Skip to main content

Bioremediation: New Approaches and Trends

  • Chapter
  • First Online:
Biomanagement of Metal-Contaminated Soils

Part of the book series: Environmental Pollution ((EPOL,volume 20))

Abstract

Ever increasing human activities including agricultural, urban, or industrial are a major source of environmental pollution. Toxic metal pollution of waters, air, and soils is one of the potential problems, which is an enigma for scientists how to tackle this problem that has threatened the environment. To solve this, conventional remediation approaches have been used, which, however, do not provide acceptable solutions. The development of an alternative remediation strategy for the abatement of a contaminated medium is important for environmental conservation and human health. Bioremediation, an attractive and novel technology, is a multidisciplinary approach that uses biological systems to degrade/transform and/or to rid the soil and water of pollutants. This technology involves the use of plants (phytoremediation), plant–microbe interactions (rhizoremediation), and microbial communities involving stimulation of viable native microbial population (biostimulation), artificial introduction of viable population (bioaugmentation), bioaccumulation (live cells), and use of dead microbial biomass (biosorption) to clean up the contaminated sites. Bioremediation is simple, can be applied over large areas, environmentally friendly, and inexpensive. The use of genetic engineering to further modify plants for uptake, transport, and sequester metal opens up new avenues for enhancing efficiency of phytoremediation. Various bioremediation approaches adopted to remediate contaminated sites and major concerns associated with phytoremediation as a sustainable alternative are reviewed and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-Rahman RA, Abou-Shanab RA, Moawad H (2008) Mercury detoxification using genetic engineered Nicotiana tabacum. Global NEST J 10:432–438

    Google Scholar 

  • Abou-Shanab RI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Moawad H, Ghanem K, Ghozlan HA (2003a) Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol 158:219–224

    CAS  Google Scholar 

  • Abou-Shanab RI, Delorme TA, Angle JS, Chaney RL, Ghanem K, Moawad H, Ghozlan HA (2003b) Phenotypic characterization of microbes in the rhizosphere of Alyssum murale. Int J Phytoremediation 5:367–379

    CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Chaney RL (2006) Bacterial inoculants affecting nickel uptake by Alyssum murale from low, moderate and high Ni soils. Soil Biol Biochem 38:2882–2889

    CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, van Berkum P (2007) Chromate-tolerant bacteria for enhanced metal uptake by Eichhornia crassipes (Mart.). Int J Phytoremediation 9:91–105

    CAS  Google Scholar 

  • Abou-Shanab RAI, Ghanem KM, Ghanem NB, Al-Kolaibe AM (2008) The role of bacteria on heavy-metals extraction and uptake by plants growing on multi-metal contaminated soils. World J Microbiol Biotechnol 24:253–262

    CAS  Google Scholar 

  • Abou-Shanab RAI, Angle JS, Delorme TA, Chaney RL, van Berkum P, Ghozlan HA, Ghanem K, Moawad H (2010) Characterization of Ni-resistant bacteria in the rhizosphere of the hyperaccumulator Alyssum murale by 16 S rRNA gene sequence analysis. World J Microbiol Biotechnol 26:101–108

    CAS  Google Scholar 

  • Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163:173–181

    CAS  Google Scholar 

  • Ajithkumar PV, Gangadhara KP, Manilal P, Kunhi AAM (1998) Soil inoculation with Pseudomonas aeruginosa 3MT eliminates the inhibitory effect of 3-chloroand 4-chlorobenzoate on tomato seed germination. Soil Biol Biochem 30:1053–1059

    CAS  Google Scholar 

  • Alderete LGS, Talano MA, Ibannez SG, Purro S, Agostini E (2009) Establishment of transgenic tobacco hairy roots expressing basic peroxidases and its application for phenol removal. J Biotechnol 139:273–279

    Google Scholar 

  • Alexander M, Hatzinger PB, Kelsey JW, Kottler BD, Nam K (1997) Sequestration and realistic risk from toxic chemicals remaining after bioremediation. Ann NY Acad Sci 829:1–5

    CAS  Google Scholar 

  • Arazi T, Sunkar R, Kaplan B, Fromm HA (1999) Tobacco plasma membrane calmodulin binding transporter confers Ni+ tolerance and Pb2+ hypersensitivity in transgenic plants. Plant J 20:71–82

    Google Scholar 

  • Arshad M, Saleem M, Hussain S (2008) Perspectives of bacterial ACC deaminase in phytoremediation. Trends Biotechnol 8:356–362

    Google Scholar 

  • Bachmann G, Kinzel H (1992) Physiological and ecological aspects of the interactions between plant roots and rhizosphere soil. Soil Biol Biochem 24:543–552

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements. A review of their distribution ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Res Conserv Recycl 11:41–49

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccumulator plants: A review of the ecology and physiology of a biological resource for phytoremediation of metal polluted soils. In: Terry N, Banuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 85–107

    Google Scholar 

  • Bañuelos GS, Ajwa HA, Mackey B, Wu LL, Cook C, Akohoue S, Zambrzuski S (1997) Evaluation of different plant species used for phytoremediation of high soil selenium. J Environ Qual 26:639–646

    Google Scholar 

  • Begonia GB, Davis CD, Begonia MFT, Gray CN (1998) Growth response of Indian mustard (Brassica juncea (L.) czern.) and its phytoextraction of lead contaminated soil. Bull Environ Contam Toxicol 61:38–43

    CAS  Google Scholar 

  • Belimov AA, Hontzeas N, Safronova VI, Demchinskaya SV, Piluzza G, Bullitta S, Glick BR (2005) Cadmium-tolerant plant growth-promoting bacteria associated with the roots of Indian mustard (Brassica juncea L.Czern.). Soil Biol Biochem 37:241–250

    CAS  Google Scholar 

  • Berti WR, Jacob LW (1996) Chemistry and phytotoxicity of soil trace elements from repeated sewage sludge application. J Environ Qual 25:1025–1032

    CAS  Google Scholar 

  • Bizily SP, Rugh CL, Meagher RB (2000) Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat Biotechnol 18:213–217

    CAS  Google Scholar 

  • Bizily SP, Kim T, Kandasamy MK, Meagher RB (2003) Subcellular targeting of methylmercury lyase enhances its specific activity for organic mercury detoxification in plants. Plant Physiol 131:463–471

    CAS  Google Scholar 

  • Blaylock MJ, Salt DE, Dushenkhov S, Zakharova O, Gussman C, Kapulnik Y, Ensley BD, Raskin I (1997) Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ Sci Technol 31:860–865

    Google Scholar 

  • Bollag JM (1992) Decontaminating soil with enzymes: an in situ method using phenolic and anilinic compounds. Environ Sci Technol 26:1876–1881

    CAS  Google Scholar 

  • Boyd RS, Davis MA, Wall MA, Balkwill K (2007) Host-herbivore studies of Stenoscepa sp. (Orthoptera:Pyrgomorphidae), a high-Ni herbivore of the South African Ni hyperaccumulator Berkheya coddii (Asteraceae). Insect Sci 14:133–143

    CAS  Google Scholar 

  • Brady NC, Weil RR (1996) The nature and properties of soils. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brandle JE, Labbe H, Hattori J, Miki BL (1993) Field performance and heavy metal concentrations of transgenic flue cured tobacco expressing a mammalian metallothionein-h-glucuronidase gene fusion. Genome 36:255–260

    CAS  Google Scholar 

  • Braud A, Jézéquel K, Bazot S, Lebeau T (2009) Enhanced phytoextraction of an agricultural Cr- and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere 74:280–286

    Google Scholar 

  • Brazil GM, Kenefick L, Callanan M, Haro A, de Lorenzo V, Dowling DN (1995) Construction of a rhizosphere pseudomonad with potential to degrade polychlorinated biphenyls and detection of bph gene expression in the rhizosphere. Appl Environ Microbiol 61:1946–1952

    CAS  Google Scholar 

  • Burd GI, Dixon DG, Glick RR (2000) Plant growth promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol 46:237–245

    CAS  Google Scholar 

  • Burns RG, Rogers S, McGhee I (1996) Remediation of inorganics and organics in industrial and urban contaminated soil. In: Naidu R, Kookana RS, Oliver DP, Rogers S, McLaughin MJ (eds.) Contaminants and the soil environment in the Australasia-Pacific region. Kluwer Academic Publishers, London, pp 125–181

    Google Scholar 

  • Chaney RL, Li YM, Brown SL, Homer FA, Malik M, Angle JS (2000) Improving metal hyperaccumulator wild plants to develop phytoextraction systems: approaches and progress. In: Terry N, Banuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 129–158

    Google Scholar 

  • Che D, Meagher RB, Heaton ACP, Lima A, Rugh CL, Merkle SA (2003) Expression of mercuric ion reductase in Eastern cottonwood (Populus deltoides) confers mercuric ion reduction and resistance. Plant Biotechnol J 1:311

    CAS  Google Scholar 

  • Chen JC, Wang KS, Chen H, Lu CY, Li HC, Peng TH, Chang SH (2010) Phytoremediation of Cr(III) by Ipomonea aquatica (water spinach) from water in the presence of EDTA and chloride: Effects of Cr speciation. Bioresour Technol 101:3033–3039

    CAS  Google Scholar 

  • Cheng S (2003) Heavy metal pollution in China: origin, pattern and control. Environ Sci Pollut Res Int 10:192–198

    CAS  Google Scholar 

  • Chrastilova Z, Mackova M, Novakova M, Macek T, Szekeres M (2007) Transgenic plants for effective phytoremediation of persistent toxic organic pollutants present in the environment (Abstracts). J Biotechnol 131S:S38

    Google Scholar 

  • Claudia S, Cesar V, Rosanna G (2008) Phytostabilization of copper mine tailings with biosolids: Implications for metal uptake and productivity of Lolium perenne. Sci Total Environ 395:1–10

    Google Scholar 

  • Cunningham SD, Berti WR (1993) Remediation of contaminated soils with green plants: an overview. In Vitro Cell Dev Biol 29:207–212

    Google Scholar 

  • Cunningham SD, Berti WR, Huang JW (1995) Phytoremediation of contaminated soils. Trends Biotechnol 13:393–397

    CAS  Google Scholar 

  • Cunningham SD, Anderson TA, Schwab AP, Hsu FC (1996) Phytoremediation of soils contaminated with organic pollutants. Adv Agron 56:55–114

    CAS  Google Scholar 

  • Dancis A, Roman DG, Anderson GJ, Hinnebusch AG, Klausner RD (1992) Ferric reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake, and transcriptional control by iron. Proc Natl Acad Sci USA 89:3869–3873

    CAS  Google Scholar 

  • Daniels R, Vanderleyden J, Michiels J (2004) Quorum sensing and swarming migration in bacteria. FEMS Microbiol Rev 28:261–289

    CAS  Google Scholar 

  • Dary M, Chamber-Pérez MA, Palomares AJ, Pajuelo E (2010) “In situ” phytostabilization of heavy metal polluted soils using Lupinus luteus inoculated with metal resistant plant-growth promoting rhizobacteria. J Hazard Mater 177:323–330

    CAS  Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    CAS  Google Scholar 

  • Diels L, van der Lelie N, Bastiaens L (2002) New development in treatment of heavy metal contaminated soils. Rev Environ Sci Biotechnol 1:75–82

    CAS  Google Scholar 

  • Dixit P, Singh S, Mukherjee PK, Eapen S (2008) Development of transgenic plants with cytochrome P450E1 gene and glutathione-S-transferase gene for degradation of organic pollutants (Abstracts). J Biotechnol 136S:S692–S693

    Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE, Gordon MP (2000) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad Sci USA 97:6287–6291

    CAS  Google Scholar 

  • Doty SL, Shang QT, Wilson AM, Moore AL, Newman LA, Strand SE (2007) Enhanced metabolism of halogenated hydrocarbons in transgenic plants contain mammalian P450 2E1. Proc Natl Acad Sci USA 97:6287–6291

    Google Scholar 

  • Eapen S, Suseelan K, Tivarekar S, Kotwal S, Mitra R (2003) Potential for rhizofiltration of uranium using hairy root cultures of Brassica juncea and Chenopodium amaranticolor. Environ Res 91:127–133

    CAS  Google Scholar 

  • Ebbs DS, Kochian LV (1997) Toxicity of zinc and copper to Brassica species: implications for phytoremediation. J Environ Qual 26:776–781

    CAS  Google Scholar 

  • Eckhardt U, Marques AM, Buckhout TJ (2001) Two iron-regulated cation transporters from tomato complement metal uptake-deficient yeast mutants. Plant Mol Biol 45:437–448

    CAS  Google Scholar 

  • Ellis B (1992) On site and in situ treatment of contaminated sites. In: Rees FJ (ed.) Contaminated land treatment technologies. Society of Chemical Industry. Elsevier Applied Science, London, pp 30–46

    Google Scholar 

  • Ellis DR, Sors TG, Brunk DG, Albrecht C, Orser C, Lahner B (2004) Production of S methyl selenocysteine in transgenic plants expressing selenocysteine methyltransferase. BMC Plant Biol 28:4

    Google Scholar 

  • Elmayan T, Tepfer M (1994) Synthesis of a bifunctional metallothionein h glucuronidase fusion protein in transgenic tobacco plants as a means of reducing leaf cadmium levels. Plant J 6:433–440

    CAS  Google Scholar 

  • Erikson ME, Israelsson M, Olsson O, Moritz T (2000) Increased giberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788

    Google Scholar 

  • Ernst WHO (1996) Bioavailability of heavy metals and decontamination of soil by plants. Appl Geochem 11:163–167

    CAS  Google Scholar 

  • Evangelou MWH, Bauer U, Ebel M, Schaeffer A (2007) The influence of EDDS and EDTA on the uptake of heavy metals of Cd and Cu from soil with tobacco Nicotiana tabacum. Chemosphere 68:345–353

    CAS  Google Scholar 

  • Evans KM, Gatehouse JA, Lindsay WP, Shi J, Tommey AM, Robinson NJ (1992) Expression of the pea metallothionein like gene Ps MTA in Escherichia coli and Arabidopsis thaliana and analysis of trace metal ion accumulation:implications of Ps MTA function. Plant Mol Biol 20:1019–1028

    CAS  Google Scholar 

  • Eweis JB, Ergas SJ, Chang DPY, Schroeder ED (1998) Bioremediation principles. McGraw-Hill, Toronto

    Google Scholar 

  • Ezaki B, Gardner RC, Ezaki Y, Matsumoto H (2000) Expression of aluminium induced genes in transgenic Arabidopsis plants can ameliorate aluminium stress and/or oxidative stress. Plant Physiol 122:657–665

    CAS  Google Scholar 

  • Flocco CG, Lindblom SD, Smits EAHP (2004) Overexpression of enzymes involved in glutathione synthesis enhances tolerance to organic pollutants in Brassica juncea. Int J Phytoremediation 6:289–304

    CAS  Google Scholar 

  • Fuentes HD, Khoo CS, Pe T, Muir S, Khan AG (2000) Phytoremediation of a contaminated mine site using plant growth regulators to increase heavy metal uptake. In: Sanches MA, Vergara F, Castro SH (eds.) Waste treatment and environmental impact in the mining industry. University of Concepcion Press, Victor Lamas, Concepcion, pp 427–435

    Google Scholar 

  • Gandia-Herrero F, Lorenz A, Larson T, Graham IA, Bowles J, Rylott EL (2008) Detoxification of the explosive 2,4,6- trinitrotoluene in Arabidopsis: discovery of bifunctional O and C-glucosyltransferases. Plant J 56:963–974

    CAS  Google Scholar 

  • Gardea-Torresdey JL, Peralta-Videa JR, Montes M, de la Rosa G, Corral-Diaz B (2004) Bioaccumulation of cadmium, chromium and copper by Convolvulus arvensis L.: impact on plant growth and uptake of nutritional elements. Bioresour Technol 92:229–235

    CAS  Google Scholar 

  • Genouw G, de Naeyer F, van Meenen P, vam de Werf H, de Nijs W, Verstraete W (1994) Degradation of oil sludge by land farming - a case study at the Ghent harbour. Biodegradation 5:37–46

    CAS  Google Scholar 

  • Georgatsou E, Mavrogiannis LA, Fragiadakis GS, Alexandraki D (1997) The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272:13786–13792

    CAS  Google Scholar 

  • Gerhardt KE, Huang X, Glick BR, Greenberg BM (2009) Phytoremediation and rhizoremediation of organic soil contaminants: potential and challenges. Plant Sci 176:20–30

    CAS  Google Scholar 

  • Gisbert C, Ros R, De Haro A, Walker DJ, Pilar Bernal M, Serrano R (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    CAS  Google Scholar 

  • Glass DJ (2000) Economic potential of phytoremediation. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals – using plants to clean up the environment. Wiley, New York, pp 15–31

    Google Scholar 

  • Glick BR (2003) Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv 21:383–393

    CAS  Google Scholar 

  • Glick BR (2010) Using soil bacteria to facilitate phytoremediation. Biotechnol Adv 28:367–374

    CAS  Google Scholar 

  • Glick BR, Patten CL, Holguin G, Penrose DM (1999) Biochemical and genetic mechanisms used by plant growth-promoting bacteria. Imperial College Press, London

    Google Scholar 

  • Goto F, Yoshihara T, Saiki H (1998) Iron accumulation in tobacco plants expressing soybean ferritin gene. Transgenic Res 7:173–180

    CAS  Google Scholar 

  • Goto F, Yoshihara T, Shigemoto N, Toki S, Takaiwa F (1999) Iron accumulation in rice seed by soya bean ferritin gene. Nat Biotechnol 17:282–286

    CAS  Google Scholar 

  • Grattapaglia D, Plomion C, Kirst M, Sederoff RR (2009) Genomics of growth traits in forest trees. Curr Opin Plant Biol 12:148–156

    CAS  Google Scholar 

  • Grichko VP, Filby B, Glick BR (2000) Increased ability of transgenic plants expressing the bacterial enzyme ACC deaminase to accumulate Cd, Co, Cu, Ni, Pb and zinc. J Biotechnol 81:45–53

    CAS  Google Scholar 

  • Grotz N, Guerinot ML (2006) Molecular aspects of Cu, Fe and Zn homeostasis in plants. Biochim Biophys Acta 1763:595–608

    CAS  Google Scholar 

  • Guan LL, Kanoh K, Kamino K (2001) Effect of exogenous siderophores on iron uptake activity of marine bacteria under iron limited conditions. Appl Environ Microbiol 67:1710–1717

    CAS  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JAH, Shanks JV (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9:385–401

    CAS  Google Scholar 

  • Harada E, Choi YE, Tsuchisaka A, Obata H, Sano H (2001) Transgenic tobacco plants expressing a rice cysteine synthase gene are tolerant to toxic levels of cadmium. Plant Physiol 158:655–661

    Google Scholar 

  • Hasegawa I, Terada E, Sunairi M, Wakita H, Shinmachi F, Noguchi A (1997) Genetic improvement of heavy metal tolerance in plants by transfer of the yeast metallothionein gene (CUPI). Plant Soil 196:277–281

    CAS  Google Scholar 

  • Hedden P, Phillips AL (2000) Manipulation of hormone biosynthetic genes in transgenic plants. Curr Opin Biotechnol 1:130–137

    Google Scholar 

  • Hirschi KD, Korenkov VD, Wilganowski NL, Wagner GJ (2000) Expression of Arabidopsis CAX2 in tobacco altered metal accumulation and increased manganese tolerance. Plant Physiol 124:125–133

    CAS  Google Scholar 

  • Hsiao KH, Kao P, Hseu ZY (2007) Effects of chelators on chromium and nickel uptake by Brassica juncea on serpentine-mine tailings for phytoextraction. J Hazard Mater 148:366–376

    CAS  Google Scholar 

  • Hsieh J, Chen CY, Chiu M, Chein MJC, Endo G, Huang CC (2009) Expressing a bacterial mercuric ion binding protein in plant for phytoremediation of heavy metals. J Hazard Mater 161:920–925

    CAS  Google Scholar 

  • Huang JW, Cunningham JD (1996) Lead phytoextraction: species variation in lead uptake and translocation. New Phytol 134:75–84

    CAS  Google Scholar 

  • Huang JW, Chen J, Berti WR, Cunningham SD (1997) Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environ Sci Technol 31:800–805

    CAS  Google Scholar 

  • Huang CC, Narita M, Yamagata T, Itoh Y, Endo G (1999) Structure analysis of a class II transposon encoding the mercury resistance of the Gram-positive bacterium, Bacillus megaterium MB1, a strain isolated from Minamata Bay, Japan. Gene 234:361–369

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004a) Responses of three grass species to creosote during phytoremediation. Environ Pollut 130:453–463

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Penrose DM, Glick BR, Greenberg BM (2004b) Multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut 130:465–476

    CAS  Google Scholar 

  • Huang XD, El-Alawi Y, Gurska J, Glick BR, Greenberg BM (2005) A multi-process phytoremediation system for decontamination of persistent total petroleum hydrocarbons (TPHs) from soils. Microchem J 81:139–147

    CAS  Google Scholar 

  • Ivano B, Jo¨rg L, Madeleine S, Gu¨nthardt G, Beat F (2008) Heavy metal accumulation and phytostabilisation potential of tree fine roots in a contaminated soil. Environ Pollut 152:559–568

    Google Scholar 

  • Jackson EG, Rylott EL, Fournier D, Hawari J, Bruce NC (2007) Exploring the biochemical properties and remediation applications of the unusual explosive-degrading P450 system XplA/B. Proc Natl Acad Sci USA 104:16822–16827

    CAS  Google Scholar 

  • Jung S, Lee HJ, Lee Y, Kang K, Kim YS, Grimm B (2008) Toxic tetrapyrrole accumulation in protoporphyrinogrn IX oxidase overexpressing transgenic rice plants. Plant Mol Biol 67:535–546

    CAS  Google Scholar 

  • Kamnev AA, van der Lelie N (2000) Chemical and biological parameters as tools to evaluate and improve heavy metal phytoremediation. Biosci Rep 20:239–258

    CAS  Google Scholar 

  • Karamalidis AK, Evangelou AC, Karabika E, Koukkou AI, Drainas C, Voudrias EA (2010) Laboratory scale bioremediation of petroleum-contaminated soil by indigenous microorganisms and added Pseudomonas aeruginosa strain Spet. Bioresour Technol 101:6545–6552

    CAS  Google Scholar 

  • Kawahigashi H, Hirose S, Ohkawa H, Ohkawa Y (2008) Transgenic rice plants expressing human P450 genes involved in xenobiotic metabolism for phytoremediation. J Mol Microbiol Biotechnol 15:212–219

    CAS  Google Scholar 

  • Khan AG (2003) Vetiver grass as an ideal phytosymbiont for Glomalian fungi for ecological restoration of derelict land. In: Truong P, Hanping X (eds.) Proceedings of the third international conference on vetiver and exhibition: vetiver and water. China Agricultural Press, Guangzou, pp 466–474

    Google Scholar 

  • Khan AG (2005) Role of soil microbes in the rhizospheres of plants growing on tracemetal contaminated soils in phytoremediation. J Trace Elem Med Biol 18:355–364

    CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Google Scholar 

  • Kirk J, Klironomos J, Lee H, Trevors JT (2005) The effects of perennial ryegrass and alfalfa on microbial abundance and diversity in petroleum contaminated soil. Environ Pollut 133:455–465

    CAS  Google Scholar 

  • Kos B, Lestan D (2003) Induced phytoextraction/soil washing of lead using biodegradable chelate and permeable barriers. Environ Sci Technol 37:624–629

    CAS  Google Scholar 

  • Kukier U, Peters CA, Chaney RL, Angle JS, Roseberg RJ (2004) The effect of pH on metal accumulation in two Alyssum species. J Environ Qual 32:2090–2102

    Google Scholar 

  • Kumar PBAN, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    CAS  Google Scholar 

  • Kurumata M, Takahashi M, Sakamotoa A, Ramos JL, Nepovim A, Vanek T (2005) Tolerance to and uptake and degradation of 2, 4, 6-trinitrotoluene (TNT) are enhanced by the expression of a bacterial nitroreductase gene in Arabidopsis thaliana. Z Naturforsch C 60:272–278

    CAS  Google Scholar 

  • Lasat MM (2002) Phytoextraction of toxic metals: a review of biological mechanisms. J Environ Qual 31:109–120

    CAS  Google Scholar 

  • Lee J, Bae H, Jeong J, Lee JY, Yang YY, Hwang I (2003) Functional expression of heavy metal transporter in Arabidopsis enhances resistance to and decreases uptake of heavy metals. Plant Physiol 133:589–596

    CAS  Google Scholar 

  • Leštan D, Luo C, Li X (2008) The use of chelating agents in the remediation of metal-contaminated soils: a review. Environ Pollut 153:3–13

    Google Scholar 

  • Linger P, Mussing J, Fischer H, Kobert J (2002) Industrial hemp (Cannabis sativa L.) growing on heavy metal contaminated soil: fibre quality and phytoremediation potential. Ind Crops Prod 16:33–42

    CAS  Google Scholar 

  • Lippmann B, Leinhos V, Bergmann H (1995) Influence of auxin producing rhizobacteria on root morphology and nutrient accumulation of crops. 1. Changes in root morphology and nutrient accumulation in maize (Zea mays L.) caused by inoculation with indol-3 acetic acid (IAA) producing Pseudomonas and Acinetobacter strains of IAA applied exogenously. Angew Bot 69:31–36

    CAS  Google Scholar 

  • Loehr RC, Webster MT (1996) Performance of long-term, field-scale bioremediation processes. J Hazard Mater 50:105–128

    CAS  Google Scholar 

  • Lopez-Errasquin E, Vazquez CV (2003) Tolerance and uptake of heavy metals by Trichoderma atroviride isolated from sludge. Chemosphere 50:137–143

    CAS  Google Scholar 

  • Luo C, Shen Z, Li X (2005) Enhanced phytoextraction of Cu, Pb, Zn and Cd with EDTA and EDDS. Chemosphere 59:1–11

    CAS  Google Scholar 

  • Madrid F, Liphadzi MS, Kirkham MB (2003) Heavy metal displacement in chelate-irrigated soil during phytoremediation. J Hydrol 272:107–119

    CAS  Google Scholar 

  • Mahesh WJ, Jagath C, Kasturiarachchi R, Kularatne KA, Suren LJW (2008) Contribution of water hyacinth (Eichhornia crassipes (Mart.) Solms) grown under different nutrient conditions to Fe-removal mechanisms in constructed wetlands. J Environ Manage 87:450–460

    Google Scholar 

  • Maiti IB, Hunt AG, Wagner GJ, Yeargan R, Hunt AG (1991) Light inducible and tissue specific expression of a chimeric mouse metallothionein cDNA gene in tobacco. Plant Sci 76:99–107

    CAS  Google Scholar 

  • Marques APGC, Pires C, Moreira H, Rangel AOSS, Castro PML (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    CAS  Google Scholar 

  • Mayak S, Tirosh S, Glick BR (2004) Plant growth promoting bacteria that confer resistance to water stress in tomatoes and peppers. Plant Physiol 166:525–530

    CAS  Google Scholar 

  • McConkey BJ, Duxbury CL, Dixon DG, Greenberg BM (1997) Toxicity of a PAH photooxidation product to the bacteria Photobacterium phosphoreum and the duckweed Lemna gibba: effects of phenanthrene and its primary photoproduct, phenanthrenequinone. Environ Toxicol Chem 16:892–899

    CAS  Google Scholar 

  • McEldowney S, Hardman DJ, Waite S (1993) Treatment technologies. In: McEldowney S, Hardman J, Waite S (eds.) Pollution, ecology and biotreatment. Longman Singapore Publishers Pte. Ltd, Singapore, pp 48–58

    Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2002) Phytoremediation of metals, metalloids and radionuclides. Adv Agron 75:1–56

    CAS  Google Scholar 

  • McIntyre T, Lewis GM (1997) The advancement of phytoremediation as an innovative environmental technology for stabilization, remediation, or restoration of contaminated sites in Canada: a discussion paper. J Soil Contam 6:227–241

    CAS  Google Scholar 

  • Meagher RB, Rugh CL, Kandasamy MK, Gragson G, Wang NJ (2000) Engineered phytoremediation of mercury pollution in soil and water using bacterial genes. In: Terry N, Bañuelos G (eds.) Phytoremediation of contaminated soil and water. Lewis Publishers, Boca Raton, pp 201–219

    Google Scholar 

  • Melo JS, D’Souza SF (2004) Removal of chromium by mucilaginous seeds of Ocimum basilicum. Bioresour Technol 92:51–155

    Google Scholar 

  • Mench MJ, Didier VL, Loffer M, Gomez A, Masson P (1994) A mimicked in situ remediation study of metal-contaminated soils with emphasis on cadmium and lead. J Environ Qual 23:58–63

    CAS  Google Scholar 

  • Misra S, Gedamu L (1989) Heavy metal tolerant transgenic Brassica napus L and Nicotiana tabacum L plants. Theor Appl Genet 78:16–18

    Google Scholar 

  • Mulligan CN, Young RN, Gibbs BF (2001) Remediation technologies for metal-contaminated soils and groundwater: an evaluation. Eng Geol 60:193–207

    Google Scholar 

  • Narasimhan K, Basheer C, Bajic VB, Swarup S (2003) Enhancement of plant-microbe interactions using a rhizosphere metabolomics-driven approach and its application in the removal of polychlorinated biphenyls. Plant Physiol 132:146–153

    CAS  Google Scholar 

  • Nedelkoska TJ, Doran PM (2000) Hyperaccumulation of cadmium by hairy roots of Thlaspi caerulescens. Biotechnol Bioeng 67:607–615

    CAS  Google Scholar 

  • Normander B, Hendriksen NB, Nybroe O (1999) Green fluorescent protein-marked Pseudomonas fluorescens: localization, viability, and activity in the natural barley rhizosphere. Appl Environ Microbiol 65:4646–4651

    CAS  Google Scholar 

  • Otten A, Alphenaar A, Pijls C, Spuij F, de Wit H (1997) In situ soil remediation. Kluwer Academic Publishers, Boston

    Google Scholar 

  • Pan A, Yang M, Tie F, Li L, Chen Z, Ru B (1994) Expression of mouse metallothionein-1-gene confers cadmium resistance in transgenic tobacco plants. Plant Mol Biol 24:341–351

    CAS  Google Scholar 

  • Patten CL, Glick BR (1996) Bacterial biosynthesis of indol-3 acetic acid. Can J Microbiol 42:207–220

    CAS  Google Scholar 

  • Pe T, Fuentes HD, Khoo CS, Muir S, Khan AG (2000) Preliminary experimental results in phytoremediation of a contaminated mine site using plant growth regulators to increase heavy metal uptake. In: Handbook and abstracts 15th Australian statistical conference, Adelaid Hilton International, Adelaide, South Australia, pp 143–144

    Google Scholar 

  • Pedas P, Schjoerring JK, Husted S (2009) Identification and characterization of zinc-starvation-induced ZIP transporters from barley roots. Plant Physiol Biochem 47:377–383

    CAS  Google Scholar 

  • Penrose DM, Glick BR (2001) Levels of 1-aminocyclopropane-1-carboxylic acid (ACC) in exudates and extracts of canola seeds treated with plant growth promoting bacteria. Can J Microbiol 47:368–372

    CAS  Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (1994) Soils and environmental quality. Lewis Publishers, Ann Arbor

    Google Scholar 

  • Pilon M, Owen JD, Garifullina GF, Kurihara T, Mihara H, Esaki N (2003) Enhanced selenium tolerance and accumulation in transgenic Arabidopsis expressing a mouse selenocysteine lyase. Plant Physiol 131:1250–1257

    CAS  Google Scholar 

  • Pulford ID, Watson C (2003) Phytoremediation of heavy metal contaminated land by trees e a review. Environ Int 29:529–540

    CAS  Google Scholar 

  • Recep K, Fikrettin S, Erkol D, Cafer E (2009) Biological control of the potato dry rot caused by Fusarium species using PGPR strains. Biol Control 50:194–198

    Google Scholar 

  • Reed MLE, Glick BR (2005) Growth of canola (Brassica napus) in the presence of plant growth promoting bacteria and either copper or polycyclic aromatic hydrocarbons. Can J Microbiol 51:1061–1069

    CAS  Google Scholar 

  • Reeves RD, Baker AJH (2000) Metal accumulating plants. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, pp 193–229

    Google Scholar 

  • Robinson NJ, Procter CM, Connolly EL, Guerinot ML (1999) A ferric-chelate reductase for iron uptake from soils. Nature 397:694–697

    CAS  Google Scholar 

  • Romkens P, Bouwman L, Japenga J, Draaisma C (2001) Potentials and drawbacks of chelate-enhanced phytoremediation of soils. Environ Pollut 116:109–121

    Google Scholar 

  • Rugh CL, Wilde D, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    CAS  Google Scholar 

  • Rugh CL, Senecoff JF, Meagher RB, Merkle SA (1998) Development of transgenic yellow poplar for mercury phytoremediation. Nat Biotechnol 16:925–928

    CAS  Google Scholar 

  • Rugh CL, Bizily SP, Meagher RB (2000) Phytoremediation of environmental mercury pollution. In: Raskin I, Ensley BD (eds.) Phytoremediation of toxic metals using plants to clean up the environment. Wiley, New York, pp 151–171

    Google Scholar 

  • Ruiz ON, Daniell H (2009) Genetic engineering to enhance mercury phytoremediation. Curr Opin Biotechnol 20:213–219

    CAS  Google Scholar 

  • Safronova VI, Stepanok VV, Engqvist GL, Alekseyev YV, Belimov AA (2006) Rootassociated bacteria containing 1-aminocyclopropane-1-carboxylate deaminase improve growth and nutrient uptake by pea genotypes cultivated in cadmium supplemented soil. Biol Fertil Soils 42:267–272

    CAS  Google Scholar 

  • Saleh S, Huang XD, Greenberg BM, Glick BR (2004) Phytoremediation of persistent organic contaminants in the environment. In: Singh A, Ward O (eds.) Soil biology, vol 1, Applied bioremediation and phytoremediation. Springer, Berlin, pp 115–134

    Google Scholar 

  • Samuelsen AI, Martin RC, Mok DWS, Machteld CM (1998) Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol 118:51–58

    CAS  Google Scholar 

  • Sar P, D’Souza SF (2002) Biosorption of thorium (IV) by a Pseudomonas strain. Biotechnol Lett 24:239–243

    CAS  Google Scholar 

  • Saxena PK, Krishnaraj S, Dan T, Perras MR, Vettaakkorumakankav NN (1999) Phytoremediation of heavy metal contaminated and polluted soils. In: Prasad MNV, Hagemeyer J (eds.) Heavy metal stress in plants: from molecules to ecosystems. Springer, Berlin, pp 305–329

    Google Scholar 

  • Schneegurt MA, Jain JC, Menicucci FR, Brown SA, Kemner KM, Garofalo DF (2001) Biomass byproducts for the remediation of waste waters contaminated with toxic metals. Environ Sci Technol 35:3786

    CAS  Google Scholar 

  • Shetty KG, Hetrick BAD, Schwab AP (1995) Effects of mycorrhizae and fertilizer amendments on zinc tolerance of plants. Environ Pollut 88:307–314

    CAS  Google Scholar 

  • Siciliano SD, Germida JJ (1997) Bacterial inoculants of forage grasses that enhance degradation of 2-chlorobenzoic acid in soil. Environ Toxicol Chem 16:1098–1104

    CAS  Google Scholar 

  • Simonich SL, Hites RA (1994) Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere. Nature 370:49–51

    CAS  Google Scholar 

  • Smith LA, Means JL, Chen A, Alleman B, Chapma CC, Tixier JR, Brauning SE, Gavaskar AR, Royer MD (1995) Remedial options for metal contaminated sites. Lewis, Boca Raton

    Google Scholar 

  • Song WY, Sohn EJ, Martinoia E, Lee YJ, Yang YY, Jasinski M (2003) Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat Biotechnol 21:914–919

    CAS  Google Scholar 

  • Summers AO (1986) Organization, expression and evolution of genes for mercury resistance. Annu Rev Microbiol 40:607–634

    CAS  Google Scholar 

  • Suresh B, Ravishankar G (2004) Phytoremediation - a novel and promising approach for environmental clean-up. Crit Rev Biotechnol 24:97–124

    CAS  Google Scholar 

  • Thomas JC, Davies EC, Malick FK, Endreszi C, Williams CR, Abbas M (2003) Yeast metallothionein in transgenic tobacco promotes copper uptake from contaminated soils. Biotechnol Prog 19:273–280

    CAS  Google Scholar 

  • Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32

    Google Scholar 

  • United States Environmental Protection Agency (US-EPA) (1996) A citizen’s guide to bioremediation-technology fact sheet. Office of Solid Waste and Emergency Response. EPA 542-F-96-007

    Google Scholar 

  • United States Environmental Protection Agency (US-EPA) (1997) Technology alternatives for the remediation of soils contaminated with As, Cd, Cr, Hg, and Pb. (Report EPA/540/S-97/500). United States Environmental Protection Agency, Washington, DC, pp 1–21

    Google Scholar 

  • Van der Zaal BJ, Neuteboom LW, Pinas JE, Chardonnen AN, Schat H, Verkleij JAC (1999) Overexpression of a novel Arabidopsis gene related to putative zinc transporter genes from animals can lead to enhanced zinc resistance and accumulation. Plant Physiol 119:1047–1055

    Google Scholar 

  • Van Dillewijn P, Couselo JL, Corredoira E, Delgado E, Wittich RM, Ballester A (2008) Bioremediation of 2, 4, 6-trinitrotoluene by bacterial nitroreductase expressing transgenic aspen. Environ Sci Technol 42:7405–7410

    Google Scholar 

  • Vassil AD, Kapulnik Y, Raskin I, Salt DE (1998) The role of EDTA in lead transport and accumulation by Indian mustard. Plant Physiol 117:447–453

    CAS  Google Scholar 

  • Vera Tomé F, Blanco Rodríguezb P, Lozano JC (2008) Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L. Sci Total Environ 393:51–357

    Google Scholar 

  • Vidali M (2001) Bioremediation: an overview. Pure Appl Chem 73:1163–1172

    CAS  Google Scholar 

  • Vleesschauwer D, Höfte M (2009) Rhizobacteria-induced systemic resistance. Adv Bot Res 51:223–281

    Google Scholar 

  • Wild E, Dent J, Thomas GO, Jones KC (2005) Direct observation of organic contaminant uptake, storage, and metabolism within plant roots. Environ Sci Technol 39:3695–3702

    CAS  Google Scholar 

  • Wills B (1988) Mineral processing technology, 4th edn. Pergamon Press, Oxford

    Google Scholar 

  • Wu LH, Luo YM, Xing XR, Christie P (2004) EDTA-enhanced phytoremediation of heavy metal-contaminated soil with Indian mustard and associated potential leaching risk. Agric Ecosyst Environ 102:307–318

    CAS  Google Scholar 

  • Wyman S, Simpson RJ, McKie AT, Sharp PA (2008) Dcytb (Cybrd1) functions as both a ferric and a cupric reductase in vitro. FEBS Lett 582:1901–1906

    CAS  Google Scholar 

  • Xiaoxue W, Ningfeng W, Guo J, Xiaoyu C, Jian T, Bin Y, Yunliu F (2008) Phytodegradation of organophosphorus compounds by transgenic plants expressing a bacterial organophosphorus hydrolase. Biochem Biophys Res Comm 365:453–458

    Google Scholar 

  • Yanez L, Ortiz D, Calderon J, Batres L, Carrizales L, Mejia J (2002) Overview of human health and chemical mixtures: problems facing developing countries. Environ Health Perspect 10:901–909

    Google Scholar 

  • Yoshida N, Ikeda R, Okuno T (2006) Identification and characterization of heavy metal-resistant unicellular alga isolated from soil and its potential for phytoremediation. Bioresour Technol 97:1843–1849

    CAS  Google Scholar 

  • Zhu Y, Rosen BP (2009) Perspectives for genetic engineering for the phytoremediation of arsenic-contaminated environments: from imagination to reality? Curr Opin Biotechnol 20:220–224

    CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EAH, Jouanin L, Terry N (1999a) Overexpression of glutathione synthetase in Brassica juncea enhances cadmium tolerance and accumulation. Plant Physiol 119:73–79

    CAS  Google Scholar 

  • Zhu Y, Pilon-Smits EA, Tarun AS, Weber SU, Jouanin L, Terry N (1999b) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing g-glutamylcysteine synthetase. Plant Physiol 121:1169–1177

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reda Abd El-Aziz Ibrahim Abou-Shanab .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Abou-Shanab, R.A.EA.I. (2011). Bioremediation: New Approaches and Trends. In: Khan, M., Zaidi, A., Goel, R., Musarrat, J. (eds) Biomanagement of Metal-Contaminated Soils. Environmental Pollution, vol 20. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-1914-9_3

Download citation

Publish with us

Policies and ethics