery A, Silberman JD, Roger AJ (2010) Sawyeria marylandensis (Hetetolobosea) has a hydrogensome with novel metabolic properties. Eukaryot Cell 9(12):1913–1924

    Article  PubMed  CAS  Google Scholar 

  • Beinert H, Kiley PJ (1999) Fe-S proteins in sensing and regulatory functions. Curr Opin Chem Biol 3(2):152–157

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, Voncken F, Jannink S, van Alen T, Akhmanova A, van Weelden SW, van Hellemond JJ, Ricard G, Huynen M, Tielens AG, Hackstein JH (2004) The anaerobic chytridiomycete fungus Piromyces sp. E2 produces ethanol via pyruvate:formate lyase and an alcohol dehydrogenase E. Mol Microbiol 51(5):1389–1399

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, de Graaf RM, van der Staay GW, van Alen TA, Ricard G, Gabaldon T, van Hoek AH, Moon-van der Staay SY, Koopman WJ, van Hellemond JJ, Tielens AG, Friedrich T, Veenhuis M, Huynen MA, Hackstein JH (2005) An anaerobic mitochondrion that produces hydrogen. Nature 434(7029):74–79

    Article  PubMed  CAS  Google Scholar 

  • Boxma B, Ricard G, van Hoek AH, Severing E, Moon-van der Staay SY, van der Staay GW, van Alen TA, de Graaf RM, Cremers G, Kwantes M, McEwan NR, Newbold CJ, Jouany JP, Michalowski T, Pristas P, Huynen MA, Hackstein JH (2007) The [FeFe] hydrogenase of Nyctotherus ovalis has a chimeric origin. BMC Evol Biol 7:230

    Article  PubMed  CAS  Google Scholar 

  • Buetow DE (1989) The mitochondrion. In: The Biology of Euglena. Vol. 4: Subcellular Biochemistry and Molecular Biology. Academic Press, San Diego, pp 247–314

    Google Scholar 

  • Bui ET, Johnson PJ (1996) Identification and characterization of [Fe]-hydrogenases in the hydrogenosome of Trichomonas vaginalis. Mol Biochem Parasitol 76(1–2):305–310

    Article  PubMed  CAS  Google Scholar 

  • Bui ETN, Bradley PJ, Johnson PJ (1996) A common evolutionary origin for mitochondria and hydrogenosomes. Proc Natl Acad Sci U S A 93:9651–9656

    Article  PubMed  CAS  Google Scholar 

  • Burri L, Williams BA, Bursac D, Lithgow T, Keeling PJ (2006) Microsporidian mitosomes retain elements of the general mitochondrial targeting system. Proc Natl Acad Sci U S A 103(43):15916–15920

    Article  PubMed  CAS  Google Scholar 

  • Carlton JM, Hirt RP, Silva JC, Delcher AL, Schatz M, Zhao Q, Wortman JR, Bidwell SL, Alsmark UC, Besteiro S, Sicheritz-Ponten T, Noel CJ, Dacks JB, Foster PG, Simillion C, Van de Peer Y, Miranda-Saavedra D, Barton GJ, Westrop GD, Muller S, Dessi D, Fiori PL, Ren Q, Paulsen I, Zhang H, Bastida-Corcuera FD, Simoes-Barbosa A, Brown MT, Hayes RD, Mukherjee M, Okumura CY, Schneider R, Smith AJ, Vanacova S, Villalvazo M, Haas BJ, Pertea M, Feldblyum TV, Utterback TR, Shu CL, Osoegawa K, de Jong PJ, Hrdy I, Horvathova L, Zubacova Z, Dolezal P, Malik SB, Logsdon JM Jr, Henze K, Gupta A, Wang CC, Dunne RL, Upcroft JA, Upcroft P, White O, Salzberg SL, Tang P, Chiu CH, Lee YS, Embley TM, Coombs GH, Mottram JC, Tachezy J, Fraser-Liggett CM, Johnson PJ (2007) Draft genome sequence of the sexually transmitted pathogen Trichomonas vaginalis. Science 315(5809):207–212

    Article  PubMed  Google Scholar 

  • Chan KW, Slotboom DJ, Cox S, Embley TM, Fabre O, van der Giezen M, Harding M, Horner DS, Kunji ER, Leon-Avila G, Tovar J (2005) A novel ADP/ATP transporter in the mitosome of the microaerophilic human parasite Entamoeba histolytica. Curr Biol 15(8):737–742

    Article  PubMed  CAS  Google Scholar 

  • Ctrnacta V, Ault JG, Stejskal F, Keithly JS (2006) Localization of pyruvate:NADP  +  oxidoreductase in sporozoites of Cryptosporidium parvum. J Eukaryot Microbiol 53(4):225–231

    Article  PubMed  CAS  Google Scholar 

  • Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Kristensen RM (2010) The first metazoa living in permanently anoxic conditions. BMC Biol 8:30

    Article  PubMed  CAS  Google Scholar 

  • Davidson EA, van der Giezen M, Horner DS, Embley TM, Howe CJ (2002) An [Fe] hydrogenase from the anaerobic hydrogenosome-containing fungus Neocallimastix frontalis L2. Gene 296(1–2):45–52

    Article  PubMed  CAS  Google Scholar 

  • de Graaf RM, Duarte I, van Alen TA, Kuiper JW, Schotanus K, Rosenberg J, Huynen MA, Hackstein JH (2009) The hydrogenosomes of Psalteriomonas lanterna. BMC Evol Biol 9:287

    Article  PubMed  CAS  Google Scholar 

  • Do PM, Angerhofer A, Hrdy I, Bardonova L, Ingram LO, Shanmugam KT (2009) Engineering Escherichia coli for fermentative dihydrogen production: potential role of NADH-ferredoxin oxidoreductase from the hydrogenosome of anaerobic protozoa. Appl Biochem Biotechnol 153(1–3):21–33

    Article  PubMed  CAS  Google Scholar 

  • Dolezal P, Likic V, Tachezy J, Lithgow T (2006) Evolution of the molecular machines for protein import into mitochondria. Science 313(5785):314–318

    Article  PubMed  CAS  Google Scholar 

  • Dolezal P, Dagley MJ, Kono M, Wolynec P, Likic VA, Foo JH, Sedinova M, Tachezy J, Bachmann A, Bruchhaus I, Lithgow T (2010) The essentials of protein import in the degenerate mitochondrion of Entamoeba histolytica. PLoS Pathog 6(3):e1000812

    Article  PubMed  CAS  Google Scholar 

  • Dubini A, Mus F, Seibert M, Grossman AR, Posewitz MC (2009) Flexibility in anaerobic metabolism as revealed in a mutant of Chlamydomonas reinhardtii lacking hydrogenase activity. J Biol Chem 284(11):7201–7213

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Koehler CM, Delgadillo-Correa MG, Bradley PJ, Plumper E, Leuenberger D, Turck CW, Johnson PJ (2000) Presence of a member of the mitochondrial carrier family in hydrogenosomes: conservation of membrane-targeting pathways between hydrogenosomes and mitochondria. Mol Cell Biol 20(7):2488–2497

    Article  PubMed  CAS  Google Scholar 

  • Dyall SD, Yan W, Delgadillo-Correa MG, Lunceford A, Loo JA, Clarke CF, Johnson PJ (2004) Non-mitochondrial complex I proteins in a hydrogenosomal oxidoreductase complex. Nature 431(7012):1103–1107

    Article  PubMed  CAS  Google Scholar 

  • Ellis JE, Williams R, Cole D, Cammack R, Lloyd D (1993) Electron transport components of the parasitic protozoon Giardia lamblia. FEBS Lett 325(3):196–200

    Article  PubMed  CAS  Google Scholar 

  • Embley TM (2006) Multiple secondary origins of the anaerobic lifestyle in eukaryotes. Philos Trans R Soc Lond B Biol Sci 361(1470):1055–1067

    Article  PubMed  CAS  Google Scholar 

  • Embley TM, Martin W (2006) Eukaryotic evolution, changes and challenges. Nature 440(7084):623–630

    Article  PubMed  CAS  Google Scholar 

  • Field J, Rosenthal B, Samuelson J (2000) Early lateral transfer of genes encoding malic enzyme, acetyl-CoA synthetase and alcohol dehydrogenases from anaerobic prokaryotes to Entamoeba histolytica. Mol Microbiol 38(3):446–455

    Article  PubMed  CAS  Google Scholar 

  • Finlay B, Fenchel T (1989) Hydrogenosomes in some anaerobic protozoa resemble mitochondria. FEMS Microbiol Lett 65:311–314

    Article  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276(9):6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Forestier M, King P, Zhang L, Posewitz M, Schwarzer S, Happe T, Ghirardi ML, Seibert M (2003) Expression of two [Fe]-hydrogenases in Chlamydomonas reinhardtii under anaerobic conditions. Eur J Biochem 270(13):2750–2758

    Article  PubMed  CAS  Google Scholar 

  • Fritz-Laylin LK, Prochnik SE, Ginger ML, Dacks JB, Carpenter ML, Field MC, Kuo A, Paredez A, Chapman J, Pham J, Shu S, Neupane R, Cipriano M, Mancuso J, Tu H, Salamov A, Lindquist E, Shapiro H, Lucas S, Grigoriev IV, Cande WZ, Fulton C, Rokhsar DS, Dawson SC (2010) The genome of Naegleria gruberi illuminates early eukaryotic versatility. Cell 140(5):631–642

    Article  PubMed  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Gen Physiol 26(2):219–240

    Article  PubMed  CAS  Google Scholar 

  • Gardner MJ, Hall N, Fung E, White O, Berriman M, Hyman RW, Carlton JM, Pain A, Nelson KE, Bowman S, Paulsen IT, James K, Eisen JA, Ruth-erford K, Salzberg SL, Craig A, Kyes S, Chan MS, Nene V, Shallom SJ, Suh B, Peterson J, Angiuoli S, Pertea M, Allen J, Selengut J, Haft D, Mather MW, Vaidya AB, Martin DM, Fairlamb AH, Fraunholz MJ, Roos DS, Ralph SA, McFadden GI, Cummings LM, Subramanian GM, Mungall C, Venter JC, Carucci DJ, Hoffman SL, Newbold C, Davis RW, Fraser CM, Barrell B (2002) Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419(6906):498–511

    Article  PubMed  CAS  Google Scholar 

  • Gerber J, Lill R (2002) Biogenesis of iron-sulfur proteins in eukaryotes: components, mechanism and pathology. Mitochondrion 2(1–2):71–86

    Article  PubMed  CAS  Google Scholar 

  • Gill EE, Diaz-Trivino S, Barbera MJ, Silberman JD, Stechmann A, Gaston D, Tamas I, Roger AJ (2007) Novel mitochondrion-related organelles in the anaerobic amoeba Mastigamoeba balamuthi. Mol Microbiol 66(6):1306–1320

    Article  PubMed  CAS  Google Scholar 

  • Goldberg AV, Molik S, Tsaousis AD, Neumann K, Kuhnke G, Delbac F, Vivares CP, Hirt RP, Lill R, Embley TM (2008) Localization and functionality of microsporidian iron-sulphur cluster assembly proteins. Nature 452(7187):624–628

    Article  PubMed  CAS  Google Scholar 

  • Hackstein JH (2005) Eukaryotic Fe-hydrogenases – old eukaryotic heritage or adaptive acquisitions? Biochem Soc Trans 33(Pt 1):47–50

    PubMed  CAS  Google Scholar 

  • Hampl V, Silberman JD, Stechmann A, Diaz-Trivino S, Johnson PJ, Roger AJ (2008) Genetic evidence for a mitochondriate ancestry in the ‘amitochondriate’ flagellate Trimastix pyriformis. PLoS One 3(1):e1383

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269(3):1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Heifetz PB, Forster B, Osmond CB, Giles LJ, Boynton JE (2000) Effects of acetate on facultative autotrophy in Chlamydomonas reinhardtii assessed by photosynthetic measurements and stable isotope analyses. Plant Physiol 122(4):1439–1445

    Article  PubMed  CAS  Google Scholar 

  • Hemschemeier A, Jacobs J, Happe T (2008) Biochemical and physiological characterization of the pyruvate formate-lyase Pfl1 of Chlamydomonas reinhardtii, a typically bacterial enzyme in a eukaryotic alga. Eukaryot Cell 7(3):518–526

    Article  PubMed  CAS  Google Scholar 

  • Horner DS, Hirt RP, Embley TM (1999) A single eubacterial origin of eukaryotic pyruvate: ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes. Mol Biol Evol 16(9):1280–1291

    PubMed  CAS  Google Scholar 

  • Horner DS, Foster PG, Embley TM (2000) Iron hydrogenases and the evolution of anaerobic eukaryotes. Mol Biol Evol 17(11):1695–1709

    PubMed  CAS  Google Scholar 

  • Horner DS, Heil B, Happe T, Embley TM (2002) Iron hydrogenases–ancient enzymes in modern eukaryotes. Trends Biochem Sci 27(3):148–153

    Article  PubMed  CAS  Google Scholar 

  • Hrdy I, Muller M (1995) Primary structure and eubacterial relationships of the pyruvate:ferredoxin oxido­reductase of the amitochondriate eukaryote Trichomonas vaginalis. J Mol Evol 41(3):388–396

    Article  PubMed  CAS  Google Scholar 

  • Hrdy I, Hirt RP, Dolezal P, Bardonova L, Foster PG, Tachezy J, Embley TM (2004) Trichomonas hydrogenosomes contain the NADH dehydrogenase module of mitochondrial complex I. Nature 432(7017):618–622

    Article  PubMed  CAS  Google Scholar 

  • Hug LA, Stechmann A, Roger AJ (2010) Phylogenetic distributions and histories of proteins involved in anaerobic pyruvate metabolism in eukaryotes. Mol Biol Evol 27(2):311–324

    Article  PubMed  CAS  Google Scholar 

  • Inui H, Miyatake K, Nakano Y, Kitaoka S (1985) The physiological role of oxygen-sensitive pyruvate dehydrogenase in mitochondrial fatty acid synthesis in Euglena gracilis. Arch Biochem Biophys 237(2):423–429

    Article  PubMed  CAS  Google Scholar 

  • Katinka MD, Duprat S, Cornillot E, Metenier G, Thomarat F, Prensier G, Barbe V, Peyretaillade E, Brottier P, Wincker P, Delbac F, El Alaoui H, Peyret P, Saurin W, Gouy M, Weissenbach J, Vivares CP (2001) Genome sequence and gene compaction of the eukaryote parasite Encephalitozoon cuniculi. Nature 414(6862):450–453

    Article  PubMed  CAS  Google Scholar 

  • Kunji ER (2004) The role and structure of mitochondrial carriers. FEBS Lett 564(3):239–244

    Article  PubMed  CAS  Google Scholar 

  • Kunji ER, Robinson AJ (2006) The conserved substrate binding site of mitochondrial carriers. Biochim Biophys Acta 1757(9–10):1237–1248

    PubMed  CAS  Google Scholar 

  • LaGier MJ, Tachezy J, Stejskal F, Kutisova K, Keithly JS (2003) Mitochondrial-type iron-sulfur cluster biosynthesis genes (IscS and IscU) in the api-complexan Cryptosporidium parvum. Microbiology 149(Pt 12):3519–3530

    Article  PubMed  CAS  Google Scholar 

  • Lantsman Y, Tan KS, Morada M, Yarlett N (2008) Biochemical characterization of a mitochondrial-like organelle from Blastocystis sp. subtype 7. Microbiology 154(Pt 9):2757–2766

    Article  PubMed  CAS  Google Scholar 

  • Lill R (2009) Function and biogenesis of iron-sulphur proteins. Nature 460(7257):831–838

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Kispal G (2000) Maturation of cellular Fe-S proteins: an essential function of mitochondria. Trends Biochem Sci 25(8):352–356

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2005) Iron-sulfur-protein biogenesis in eukaryotes. Trends Biochem Sci 30(3):133–141

    Article  PubMed  CAS  Google Scholar 

  • Lill R, Muhlenhoff U (2006) Iron-sulfur protein biogenesis in eukaryotes: components and mechanisms. Annu Rev Cell Dev Biol 22:457–486

    Article  PubMed  CAS  Google Scholar 

  • Lindmark DG, Muller M (1973) Hydrogenosome, a cytoplasmic organelle of the anaerobic flagellate Trichomonas foetus, and its role in pyruvate metabolism. J Biol Chem 248(22):7724–7728

    PubMed  CAS  Google Scholar 

  • Lithgow T, Schneider A (2010) Evolution of macromolecular import pathways in mitochondria, hydrogenosomes and mitosomes. Philos Trans R Soc Lond B Biol Sci 365(1541):799–817

    Article  PubMed  CAS  Google Scholar 

  • Lloyd D, Ralphs JR, Harris JC (2002a) Giardia intestinalis, a eukaryote without hydrogenosomes, produces hydrogen. Microbiology 148(Pt 3):727–733

    PubMed  CAS  Google Scholar 

  • Lloyd D, Ralphs JR, Harris JC (2002b) Hydrogen production in Giardia intestinalis, a eukaryote with no hydrogenosomes. Trends Parasitol 18(4):155–156

    Article  PubMed  CAS  Google Scholar 

  • Loftus B, Anderson I, Davies R, Alsmark UC, Samuelson J, Amedeo P, Roncaglia P, Berriman M, Hirt RP, Mann BJ, Nozaki T, Suh B, Pop M, Duchene M, Ackers J, Tannich E, Leippe M, Hofer M, Bruchhaus I, Willhoeft U, Bhattacharya A, Chillingworth T, Churcher C, Hance Z, Harris B, Harris D, Jagels K, Moule S, Mungall K, Ormond D, Squares R, Whitehead S, Quail MA, Rabbinowitsch E, Norbertczak H, Price C, Wang Z, Guillen N, Gilchrist C, Stroup SE, Bhattacharya S, Lohia A, Foster PG, Sicheritz-Ponten T, Weber C, Singh U, Mukherjee C, El-Sayed NM, Petri WA Jr, Clark CG, Embley TM, Barrell B, Fraser CM, Hall N (2005) The genome of the protist parasite Entamoeba histolytica. Nature 433(7028):865–868

    Article  PubMed  CAS  Google Scholar 

  • Mai Z, Ghosh S, Frisardi M, Rosenthal B, Rogers R, Samuelson J (1999) Hsp60 is targeted to a cryptic mitochondrion-derived organelle (“crypton”) in the microaerophilic protozoan parasite Entamoeba histolytica. Mol Cell Biol 19(3):2198–2205

    PubMed  CAS  Google Scholar 

  • Maralikova B, Ali V, Nakada-Tsukui K, Nozaki T, van der Giezen M, Henze K, Tovar J (2010) Bacterial-type oxygen detoxification and iron-sulfur cluster assembly in amoebal relict mitochondria. Cell Microbiol 12(3):331–342

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Muller M (1998) The hydrogen hypothesis for the first eukaryote. Nature 392(6671):37–41

    Article  PubMed  CAS  Google Scholar 

  • Marvin-Sikkema FD, Pedro Gomes TM, Grivet JP, Gottschal JC, Prins RA (1993) Characterization of hydrogenosomes and their role in glucose metabolism of Neocallimastix sp. L2. Arch Microbiol 160(5):388–396

    Article  PubMed  CAS  Google Scholar 

  • Mazet M, Diogon M, Alderete JF, Vivares CP, Delbac F (2008) First molecular characterisation of hydrogenosomes in the protozoan parasite Histomonas meleagridis. Int J Parasitol 38(2):177–190

    Article  PubMed  CAS  Google Scholar 

  • Meyer J (2007) [FeFe] hydrogenases and their evolution: a genomic perspective. Cell Mol Life Sci 64(9):1063–1084

    Article  PubMed  CAS  Google Scholar 

  • Mi-ichi F, Abu Yousuf M, Nakada-Tsukui K, Nozaki T (2009) Mitosomes in Entamoeba histolytica contain a sulfate activation pathway. Proc Natl Acad Sci U S A 106(51):21731–21736

    Article  PubMed  CAS  Google Scholar 

  • Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmen-dorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JE, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846):1921–1926

    Article  PubMed  CAS  Google Scholar 

  • Mulder DW, Boyd ES, Sarma R, Lange RK, Endrizzi JA, Broderick JB, Peters JW (2010) Stepwise [FeFe]-hydrogenase H-cluster assembly revealed in the structure of HydA(DeltaEFG). Nature 465(7295):248–251

    Article  PubMed  CAS  Google Scholar 

  • Muller M (1993) The hydrogenosome. J Gen Microbiol 139(12):2879–2889

    PubMed  CAS  Google Scholar 

  • Muller M (2007) The road to hydrogenosomes. In: Martin W, Muller M (eds) Origin of mitochondria and hydrogenosomes. Springer, Berlin Heidelberg, pp 1–11

    Chapter  Google Scholar 

  • Mus F, Dubini A, Seibert M, Posewitz MC, Grossman AR (2007) Anaerobic acclimation in Chlamydomonas reinhardtii: anoxic gene expression, hydrogenase induction, and metabolic pathways. J Biol Chem 282(35):25475–25486

    Article  PubMed  CAS  Google Scholar 

  • Nixon JE, Field J, McArthur AG, Sogin ML, Yarlett N, Loftus BJ, Samuelson J (2003) Iron-dependent hydrogenases of Entamoeba histolytica and Giardia lamblia: activity of the recombinant entamoebic enzyme and evidence for lateral gene transfer. Biol Bull 204(1):1–9

    Article  PubMed  CAS  Google Scholar 

  • Perez-Brocal V, Clark CG (2008) Analysis of two genomes from the mitochondrion-like organelle of the intestinal parasite Blastocystis: complete sequences, gene content, and genome organization. Mol Biol Evol 25(11):2475–2482

    Article  PubMed  CAS  Google Scholar 

  • Pfanner N, Wiedemann N, Meisinger C, Lithgow T (2004) Assembling the mitochondrial outer membrane. Nat Struct Mol Biol 11(11):1044–1048

    Article  PubMed  CAS  Google Scholar 

  • Pilet E, Nicolet Y, Mathevon C, Douki T, Fontecilla-Camps JC, Fontecave M (2009) The role of the maturase HydG in [FeFe]-hydrogenase active site synthesis and assembly. FEBS Lett 583(3):506–511

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16(8):2151–2163

    Article  PubMed  CAS  Google Scholar 

  • Putz S, Dolezal P, Gelius-Dietrich G, Bohacova L, Tachezy J, Henze K (2006) Fe-hydrogenase maturases in the hydrogenosomes of Trichomonas vaginalis. Eukaryot Cell 5(3):579–586

    Article  PubMed  CAS  Google Scholar 

  • Py B, Barras F (2010) Building Fe-S proteins: bacterial strategies. Nat Rev Microbiol 8(6):436–446

    Article  PubMed  CAS  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33(Web Server issue):W116–W120

    Article  PubMed  CAS  Google Scholar 

  • Reeves RE, Warren LG, Susskind B, Lo HS (1977) An energy-conserving pyruvate-to-acetate pathway in Entamoeba histolytica. Pyruvate synthase and a new acetate thiokinase. J Biol Chem 252(2):726–731

    PubMed  CAS  Google Scholar 

  • Riviere L, van Weelden SW, Glass P, Vegh P, Coustou V, Biran M, van Hellemond JJ, Bringaud F, Tielens AG, Boshart M (2004) Acetyl:succinate CoA-transferase in procyclic Trypanosoma brucei. Gene identification and role in carbohydrate metabolism. J Biol Chem 279(44):45337–45346

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez MA, Hidalgo ME, Sanchez T, Orozco E (1996) Cloning and characterization of the Entamoeba histolytica pyruvate: ferredoxin oxidoreductase gene. Mol Biochem Parasitol 78(1–2):273–277

    Article  PubMed  CAS  Google Scholar 

  • Roger AJ, Silberman JD (2002) Cell evolution: mitochondria in hiding. Nature 418(6900):827–829

    Article  PubMed  CAS  Google Scholar 

  • Rotte C, Stejskal F, Zhu G, Keithly JS, Martin W (2001) Pyruvate: NADP  +  oxidoreductase from the mitochondrion of Euglena gracilis and from the apicomplexan Cryptosporidium parvum: a biochemical relic linking pyruvate metabolism in mitochondriate and amitochondriate protists. Mol Biol Evol 18(5):710–720

    PubMed  CAS  Google Scholar 

  • Sanchez LB, Muller M (1996) Purification and characterization of the acetate forming enzyme, acetyl-CoA synthetase (ADP-forming) from the amitochondriate protist, Giardia lamblia. FEBS Lett 378(3):240–244

    Article  PubMed  CAS  Google Scholar 

  • Sanchez LB, Galperin MY, Muller M (2000) Acetyl-CoA synthetase from the amitochondriate eukaryote Giardia lamblia belongs to the newly recognized superfamily of acyl-CoA synthetases (Nucleoside diphosphate-forming). J Biol Chem 275(8):5794–5803

    Article  PubMed  CAS  Google Scholar 

  • Sawers G, Watson G (1998) A glycyl radical solution: oxygen-dependent interconversion of pyruvate formate-lyase. Mol Microbiol 29(4):945–954

    Article  PubMed  CAS  Google Scholar 

  • Shepard EM, McGlynn SE, Bueling AL, Grady-Smith CS, George SJ, Winslow MA, Cramer SP, Peters JW, Broderick JB (2010) Synthesis of the 2Fe subcluster of the [FeFe]-hydrogenase H cluster on the HydF scaffold. Proc Natl Acad Sci U S A 107(23):10448–10453

    Article  PubMed  CAS  Google Scholar 

  • Sickmann A, Reinders J, Wagner Y, Joppich C, Zahedi R, Meyer HE, Schonfisch B, Perschil I, Chacinska A, Guiard B, Rehling P, Pfanner N, Meis-inger C (2003) The proteome of Saccharomyces cerevisiae mitochondria. Proc Natl Acad Sci U S A 100(23):13207–13212

    Article  PubMed  CAS  Google Scholar 

  • Stairs CW, Roger AJ, Hampl V (2011) Eukaryotic pyruvate formate lyase and its activating enzyme were acquired laterally from a firmicute. Mol Biol Evol 28:2087–2099

    Google Scholar 

  • Stechmann A, Hamblin K, Perez-Brocal V, Gaston D, Richmond GS, van der Giezen M, Clark CG, Roger AJ (2008) Organelles in Blastocystis that blur the distinction between mitochondria and hydrogenosomes. Curr Biol 18(8):580–585

    Article  PubMed  CAS  Google Scholar 

  • Steinbuchel A, Muller M (1986) Anaerobic pyruvate metabolism of Tritrichomonas foetus and Trichomonas vaginalis hydrogenosomes. Mol Biochem Parasitol 20(1):57–65

    Article  PubMed  CAS  Google Scholar 

  • Sutak R, Dolezal P, Fiumera HL, Hrdy I, Dancis A, Delgadillo-Correa M, Johnson PJ, Muller M, Tachezy J (2004) Mitochondrial-type assembly of FeS centers in the hydrogenosomes of the amitochondriate eukaryote Trichomonas vaginalis. Proc Natl Acad Sci U S A 101(28):10368–10373

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK, Kirchniawy FH, Jungermann KA (1972) Properties and function of the pyruvate-formate-lyase reaction in clostridiae. Eur J Biochem 27(2):282–290

    Article  PubMed  CAS  Google Scholar 

  • Tielens AG, Rotte C, van Hellemond JJ, Martin W (2002) Mitochondria as we don’t know them. Trends Biochem Sci 27(11):564–572

    Article  PubMed  CAS  Google Scholar 

  • Tielens AG, van Grinsven KW, Henze K, van Hellemond JJ, Martin W (2010) Acetate formation in the energy metabolism of parasitic helminths and protists. Int J Parasitol 40(4):387–397

    Article  PubMed  CAS  Google Scholar 

  • Tjaden J, Haferkamp I, Boxma B, Tielens AG, Huynen M, Hackstein JH (2004) A divergent ADP/ATP carrier in the hydrogenosomes of Trichomonas gallinae argues for an independent origin of these organelles. Mol Microbiol 51(5):1439–1446

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Fischer A, Clark CG (1999) The mitosome, a novel organelle related to mitochondria in the amitochondrial parasite Entamoeba histolytica. Mol Microbiol 32(5):1013–1021

    Article  PubMed  CAS  Google Scholar 

  • Tovar J, Leon-Avila G, Sanchez LB, Sutak R, Tachezy J, van der Giezen M, Hernandez M, Muller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963):172–176

    Article  PubMed  CAS  Google Scholar 

  • Tsaousis AD, Kunji ER, Goldberg AV, Lucocq JM, Hirt RP, Embley TM (2008) A novel route for ATP acquisition by the remnant mitochondria of Encephalitozoon cuniculi. Nature 453(7194):553–556

    Article  PubMed  CAS  Google Scholar 

  • Tsaousis AD, Stechmann A, Perez-Brocal V, Hamblin KA, van der Giezen M, Clark CG (2010) The Blastocystis mitochondrion-like organelles. In Anaerobic Parasitic Protozoa: Genomics and Molecular Biology, C.G. Clark, R.D. Adam, and P.J. Johnson, eds. (Horizon Scientific Press)

    Google Scholar 

  • Tsaousis AD, Gaston D, Stechmann A, Walker PB, Lithgow T, Roger AJ (2011) A functional Tom70 in the human parasite Blastocystis sp.: implications for the evolution of the mitochondrial import apparatus. Mol Biol Evol 28(1):781–791

    Article  PubMed  CAS  Google Scholar 

  • van der Giezen M, Slotboom DJ, Horner DS, Dyal PL, Harding M, Xue GP, Embley TM, Kunji ER (2002) Conserved properties of hydrogenosomal and mitochondrial ADP/ATP carriers: a common origin for both organelles. EMBO 21(4):572–579

    Article  Google Scholar 

  • van der Giezen M, Birdsey GM, Horner DS, Lucocq J, Dyal PL, Benchimol M, Danpure CJ, Embley TM (2003) Fungal hydrogenosomes contain mitochondrial heat-shock proteins. Mol Biol Evol 20(7):1051–1061

    Article  PubMed  Google Scholar 

  • van der Giezen M, Cox S, Tovar J (2004) The iron-sulfur cluster assembly genes iscS and iscU of Entamoeba histolytica were acquired by horizontal gene transfer. BMC Evol Biol 4:7

    Article  PubMed  Google Scholar 

  • van Grinsven KW, Rosnowsky S, van Weelden SW, Putz S, van der Giezen M, Martin W, van Hellemond JJ, Tielens AG, Henze K (2008) Acetate:succinate CoA-transferase in the hydrogenosomes of Trichomonas vaginalis: identification and characterization. J Biol Chem 283(3):1411–1418

    Article  PubMed  CAS  Google Scholar 

  • Vignais PM, Billoud B (2007) Occurrence, classification, and biological function of hydrogenases: an overview. Chem Rev 107(10):4206–4272

    Article  PubMed  CAS  Google Scholar 

  • Vincent KA, Parkin A, Lenz O, Albracht SP, Fontecilla-Camps JC, Cammack R, Friedrich B, Armstrong FA (2005) Electrochemical definitions of O2 sensitivity and oxidative inactivation in hydrogenases. J Am Chem Soc 127(51):18179–18189

    Article  PubMed  CAS  Google Scholar 

  • Voncken FG, Boxma B, van Hoek AH, Akhmanova AS, Vogels GD, Huynen M, Veenhuis M, Hackstein JH (2002) A hydrogenosomal [Fe]-hydrogenase from the anaerobic chytrid Neocallimastix sp. L2. Gene 284(1–2):103–112

    Article  PubMed  CAS  Google Scholar 

  • Wagner AF, Frey M, Neugebauer FA, Schafer W, Knappe J (1992) The free radical in pyruvate formate-lyase is located on glycine-734. Proc Natl Acad Sci U S A 89(3):996–1000

    Article  PubMed  CAS  Google Scholar 

  • Williams BA, Hirt RP, Lucocq JM, Embley TM (2002) A mitochondrial remnant in the microsporidian Trachipleistophora hominis. Nature 418(6900):865–869

    Article  PubMed  CAS  Google Scholar 

  • Williams BA, Haferkamp I, Keeling PJ (2008) An ADP/ATP-specific mitochondrial carrier protein in the microsporidian Antonospora locustae. J Mol Biol 375(5):1249–1257

    Article  PubMed  CAS  Google Scholar 

  • Wunschiers R, Stangier K, Senger H, Schulz R (2001) Molecular evidence for a Fe-hydrogenase in the green alga Scenedesmus obliquus. Curr Microbiol 42(5):353–360

    Article  PubMed  CAS  Google Scholar 

  • Yarlett N, Orpin CG, Munn EA, Yarlett NC, Greenwood CA (1986) Hydrogenosomes in the rumen fungus Neocallimastix patriciarum. Biochem J 236(3):729–739

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported from grant MOP-62809 from the Canadian Institutes of Health Research awarded to AJR. ADT was supported by a Marie Curie International Outgoing fellowship. AJR was supported by the Integrated Microbial Biodiversity program of the Canadian Institute for Advanced Research and the Canada Research Chairs program. MML was supported by an Aide à la Formation-Recherche awarded by the Fonds National de la Recherche (Luxembourg). CWS was supported by scholarships from the Natural Sciences and Engineering Research Council of Canada and Killam Trusts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michelle M. Leger or Courtney A. W. Stairs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Tsaousis, A.D., Leger, M.M., Stairs, C.A.W., Roger, A.J. (2012). The Biochemical Adaptations of Mitochondrion-Related Organelles of Parasitic and Free-Living Microbial Eukaryotes to Low Oxygen Environments. In: Altenbach, A., Bernhard, J., Seckbach, J. (eds) Anoxia. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 21. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1896-8_4

Download citation

Publish with us

Policies and ethics