Skip to main content

Molecular Epidemiology of Tuberculosis

  • Chapter
  • First Online:
New Frontiers of Molecular Epidemiology of Infectious Diseases
  • 1869 Accesses

Abstract

Tuberculosis remains a major public health problem. The pathology caused by a bacteria belonging to the Mycobacterium tuberculosis complex is responsible of more than nine million new cases and of nearly two million deaths per year. The development of molecular biology since early 1990s and recent advances according to genomics offer new opportunities to understand the epidemiological dissemination of strains from patient scale to the world scale. Molecular methods were initially developed to confirm genetic link between M. tuberculosis strains isolated in similar epidemiological circumstances such as intra familial transmission, nosocomial transmission, distinction between exogenous re-infection or relapse and to explore suspected transmission chain. Methods were first based on analysis of polymorphism of an insertion sequence IS6110 by southern blotting, which evolved to be the gold standard for genotyping. PCR-based methods were developed mainly with IS6110 as target. A method based on the analysis of the Direct Repeat (DR) region, further named spoligotyping, allows identification and typing of M. tuberculosis complex isolates at the same time. In years 2000, exploration of Variable Number of Tandem Repeat (VNTR), called MIRU for Mycobacterial Interspersed Repeat Unit, was developed. This method consists in amplifying polymorphic repetitive sequences scattered throughout M. tuberculosis chromosome by PCR, in order to obtain a digit corresponding to the repetitions present at each locus. For phylogenetic purposes, all these molecular methods based on mobile genetic elements, especially insertion sequences, or repetitive DNA sequences showed limits and were supplanted by Single Nucleotide Polymorphisms (SNP), Large Sequence Polymorphism (LSP) also called Regions of Differences (RD).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agerton TB, Valway SE, Blinkhorn RJ et al (1999) Spread of strain W, a highly drug-resistant strain of Mycobacterium tuberculosis, across the United States. Clin Infect Dis 29:85–92

    Article  PubMed  CAS  Google Scholar 

  • Alland D, Lacher DW, Hazbón MH et al (2007) Role of large sequence polymorphisms (LSPs) in generating genomic diversity among clinical isolates of Mycobacterium tuberculosis and the utility of LSPs in phylogenetic analysis. J Clin Microbiol 45:39–46

    Article  PubMed  CAS  Google Scholar 

  • Allix C, Walravens K, Saegerman C et al (2006) Evaluation of the epidemiological relevance of variable-number tandem-repeat genotyping of Mycobacterium bovis and comparison of the method with IS6110 restriction fragment length polymorphism analysis and spoligotyping. J Clin Microbiol 44:1951–1962

    Article  PubMed  CAS  Google Scholar 

  • Bandera A, Gori A, Catozzi L et al (2001) Molecular epidemiology study of exogenous reinfection in an area with a low incidence of tuberculosis. J Clin Microbiol 39:2213–2218

    Article  PubMed  CAS  Google Scholar 

  • Barniol J, Niemann S, Louis VR et al (2009) Transmission dynamics of pulmonary tuberculosis between autochthonous and immigrant sub-populations. BMC Infect Dis 9:197

    Article  PubMed  Google Scholar 

  • Behr MA, Warren SA, Salamon H et al (1999) Transmission of Mycobacterium tuberculosis from patients smear-negative for acid-fast bacilli. Lancet 353:444–449

    Article  PubMed  CAS  Google Scholar 

  • Bifani PJ, Plikaytis BB, Kapur V et al (1996) Origin and interstate spread of a New York City multidrug-resistant Mycobacterium tuberculosis clone family. JAMA 275:452–457

    Article  PubMed  CAS  Google Scholar 

  • Bifani PJ, Mathema B, Kurepina NE et al (2002) Global dissemination of the Mycobacterium tuberculosis W-Beijing family strains. Trends Microbiol 10:45–52

    Article  PubMed  CAS  Google Scholar 

  • Bifani P, Mathema B, Kurepina N et al (2008) The evolution of drug resistance in Mycobacterium tuberculosis: from a mono-rifampicin-resistant cluster into increasingly multidrug-resistant variants in an HIV-seropositive population. J Infect Dis 198:90–94

    Article  PubMed  CAS  Google Scholar 

  • Boddinghaus B, Rogall T, Flohr T et al (1990) Detection and identification of mycobacteria by amplification of rRNA. J Clin Microbiol 28:1751–1759

    PubMed  CAS  Google Scholar 

  • Bouakaze C, Keyser C, de Martino SJ et al (2010) Identification and genotyping of Mycobacterium tuberculosis complex species using a SNaPshot minisequencing-based assay. J Clin Microbiol 48:1758–1766

    Article  PubMed  CAS  Google Scholar 

  • Brosch R, Gordon SV, Marmiesse M et al (2002) A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci USA 99:3684–3689

    Article  PubMed  CAS  Google Scholar 

  • Brudey K, Gutierrez MC, Vincent V et al (2004) Mycobacterium africanum genotyping using novel spacer oligonucleotides in the direct repeat locus. J Clin Microbiol 42:5053–5057

    Article  PubMed  CAS  Google Scholar 

  • Brudey K, Driscoll J, Rigouts L et al (2006) Mycobacterium tuberculosis complex genetic diversity: mining the fourth international spoligotyping database (SpolDB4) for classification, population genetics and epidemiology. BMC Microbiol 6:23

    Article  PubMed  Google Scholar 

  • Carricajo A, Vincent V, Berthelot P et al (1999) Mycobacterial cross-contamination of bronchoscope detected by molecular techniques. J Hosp Infect 42:252–253

    PubMed  CAS  Google Scholar 

  • Cole ST, Brosch R, Parkhill J et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544

    Article  PubMed  CAS  Google Scholar 

  • Comas I, Gagneux S (2009) The past and future of tuberculosis research. PLoS Pathog 5(10):e1000600

    Article  PubMed  Google Scholar 

  • Comas I, Homolka S, Niemann S et al (2009) Genotyping of genetically monomorphic bacteria: DNA sequencing in Mycobacterium tuberculosis highlights the limitations of current methodologies. PLoS One 4:e7815

    Article  PubMed  Google Scholar 

  • Coros A, DeConno E, Derbyshire KM (2008) IS6110, a Mycobacterium tuberculosis complex-specific insertion sequence, is also present in the genome of Mycobacterium smegmatis, suggestive of lateral gene transfer among mycobacterial species. J Bacteriol 190:3408–3410

    Article  PubMed  CAS  Google Scholar 

  • Cousins DV, Skuce RA, Kazwala RR et al (1998) Towards a standardized approach to DNA fingerprinting of Mycobacterium bovis. International union against tuberculosis and lung disease, tuberculosis in animals subsection. Int J Tuberc Lung Dis 2:471–478

    PubMed  CAS  Google Scholar 

  • Daniel TM (2006) The history of tuberculosis. Respir Med 100:1862–1870

    Article  PubMed  Google Scholar 

  • de Boer AS, Blommerde B, de Haas PEW et al (2002) False-positive mycobacterium tuberculosis cultures in 44 laboratories in The Netherlands (1993 to 2000): incidence, risk factors, and consequences. J Clin Microbiol 40:4004–4009

    Article  PubMed  Google Scholar 

  • Del Portillo P, Murillo LA, Patarroyo ME (1991) Amplification of a species-specific DNA fragment of Mycobacterium tuberculosis and its possible use in diagnosis. J Clin Microbiol 29:2163–2168

    PubMed  Google Scholar 

  • Diaz R, Kremer K, de Haas PE et al (1998) Molecular epidemiology of tuberculosis in Cuba outside of Havana, July 1994-June 1995: utility of spoligotyping versus IS6110 restriction fragment length polymorphism. Int J Tuberc Lung Dis 2:743–750

    PubMed  CAS  Google Scholar 

  • Evans JT, Smith EG, Banerjee A et al (2007) Cluster of human tuberculosis caused by Mycobacterium bovis: evidence for person-to-person transmission in the UK. Lancet 369:1270–1276

    Article  PubMed  Google Scholar 

  • Fabre M, Koeck JL, Le Fleche P et al (2004) High genetic diversity revealed by variable-number tandem repeat genotyping and analysis of hsp65 gene polymorphism in a large collection of“ Mycobacterium canettii” strains indicates that the M. tuberculosis complex is a recently emerged clone of “M. canettii”. J Clin Microbiol 42:3248–3255

    Article  PubMed  CAS  Google Scholar 

  • Filliol I, Driscoll JR, Van Soolingen D et al (2002) Global distribution of Mycobacterium tuberculosis spoligotypes. Emerg Infect Dis 8:1347–1349

    PubMed  Google Scholar 

  • Filliol I, Driscoll JR, van Soolingen D et al (2003) Snapshot of moving and expanding clones of Mycobacterium tuberculosis and their global distribution assessed by spoligotyping in an international study. J Clin Microbiol 41:1963–1970

    Article  PubMed  Google Scholar 

  • Filliol I, Motiwala AS, Cavatore M et al (2006) Global phylogeny of Mycobacterium tuberculosis based on single nucleotide polymorphism (SNP) analysis: insights into tuberculosis evolution, phylogenetic accuracy of other DNA fingerprinting systems, and recommendations for a minimal standard SNP set. J Bacteriol 188:759–772

    Article  PubMed  CAS  Google Scholar 

  • Fleischmann RD, Alland D, Eisen JA et al (2002) Whole-genome comparison of Mycobacterium tuberculosis clinical and laboratory strains. J Bacteriol 184:5479–5490

    Article  PubMed  CAS  Google Scholar 

  • Frieden TR, Sherman LF, Maw KL et al (1996) A multi-institutional outbreak of highly drug-resistant tuberculosis: epidemiology and clinical outcomes. JAMA 276:1229–1235

    Article  PubMed  CAS  Google Scholar 

  • Friedman CR, Stoeckle MY, Johnson WD et al (1995) Double-repetitive-element PCR method for subtyping Mycobacterium tuberculosis clinical isolates. J Clin Microbiol 33:1383–1384

    PubMed  CAS  Google Scholar 

  • Frothingham R, Meeker-O’Connell WA et al (1998) Genetic diversity in the Mycobacterium tuberculosis complex based on variable numbers of tandem DNA repeats. Microbiology 144:1189–1196

    Article  PubMed  CAS  Google Scholar 

  • Gagneux S, DeRiemer K, Van T et al (2006) Variable host–pathogen compatibility in Mycobacterium tuberculosis. Proc Natl Acad Sci USA 103:2869–2873

    Article  PubMed  CAS  Google Scholar 

  • Ghanekar K, McBride A, Dellagostin O et al (1999) Stimulation of transposition of the Mycobacterium tuberculosis insertion sequence IS6110 by exposure to a microaerobic environment. Mol Microbiol 33:982–993

    Article  PubMed  CAS  Google Scholar 

  • Gordon SV, Bottai D, Simeone R et al (2009) Pathogenicity in the tubercle bacillus: molecular and evolutionary determinants. Bioessays 31:378–388

    Article  PubMed  CAS  Google Scholar 

  • Gutacker MM, Mathema B, Soini H et al (2006) Single-nucleotide polymorphism-based population genetic analysis of Mycobacterium tuberculosis strains from 4 geographic sites. J Infect Dis 193:121–128

    Article  PubMed  CAS  Google Scholar 

  • Gutierrez MC, Brisse S, Brosch R et al (2005) Ancient origin and gene mosaicism of the progenitor of Mycobacterium tuberculosis. PLoS Pathog 1(1):e5

    Article  PubMed  Google Scholar 

  • Haas WH, Butler WR, Woodley CL et al (1993) Mixed-linker polymerase chain reaction: a new method for rapid fingerprinting of isolates of the Mycobacterium tuberculosis complex. J Clin Microbiol 31:1293–1298

    PubMed  CAS  Google Scholar 

  • Hermans PW, van Soolingen D, van Embden JD (1992) Characterization of a major polymorphic tandem repeat in Mycobacterium tuberculosis and its potential use in the epidemiology of Mycobacterium kansasii and Mycobacterium gordonae. J Bacteriol 174:4157–4165

    PubMed  CAS  Google Scholar 

  • Hershberg R, Lipatov M, Small PM et al (2008) High functional diversity in Mycobacterium tuberculosis driven by genetic drift and human demography. PLoS Biol 6(12):e311

    Article  PubMed  Google Scholar 

  • Hirsh AE, Tsolaki AG, DeRiemer K et al (2004) Stable association between strains of Mycobacterium tuberculosis and their human host populations. Proc Natl Acad Sci USA 101:4871–4876

    Article  PubMed  CAS  Google Scholar 

  • Hocking TL, Choi C (1997) Tuberculosis: a strategy to detect and treat new and reactivated infections. Geriatrics 52:52–54

    PubMed  CAS  Google Scholar 

  • Huard RC, Fabre M, de Haas P et al (2006) Novel genetic polymorphisms that further delineate the phylogeny of the Mycobacterium tuberculosis complex. J Bacteriol 188:4271–4287

    Article  PubMed  CAS  Google Scholar 

  • Joshi R, Reingold AL, Menzies D et al (2006) Tuberculosis among health-care workers in low- and middle-income countries: a systematic review. PLoS Med 3(12):e494

    Article  PubMed  Google Scholar 

  • Kamerbeek J, Schouls L, Kolk A et al (1997) Simultaneous detection and strain differentiation of Mycobacterium tuberculosis for diagnosis and epidemiology. J Clin Microbiol 35:907–914

    PubMed  CAS  Google Scholar 

  • Kaplan G, Post FA, Moreira AL et al (2003) Mycobacterium tuberculosis growth at the cavity surface: a microenvironment with failed immunity. Infect Immun 71:7099–7108

    Article  PubMed  CAS  Google Scholar 

  • Kong Y, Cave MD, Zhang L et al (2006) Association between Mycobacterium tuberculosis Beijing/W lineage strain infection and extrathoracic tuberculosis: insights from epidemiologic and clinical characterization of the three principal genetic groups of M. tuberculosis clinical isolates. J Clin Microbiol 45:409–414

    Article  PubMed  Google Scholar 

  • Kremer K, van Soolingen D, Frothingham R et al (1999) Comparison of methods based on different molecular epidemiological markers for typing of Mycobacterium tuberculosis complex strains: interlaboratory study of discriminatory power and reproducibility. J Clin Microbiol 37:2607–2618

    PubMed  CAS  Google Scholar 

  • Lai CC, Tan CK, Lin SH et al (2010) Clinical and genotypic characteristics of extensively drug-resistant and multidrug-resistant tuberculosis. Eur J Clin Microbiol Infect Dis 29:597–600

    Article  PubMed  CAS  Google Scholar 

  • Le Flèche P, Fabre M, Denoeud F et al (2002) High resolution, on-line identification of strains from the Mycobacterium tuberculosis complex based on tandem repeat typing. BMC Microbiol 2:37

    Article  PubMed  Google Scholar 

  • Li H, Ulstrup JC, Jonassen TO et al (1993) Evidence for absence of the MPB64 gene in some substrains of Mycobacterium bovis BCG. Infect Immun 61:1730–1734

    PubMed  CAS  Google Scholar 

  • López-Calleja AI, Gavín P, Lezcano MA et al (2009) Unsuspected and extensive transmission of a drug-susceptible Mycobacterium tuberculosis strain. BMC Pulm Med 9:3

    Article  PubMed  Google Scholar 

  • Martín A, Herránz M, Serrano MJR et al (2007) Rapid clonal analysis of recurrent tuberculosis by direct MIRU-VNTR typing on stored isolates. BMC Microbiol 7:73

    Article  PubMed  Google Scholar 

  • Martín A, Herranz M, Lirola MM et al (2008) Optimized molecular resolution of cross-contamination alerts in clinical mycobacteriology laboratories. BMC Microbiol 8:30

    Article  PubMed  Google Scholar 

  • Martínez M, García de Viedma D, Alonso M et al (2006) Impact of laboratory cross-contamination on molecular epidemiology studies of tuberculosis. J Clin Microbiol 44:2967–2969

    Article  PubMed  Google Scholar 

  • Mathema B, Kurepina NE, Bifani PJ et al (2006) Molecular epidemiology of tuberculosis: current insights. Clin Microbiol Rev 19:658–685

    Article  PubMed  CAS  Google Scholar 

  • Mazars E, Lesjean S, Banuls AL et al (2001) High-resolution minisatellite-based typing as a portable approach to global analysis of Mycobacterium tuberculosis molecular epidemiology. Proc Natl Acad Sci USA 98:1901–1906

    Article  PubMed  CAS  Google Scholar 

  • Menzies D, Joshi R, Pai M (2007) Risk of tuberculosis infection and disease associated with work in health care settings. Int J Tuberc Lung Dis 11:593–605

    PubMed  CAS  Google Scholar 

  • Munsiff SS, Nivin B, Sacajiu G et al (2003) Persistence of a highly resistant strain of tuberculosis in New York city during 1990–1999. J Infect Dis 188:356–363

    Article  PubMed  Google Scholar 

  • Niemann S, Köser CU, Gagneux S et al (2009) Genomic diversity among drug sensitive and multidrug resistant isolates of Mycobacterium tuberculosis with identical DNA fingerprints. PLoS One 4(10):e7407

    Article  PubMed  Google Scholar 

  • Parwati I, Alisjahbana B, Apriani L et al (2010) Mycobacterium tuberculosis Beijing genotype is an independent risk factor for tuberculosis treatment failure in Indonesia. J Infect Dis 201:553–557

    Article  PubMed  Google Scholar 

  • Pinsky BA, Banaei N (2008) Multiplex real-time PCR assay for rapid identification of Mycobacterium tuberculosis complex members to the species level. J Clin Microbiol 46:2241–2246

    Article  PubMed  CAS  Google Scholar 

  • Post FA, Willcox PA, Mathema B et al (2004) Genetic polymorphism in Mycobacterium tuberculosis isolates from patients with chronic multidrug-resistant tuberculosis. J Infect Dis 190:99–106

    Article  PubMed  CAS  Google Scholar 

  • Pourcel C, Salvignol G, Vergnaud G (2005) CRISPR elements in Yersinia pestis acquire new repeats by preferential uptake of bacteriophage DNA, and provide additional tools for evolutionary studies. Microbiology 151:653–663

    Article  PubMed  CAS  Google Scholar 

  • Prod’hom G, Guilhot C, Gutierrez MC et al (1997) Rapid discrimination of Mycobacterium tuberculosis complex strains by ligation-mediated PCR fingerprint analysis. J Clin Microbiol 35:3331–3334

    PubMed  Google Scholar 

  • Roring S, Scott A, Brittain D et al (2002) Development of variable-number tandem repeat typing of Mycobacterium bovis: comparison of results with those obtained by using existing exact tandem repeats and spoligotyping. J Clin Microbiol 40:2126–2133

    Article  PubMed  CAS  Google Scholar 

  • Ross BC, Raios K, Jackson K et al (1992) Molecular cloning of a highly repeated DNA element from Mycobacterium tuberculosis and its use as an epidemiological tool. J Clin Microbiol 30:942–946

    PubMed  CAS  Google Scholar 

  • Ruddy M, McHugh TD, Dale JW et al (2002) Estimation of the rate of unrecognized cross-contamination with Mycobacterium tuberculosis in London microbiology laboratories. J Clin Microbiol 40:4100–4104

    Article  PubMed  CAS  Google Scholar 

  • Schürch AC, Kremer K, Kiers A et al (2010) The tempo and mode of molecular evolution of Mycobacterium tuberculosis at patient-to-patient scale. Infect Genet Evol 10:108–114

    Article  PubMed  Google Scholar 

  • Schwoebel V, Decludt B, de Benoist AC et al (1998) Multidrug resistant tuberculosis in France 1992–1994: two case-control studies. BMJ 317:630–631

    PubMed  CAS  Google Scholar 

  • Small PM, McClenny NB, Singh SP et al (1993) Molecular strain typing of Mycobacterium tuberculosis to confirm cross-contamination in the mycobacteriology laboratory and modification of procedures to minimize occurrence of false-positive cultures. J Clin Microbiol 31:1677–1682

    PubMed  CAS  Google Scholar 

  • Small PM, Hopewell PC, Singh SP et al (1994) The epidemiology of tuberculosis in San Francisco. A population-based study using conventional and molecular methods. N Engl J Med 330:1703–1709

    Article  PubMed  CAS  Google Scholar 

  • Smittipat N, Billamas P, Palittapongarnpim M et al (2005) Polymorphism of variable-number tandem repeats at multiple loci in Mycobacterium tuberculosis. J Clin Microbiol 43:5034–5043

    Article  PubMed  CAS  Google Scholar 

  • Sreevatsan S, Pan X, Stockbauer KE et al (1997) Restricted structural gene polymorphism in the Mycobacterium tuberculosis complex indicates evolutionarily recent global dissemination. Proc Natl Acad Sci USA 94:9869–9874

    Article  PubMed  CAS  Google Scholar 

  • Sun Y, Bellamy R, Lee ASG et al (2004) Use of mycobacterial interspersed repetitive unit-variable-number tandem repeat typing to examine genetic diversity of Mycobacterium tuberculosis in Singapore. J Clin Microbiol 42:1986–1993

    Article  PubMed  CAS  Google Scholar 

  • Sunder S, Lanotte P, Godreuil S et al (2009) Human-to-human transmission of tuberculosis caused by Mycobacterium bovis in immunocompetent patients. J Clin Microbiol 47:1249–1251

    Article  PubMed  CAS  Google Scholar 

  • Supply P, Magdalena J, Himpens S et al (1997) Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26:991–1003

    Article  PubMed  CAS  Google Scholar 

  • Supply P, Mazars E, Lesjean S et al (2000) Variable human minisatellite-like regions in the Mycobacterium tuberculosis genome. Mol Microbiol 36:762–771

    Article  PubMed  CAS  Google Scholar 

  • Supply P, Lesjean S, Savine E et al (2001) Automated high-throughput genotyping for study of global epidemiology of Mycobacterium tuberculosis based on mycobacterial interspersed repetitive units. J Clin Microbiol 39:3563–3571

    Article  PubMed  CAS  Google Scholar 

  • Supply P, Allix C, Lesjean S et al (2006) Proposal for standardization of optimized mycobacterial interspersed repetitive unit-variable-number tandem repeat typing of Mycobacterium tuberculosis. J Clin Microbiol 44:4498–4510

    Article  PubMed  CAS  Google Scholar 

  • Talarico S, Donald Cave M, Foxman B et al (2007) Association of Mycobacterium tuberculosis PE_PGRS33 polymorphism with clinical and epidemiological characteristics. Tuberculosis 87:338–346

    Article  PubMed  CAS  Google Scholar 

  • Talarico S, Zhang L, Marrs CF et al (2008) Mycobacterium tuberculosis PE_PGRS16 and PE_PGRS26 genetic polymorphism among clinical isolates. Tuberculosis 88:283–294

    Article  PubMed  CAS  Google Scholar 

  • Thierry D, Brisson-Noël A, Vincent-Lévy-Frébault V et al (1990a) Characterization of a Mycobacterium tuberculosis insertion sequence, IS6110, and its application in diagnosis. J Clin Microbiol 28:2668–2673

    PubMed  CAS  Google Scholar 

  • Thierry D, Cave MD, Eisenach KD et al (1990b) IS6110, an IS-like element of Mycobacterium tuberculosis complex. Nucleic Acids Res 18:188

    Article  PubMed  CAS  Google Scholar 

  • Thwaites G, Caws M, Chau TTH et al (2008) Relationship between Mycobacterium tuberculosis genotype and the clinical phenotype of pulmonary and meningeal tuberculosis. J Clin Microbiol 46:1363–1368

    Article  PubMed  CAS  Google Scholar 

  • Tsolaki AG, Hirsh AE, DeRiemer K et al (2004) Functional and evolutionary genomics of Mycobacterium tuberculosis: insights from genomic deletions in 100 strains. Proc Natl Acad Sci USA 101:4865–4870

    Article  PubMed  CAS  Google Scholar 

  • Tsolaki AG, Gagneux S, Pym AS, de la Salmoniere G et al (2005) Genomic deletions classify the Beijing/W strains as a distinct genetic lineage of Mycobacterium tuberculosis. J Clin Microbiol 43:3185–3191

    Article  PubMed  CAS  Google Scholar 

  • Valway SE, Greifinger RB, Papania M et al (1994) Multidrug-resistant tuberculosis in the New York State prison system, 1990–1991. J Infect Dis 170:151–156

    Article  PubMed  CAS  Google Scholar 

  • van Embden JD, Cave MD, Crawford JT et al (1993) Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 31:406–409

    PubMed  Google Scholar 

  • van Soolingen D, Hermans PW, de Haas PE et al (1992) Insertion element IS1081-associated restriction fragment length polymorphisms in Mycobacterium tuberculosis complex species: a reliable tool for recognizing Mycobacterium bovis BCG. J Clin Microbiol 30:1772–1777

    PubMed  Google Scholar 

  • van Soolingen D, Qian L, de Haas PE et al (1995) Predominance of a single genotype of Mycobacterium tuberculosis in countries of east Asia. J Clin Microbiol 33:3234–3238

    PubMed  Google Scholar 

  • Warren RM, Victor TC, Streicher EM et al (2004) Patients with active tuberculosis often have different strains in the same sputum specimen. Am J Respir Crit Care Med 169:610–614

    Article  PubMed  Google Scholar 

  • WHO report (2009) Global tuberculosis control: a short update to the 2009 report. http://www.who.int/tb/publications/global_report/2009/update/en/index.html

  • Wiid IJ, Werely C, Beyers N et al (1994) Oligonucleotide (GTG)5 as a marker for Mycobacterium tuberculosis strain identification. J Clin Microbiol 32:1318–1321

    PubMed  CAS  Google Scholar 

  • Zhang Y, Heym B, Allen B et al (1992) The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 358:591–593

    Article  PubMed  CAS  Google Scholar 

  • Zhang J, Abadia E, Refregier G et al (2010) Mycobacterium tuberculosis complex CRISPR genotyping: improving efficiency, throughput and discriminative power of ‘spoligotyping’ with new spacers and a microbead-based hybridization assay. J Med Microbiol 59:285–294

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

The author thanks MC Gutierrez for providing some pictures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philippe Lanotte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Lanotte, P. (2012). Molecular Epidemiology of Tuberculosis. In: Morand, S., Beaudeau, F., Cabaret, J. (eds) New Frontiers of Molecular Epidemiology of Infectious Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2114-2_7

Download citation

Publish with us

Policies and ethics