Skip to main content

Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology

  • Chapter
  • First Online:
Radiation Damage in Biomolecular Systems

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) are a key modality in radiation oncology for brain and prostate tumors. Improved target definition for radiation therapy (RT) and distinction of changes due to RT from tumor recurrence have been greatly aided by MRSI. However, current applications of MRS/MRSI have limitations due to mainly the fast Fourier transform (FFT) and noise. Optimization of MRS/MRSI is possible by more advanced signal processing via the fast Padé transform (FPT). As a quotient of two polynomials, the FPT markedly improves the resolution of in vivo MR time signals encoded from the brain and reliably reconstructs all spectral parameters of metabolites. Due to high spectral density with numerous multiplet resonances, MRS/MRSI of the prostate is exceedingly difficult. The FPT applied to MRS data as encoded from normal and malignant prostate resolves all the genuine resonances, including multiplets and closely overlapping peaks. With synthesized time signals, the FPT fully retrieves all the input spectral parameters with machine accuracy. Such super-resolution is achieved without fitting or numerical integration of peak areas, thereby yielding the most accurate metabolite concentrations. This needs only short signal lengths that imply improved signal-to-noise ratios. These ratios are further enhanced by eliminating “noisy” Froissart doublets as confluent pole-zero pairs. Hence, only the true information is reconstructed by the FPT, as the prerequisite for clinically meaningful interpretations of in vivo time signals. With these long sought capabilities of advanced Padé-based signal processing, MRS and MRSI are poised to reach their full potential in radiation oncology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Belkić, Dž.: Quantum Mechanical Signal Processing and Spectral Analysis, Institute of Physics Publishing, Bristol (2005)

    Google Scholar 

  2. Belkić, Dž., Belkić, K.: Signal Processing in Magnetic Resonance Spectroscopy with Biomedical Applications, Taylor & Francis Group, London (2010)

    Google Scholar 

  3. Bortfeld, T., Phys. Med. Biol. 51, R363-R379 (2006)

    Article  ADS  Google Scholar 

  4. Belkić, K.: Molecular Imaging through Magnetic Resonance for Clinical Oncology, Cambridge International Science Publishing, Cambridge (2004)

    Google Scholar 

  5. Narayana, A., Chang, J., Thakur, S., Huang, W., Karimi, S., Hou, B., Kowalski, A., Perera, G., Holodny, A., Gutin, P., Br. J. Radiol. 80, 347-354 (2007)

    Article  Google Scholar 

  6. Joseph, T., McKenna, D., Westphalen, A., Coakley, F., Zhao, S., Lu, Y., Hsu, I., Roach, M., Kurhanewicz, J., Int. J. Radiat. Oncol. Biol. Phys. 73, 665-671 (2009)

    Article  Google Scholar 

  7. Pickett, B., Kurhanewicz, J., Pouliot, J., Weinberg, V., Shinohara, K., Coakley, F., Roach, M., Int. J. Radiat. Oncol. Biol. Phys. 65, 65-72 (2006)

    Article  Google Scholar 

  8. Westphalen, A., McKenna, D., Kurhanewicz, J., Coakley, F., J. Endourol. 22, 789-794 (2008)

    Article  Google Scholar 

  9. Hattingen, E., Pilatus, U., Franz, K., Zanella, F., Lanfermann, H., J. Magn. Reson. Imag. 26, 427-431 (2007)

    Article  Google Scholar 

  10. Opstad, K., Bell, B., Griffiths, J., Howe, F., Br. J. Cancer 100, 789-794 (2009)

    Article  Google Scholar 

  11. Opstad, K., Provencher, S., Bell, B., Griffiths, J., Howe, F., Magn. Reson. Med. 49, 632-637 (2003)

    Article  Google Scholar 

  12. Novotny, E., Fulbright, R., Pearl, P., Gibson, K., Rothman, D., Ann. Neurol. 54 (Suppl.), 25-31 (2003)

    Google Scholar 

  13. Auer, D., Gössl, C., Schirmer, T., Czisch, M., Magn. Reson. Med. 46, 615-618 (2001)

    Article  Google Scholar 

  14. Belkić, Dž., Belkić, K., J. Math. Chem. 45, 819-858 (2009)

    Google Scholar 

  15. Kim, C., Park, B., J. Comp. Assist. Tomogr. 32, 163-172, (2008)

    Article  Google Scholar 

  16. Belkić, Dž., Phys. Med. Biol. 51, 2633-2670 (2006)

    Google Scholar 

  17. Frahm, J., Bruhn, H., Gyngell, M., Merboldt, K., Hänicke, W., Sauter, R., Magn. Reson. Med. 9, 79-93 (1989)

    Article  Google Scholar 

  18. Tkáč, I., Andersen, P., Adriany, G., Merkle, H., Uǧurbil, K., Gruetter, R., Magn. Reson. Med. 46, 451-456 (2001)

    Article  Google Scholar 

  19. Swanson, M., Zektzer, A., Tabatabai, Z., Simko, J., Jarso, S., Keshari, K., Schmitt, L., Carroll, P., Shinohara, K., Vigneron, D., Kurhanewicz, J., Magn. Reson. Med. 55, 1257-1264 (2006)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Cancerfonden, the King Gustav the 5th Jubilee Fund, the Karolinska Institute Fund and by the Signe and Olof Wallenius Stiftelse, to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dževad Belkić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Belkić, D., Belkić, K. (2012). Optimized Molecular Imaging through Magnetic Resonance for Improved Target Definition in Radiation Oncology. In: García Gómez-Tejedor, G., Fuss, M. (eds) Radiation Damage in Biomolecular Systems. Biological and Medical Physics, Biomedical Engineering. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2564-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-2564-5_25

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-2563-8

  • Online ISBN: 978-94-007-2564-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics