Skip to main content

Chlamydial Disease: A Crossroad Between Chronic Infection and Development of Cancer

  • Chapter
  • First Online:
Bacteria and Cancer

Abstract

Chlamydia is an intracellular bacterium implicated as potentially oncogenic for its tendency to cause chronic and persistent infections. These organisms have been frequently associated with several types of cancer including cervical dysplasia and cancer by C. trachomatis, lung cancer and cutaneous T-cell lymphoma by C. pneumoniae and a number of non-gastrointestinal MALT lymphomas such as ocular adnexal lymphoma by C. psittaci, suggesting a potential role. C. trachomatis, which causes ocular-genital infections in humans, was recently demonstrated at molecular and cultural level in patients with ocular cancer, thus implying also for this bacterium a role in the pathogenesis of the above malignancy. The pathophysiological processes and molecular mechanisms that lead to the development of chronic inflammatory disease, persistence, and ultimately cancer, still need to be clarified. This chapter describes the pathogenetic aspects of Chlamydial infections favouring the onset of chronic diseases and cancers as well as the diagnostic and clinical features in relation to Chlamydia species involved. The potential application of bacteria-eradicating therapy would certainly represent an exciting challenge for the next few years.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AM:

Alveolar macrophages

EB:

Elementary bodies

EBV:

Epstein-Barr virus

HBV:

Hepatitis B virus

HPV:

Human papilloma virus

Hsp:

Heat Shock Proteins

LGV:

Lymphogranuloma venereum

MIP:

Macrophage Infectivity potentiator lipoprotein

MOMP:

Major outer membrane protein

MS:

Multiple Sclerosis

MZL:

Marginal zone B-cell lymphomas

NHL:

Non-Hodgkin’s lymphomas

OAL:

Ocular adnexal lymphoma

PAMP:

Pathogen-associated molecular patterns

PBMC:

Peripheral blood mononuclear cells

PCNSL:

Primary central nervous system marginal zone B cell lymphoma

PID:

Pelvic inflammatory disease

PRR:

Pattern recognition receptors

RB:

Reticulate bodies

STD:

Sexually transmitted disease

T3S:

Type III secretion

TETR-PCR:

Time-release polymerase chain reaction

TLR:

Toll-like receptors

References

  • Abrams JT, Balin BJ, Vonderheid EC (2001) Association between Sézary T cell-activating factor, Chlamydia pneumoniae, and cutaneous T cell lymphoma. Ann N Y Acad Sci 941:69–85

    PubMed  CAS  Google Scholar 

  • Aigelsreiter A, Leitner E, Deutsch AJ et al (2008) Chlamydia psittaci in MALT lymphomas of ocular adnexals: the Austrian experience. Leuk Res 32(8):1292–1294

    PubMed  Google Scholar 

  • Aigelsreiter A, Gerlza T, Deutsch AJ et al (2011) Chlamydia psittaci infection in nongastrointestinal extranodal MALT lymphomas and their precursor lesions. Am J Clin Pathol 135(1):70–75

    PubMed  CAS  Google Scholar 

  • Airenne S, Surcel HM, Alakärppä H et al (1999) Chlamydia pneumoniae infection in human monocytes. Infect Immun 67(3):1445–1449

    PubMed  CAS  Google Scholar 

  • Anttila TI, Lehtinen T, Leinonen M et al (1998) Serological evidence of an association between chlamydial infections and malignant lymphomas. Br J Haematol 103(1):150–156

    PubMed  CAS  Google Scholar 

  • Bas S, Neff L, Vuillet M et al (2008) The proinflammatory cytokine response to Chlamydia trachomatis elementary bodies in human macrophages is partly mediated by a lipoprotein, the macrophage infectivity potentiator, through TLR2/TLR1/TLR6 and CD14. J Immunol 180(2):1158–1168

    PubMed  CAS  Google Scholar 

  • Beatty WL, Morrison RP, Byrne GI (1994) Persistent Chlamydiae: from cell culture to a paradigm for Chlamydial pathogenesis. Microbiol Rev 58(4):686–699

    PubMed  CAS  Google Scholar 

  • Behrens-Baumann W (2007) Chlamydial diseases of the eye. A short overview. Ophthalmologe 104(1):28–34

    PubMed  CAS  Google Scholar 

  • Belland RJ, Zhong G, Crane DD et al (2003) Genomic transcriptional profiling of the developmental cycle of Chlamydia trachomatis. Proc Natl Acad Sci USA 100(14):8478–8483

    PubMed  CAS  Google Scholar 

  • Bodetti TJ, Timms P (2000) Detection of Chlamydia pneumoniae DNA and antigen in the circulating mononuclear cell fractions of humans and koalas. Infect Immun 68(5):2744–2747

    PubMed  CAS  Google Scholar 

  • Brinkmann V, Remington JS, Sharma SD (1987) Protective immunity in toxoplasmosis: correlation between antibody response, brain cyst formation, T-cell activation, and survival in normal and B-cell-deficient mice bearing the H-2 k haplotype. Infect Immun 55(4):990–994

    PubMed  CAS  Google Scholar 

  • Bulut Y, Faure E, Thomas L et al (2002) Chlamydial heat shock protein 60 activates macrophages and endothelial cells through Toll-like receptor 4 and MD2 in a MyD88-dependent pathway. J Immunol 168(3):1435–1440

    PubMed  CAS  Google Scholar 

  • Byrne GI, Ojcius DM (2004) Chlamydia and apoptosis: life and death decisions of an intracellular pathogen. Nat Rev Microbiol 2(10):802–808

    PubMed  CAS  Google Scholar 

  • Campbell LA, Kuo CC (2004) Chlamydia pneumoniae: an infectious risk factor for atherosclerosis? Nat Rev Microbiol 2(1):23–32

    PubMed  CAS  Google Scholar 

  • Cappello F, Conway de Macario E, Di Felice V et al (2009) Chlamydia trachomatis infection and anti-Hsp60 immunity: the two sides of the coin. PLoS Pathog 5(8):e1000552

    PubMed  Google Scholar 

  • Cardinale M, Brusetti L, Quatrini P et al (2004) Comparison of different primer sets for use in automated ribosomal intergenic spacer analysis of complex bacterial communities. Appl Environ Microbiol 70(10):6147–6156

    PubMed  CAS  Google Scholar 

  • Carugi A, Onnis A, Antonicelli G et al (2010) Geographic variation and environmental conditions as cofactors in Chlamydia psittaci association with ocular adnexal lymphomas: a comparison between Italian and African samples. Hematol Oncol 28(1):20–26

    PubMed  CAS  Google Scholar 

  • Center for Disease Control and Prevention, Atlanta (2004) Sexually transmitted disease surveillance 2003 supplement. Center for Disease Control and Prevention, Atlanta

    Google Scholar 

  • Chan CC, Shen D, Mochizuki M et al (2006) Detection of Helicobacter pylori and Chlamydia pneumoniae genes in primary orbital lymphoma. Trans Am Ophthalmol Soc 104:62–70

    PubMed  Google Scholar 

  • Chanudet E, Zhou Y, Bacon CM et al (2006) Chlamydia psittaci is variably associated with ocular adnexal MALT lymphoma in different geographical regions. J Pathol 209(3):344–351

    PubMed  CAS  Google Scholar 

  • Chaturvedi AK, Gaydos CA, Agreda P et al (2010) Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidemiol Biomarkers Prev 19(6):1498–1505

    PubMed  CAS  Google Scholar 

  • Cheema MA, Schumacher HR, Hudson AP (1991) RNA-directed molecular hybridization screening: evidence for inapparent Chlamydial infection. Am J Med Sci 302(5):261–268

    PubMed  CAS  Google Scholar 

  • Cirino F, Webley WC, West C et al (2006) Detection of Chlamydia in the peripheral blood cells of normal donors using in vitro culture, immunofluorescence microscopy and flow cytometry techniques. BMC Infect Dis 6:23

    PubMed  Google Scholar 

  • Contini C, Cultrera R, Seraceni S et al (2004) Cerebrospinal fluid molecular demonstration of Chlamydia pneumoniae DNA is associated to clinical and brain magnetic resonance imaging activity in a subset of patients with relapsing-remitting multiple sclerosis. Mult Scler 10(4):360–369

    PubMed  CAS  Google Scholar 

  • Contini C, Seraceni S, Castellazzi M et al (2008) Chlamydophila pneumoniae DNA and mRNA transcript levels in peripheral blood mononuclear cells and cerebrospinal fluid of patients with multiple sclerosis. Neurosci Res 62(1):58–61

    PubMed  CAS  Google Scholar 

  • Contini C, Seraceni S, Carradori S et al (2009) Identification of Chlamydia trachomatis in a patient with ocular lymphoma. Am J Hematol 84(9):597–599

    PubMed  Google Scholar 

  • Contini C, Seraceni S, Cultrera R et al (2010a) Chlamydophila pneumoniae infection and its role in neurological disorders. Interdiscip Perspect Infect Dis [Epub Feb 21:273573]

    Google Scholar 

  • Contini C, Grilli A, Badia L et al (2010b) Detection of Chlamydophila pneumoniae in patients with arthritis: significance and diagnostic value. Rheumatol Int Apr 10 [Epub ahead of print]

    Google Scholar 

  • Cunningham AF, Johnston SL, Julious SA et al (1998) Chronic Chlamydia pneumoniae infection and asthma exacerbations in children. Eur Respir J 11(2):345–349

    PubMed  CAS  Google Scholar 

  • Daibata M, Nemoto Y, Togitani K et al (2006) Absence of Chlamydia psittaci in ocular adnexal lymphoma from Japanese patients. Br J Haematol 132(5):651–652

    PubMed  Google Scholar 

  • Dautry-Varsat A, Subtil A, Hackstadt T (2005) Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol 7(12):1714–1722

    PubMed  CAS  Google Scholar 

  • De Vita S, Sacco C, Sansonno D et al (1997) Characterization of overt B-cell lymphomas in patients with hepatitis C virus infection. Blood 90(2):776–782

    PubMed  Google Scholar 

  • Dean D, Powers VC (2001) Persistent Chlamydia trachomatis infections resist apoptotic stimuli. Infect Immun 69(4):2442–2447

    PubMed  CAS  Google Scholar 

  • Decaudin D, Dolcetti R, De Cremoux P et al (2008) Variable association between Chlamydophila psittaci infection and ocular adnexal lymphomas: methodological biases or true geographical variations. Anticancer Drugs 19(8):761–765

    PubMed  CAS  Google Scholar 

  • Dreses-Werringloer U, Padubrin I, Jürgens-Saathoff B et al (2000) Persistence of Chlamydia trachomatis is induced by ciprofloxacin and ofloxacin in vitro. Antimicrob Agents Chemother 44(12):3288–3297

    PubMed  CAS  Google Scholar 

  • Du MQ (2007) MALT lymphoma: recent advances in aetiology and molecular genetics. J Clin Exp Hematop 47(2):31–42

    PubMed  Google Scholar 

  • Elkind MS, Lin IF, Grayston JT et al (2000) Chlamydia pneumoniae and the risk of first ischemic stroke: the Northern Manhattan Stroke Study. Stroke 31(7):1521–1525

    PubMed  CAS  Google Scholar 

  • Everett KD, Bush RM, Andersen AA (1999) Emended description of the order Chlamydiales, proposal of Parachlamydiaceae fam. nov. and Simkaniaceae fam. nov., each containing one monotypic genus, revised taxonomy of the family Chlamydiaceae, including a new genus and five new species, and standards for the identification of organisms. Int J Syst Bacteriol 49(Pt 2):415–440

    PubMed  CAS  Google Scholar 

  • Fainardi E, Castellazzi M, Seraceni S et al (2008) Under the microscope: focus on Chlamydia pneumoniae infection and multiple sclerosis. Curr Neurovasc Res 5(1):60–70

    PubMed  CAS  Google Scholar 

  • Falco Jover G, Martınez Egea A, Sanchez Cuenca J et al (1999) Regression of primary gastric B-cell mucosa-associated lymphoid tissue (MALT) lymphoma after eradication of Helicobacter pylori. Rev Esp Enferm Dig 91(8):541–548

    PubMed  CAS  Google Scholar 

  • Ferreri AJ, Guidoboni M, Ponzoni M et al (2004) Evidence for an association between Chlamydia psittaci and ocular adnexal lymphoma. J Natl Cancer Inst 96(8):586–594

    PubMed  Google Scholar 

  • Ferreri AJ, Ponzoni M, Guidoboni M et al (2005) Regression of ocular adnexal lymphoma after Chlamydia psittaci-eradicating antibiotic therapy. J Clin Oncol 23(22):5067–5073

    PubMed  Google Scholar 

  • Ferreri AJ, Ponzoni M, Guidoboni M et al (2006) Bacteria-eradicating therapy with doxycycline in ocular adnexal MALT lymphoma: a multicenter prospective trial. J Natl Cancer Inst 98(19):1375–1382

    PubMed  CAS  Google Scholar 

  • Ferreri AJ, Dognini GP, Ponzoni M et al (2008a) Chlamydophila psittaci-eradicating antibiotic therapy in patients with advanced-stage ocular adnexal MALT lymphoma. Ann Oncol 19(1):194–195

    PubMed  CAS  Google Scholar 

  • Ferreri AJ, Dolcetti R, Dognini GP et al (2008b) Chlamydophila psittaci is viable and infectious in the conjunctiva and peripheral blood of patients with ocular adnexal lymphoma: results of a single-center prospective case–control study. Int J Cancer 123(5):1089–1093

    PubMed  CAS  Google Scholar 

  • Gérard HC, Schumacher HR, El-Gabalawy H et al (2000) Chlamydia pneumoniae present in the human synovium are viable and metabolically active. Microb Pathog 29(1):17–24

    PubMed  Google Scholar 

  • Gérard HC, Krausse-Opatz B, Wang Z et al (2001) Expression of Chlamydia trachomatis genes encoding products required for DNA synthesis and cell division during active versus persistent infection. Mol Microbiol 41(3):731–741

    PubMed  Google Scholar 

  • Gérard HC, Whittum-Hudson JA, Schumacher HR et al (2004) Differential expression of three Chlamydia trachomatis hsp60-encoding genes in active vs. persistent infections. Microb Pathog 36(1):35–39

    PubMed  Google Scholar 

  • Girschick HJ, Guilherme L, Inman RD et al (2008) Bacterial triggers and autoimmune rheumatic diseases. Clin Exp Rheumatol 26(1):S12–S17

    PubMed  CAS  Google Scholar 

  • Gracia E, Froesch P, Mazzucchelli L et al (2007) Low prevalence of Chlamydia psittaci in ocular adnexal lymphomas from Cuban patients. Leuk Lymphoma 48(1):104–108

    PubMed  CAS  Google Scholar 

  • Groves FD, Linet MS, Travis LB et al (2000) Cancer surveillance series: Non-Hodgkin’s lymphoma incidence by histologic subtype in the United States from 1978 through 1995. J Natl Cancer Inst 92(15):1240–1251

    PubMed  CAS  Google Scholar 

  • Grünberger B, Hauff W, Lukas J et al (2006) ‘Blind’ antibiotic treatment targeting Chlamydia is not effective in patients with MALT lymphoma of the ocular adnexa. Ann Oncol 17(3):484–487

    PubMed  Google Scholar 

  • Guidoboni M, Ferreri AJ, Ponzoni M et al (2006) Infectious agents in mucosa-associated lymphoid tissue-type lymphomas: pathogenic role and therapeutic perspectives. Clin Lymphoma Myeloma 6(4):289–300

    PubMed  Google Scholar 

  • Hanna L, Schmidt L, Sharp M et al (1979) Human cell-mediated immune responses to Chlamydial antigens. Infect Immun 23(2):412–417

    PubMed  CAS  Google Scholar 

  • Haranaga S, Yamaguchi H, Friedman H et al (2001) Chlamydia pneumoniae infects and multiplies in lymphocytes in vitro. Infect Immun 69(12):7753–7759

    PubMed  CAS  Google Scholar 

  • Harris NL, Jaffe ES, Stein H et al (1994) A revised European-American classification of lymphoid neoplasms: a proposal from the International Lymphoma Study Group. Blood 84(5):1361–1392

    PubMed  CAS  Google Scholar 

  • Heddema ER, Beld MG, de Wever B et al (2006) Development of an internally controlled real-time PCR assay for detection of Chlamydophila psittaci in the LightCycler 2.0 system. Clin Microbiol Infect 12(6):571–575

    PubMed  CAS  Google Scholar 

  • Hill JE, Goh SH, Money DM et al (2005) Characterization of vaginal microflora of healthy, nonpregnant women by chaperonin-60 sequence-based methods. Am J Obstet Gynecol 193(Pt 1):682–692

    PubMed  CAS  Google Scholar 

  • Hogan RJ, Mathews SA, Mukhopadhyay S et al (2004) Chlamydial persistence: beyond the biphasic paradigm. Infect Immun 72(4):1843–1855

    PubMed  CAS  Google Scholar 

  • Honma K, Tsuzuki S, Nakagawa M et al (2008) TNFAIP3 is the target gene of chromosome band 6q23.3–q24.1 loss in ocular adnexal marginal zone B cell lymphoma. Genes Chromosomes Cancer 47(1):1–7

    PubMed  CAS  Google Scholar 

  • Husain A, Roberts D, Pro B et al (2007) Meta-analyses of the association between Chlamydia psittaci and ocular adnexal lymphoma and the response of ocular adnexal lymphoma to antibiotics. Cancer 110(4):809–815

    PubMed  Google Scholar 

  • Ieven MM, Hoymans VY (2005) Involvement of Chlamydia pneumoniae in atherosclerosis: more evidence for lack of evidence. J Clin Microbiol 43(1):19–24

    PubMed  Google Scholar 

  • Isaacson PG, Du MQ (2004) MALT lymphoma: from morphology to molecules. Nat Rev Cancer 4(8):644–653

    PubMed  CAS  Google Scholar 

  • Jemal A, Center MM, DeSantis C et al (2010) Global patterns of cancer incidence and mortality rates and trends. Cancer Epidemiol Biomarkers Prev 19(8):1893–1907

    PubMed  Google Scholar 

  • Jenkins C, Rose GE, Bunce C et al (2000) Histological features of ocular adnexal lymphoma (REAL classification) and their association with patient morbidity and survival. Br J Ophthalmol 84(8):907–913

    PubMed  CAS  Google Scholar 

  • Johnson L, Wirotsko E, Wirotsko W et al (1996) Mycoplasma-like organisms in Hodkin’s disease. Lancet 347(9005):901–902

    PubMed  CAS  Google Scholar 

  • Kalman S, Mitchell W, Marathe R et al (1999) Comparative genomes of Chlamydia pneumoniae and C. trachomatis. Nat Genet 21(4):385–389

    PubMed  CAS  Google Scholar 

  • Kern JM, Maass V, Maass M (2009) Molecular pathogenesis of chronic Chlamydia pneumoniae infection: a brief overview. Clin Microbiol Infect 15(1):36–41

    PubMed  CAS  Google Scholar 

  • Kocazeybek B (2003) Chronic Chlamydophila pneumoniae infection in lung cancer, a risk factor: a case-control study. J Med Microbiol 52(Pt 8):721–726

    PubMed  Google Scholar 

  • Kuo CC, Jackson LA, Campbell LA et al (1995) Chlamydia pneumoniae (TWAR). Clin Microbiol Rev 8(4):451–461

    PubMed  CAS  Google Scholar 

  • Lax AJ (2005) Opinion: bacterial toxins and cancer–a case to answer? Nat Rev Microbiol 3(4):343–349

    PubMed  CAS  Google Scholar 

  • Lecuit M, Abachin E, Martin A et al (2004) Immunoproliferative small intestinal disease associated with Campylobacter jejuni. N Engl J Med 350(3):239–248

    PubMed  CAS  Google Scholar 

  • Lee JL, Kim MK, Lee KH et al (2005) Extranodal marginal zone B-cell lymphomas of mucosa-associated lymphoid tissue-type of the orbit and ocular adnexa. Ann Hematol 84(1):13–18

    PubMed  Google Scholar 

  • Lietman T, Brooks D, Moncada J et al (1998) Chronic follicular conjunctivitis associated with Chlamydia psittaci or Chlamydia pneumoniae. Clin Infect Dis 26(6):1335–1340

    PubMed  CAS  Google Scholar 

  • Littman AJ, Jackson LA, Vaughan TL (2005) Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidemiol Biomarkers Prev 14(4):773–778

    PubMed  CAS  Google Scholar 

  • Liu YC, Ohyashiki JK, Ito Y et al (2006) Chlamydia psittaci in ocular adnexal lymphoma: Japanese experience. Leuk Res 30(12):1587–1589, Letter to Editor

    PubMed  CAS  Google Scholar 

  • Madico G, Quinn TC, Boman J et al (2000) Touchdown enzyme time release-PCR for detection and identification of Chlamydia trachomatis, C. pneumoniae, and C. psittaci using the 16S and 16S—23S spacer rRNA genes. J Clin Microbiol 38(3):1085–1093

    PubMed  CAS  Google Scholar 

  • Magrath I (1990) The pathogenesis of Burkitt’s lymphoma. Adv Cancer Res 55:133–270

    PubMed  CAS  Google Scholar 

  • Mahony JB, Chong S, Coombes BK et al (2000) Analytical sensitivity, reproducibility of results, and clinical performance of five PCR assays for detecting Chlamydia pneumoniae DNA in peripheral blood mononuclear cells. J Clin Microbiol 38(7):2622–2627

    PubMed  CAS  Google Scholar 

  • Manavi K (2006) A review on infection with Chlamydia trachomatis. Best Pract Res Clin Obstet Gynaecol 20(6):941–951

    PubMed  Google Scholar 

  • Mathews S, George C, Flegg C et al (2001) Differential expression of ompA, ompB, pyk, nlpD and Cpn0585 genes between normal and interferon-gamma treated cultures of Chlamydia pneumoniae. Microb Pathog 30(6):337–345

    PubMed  CAS  Google Scholar 

  • Matsumoto T, Iida M (2005) Extra-gastric lymphoma of MALT type and H. pylori eradication. Nippon Rinsho 63(Suppl 1):308–311

    PubMed  Google Scholar 

  • Matthews JM, Moreno LI, Dennis J et al (2008) Ocular adnexal lymphoma: no evidence for bacterial DNA associated with lymphoma pathogenesis. Br J Haematol 142(2):246–249

    PubMed  CAS  Google Scholar 

  • McKelvie PA (2010) Ocular adnexal lymphomas: a review. Adv Anat Pathol 17(4):251–261

    PubMed  Google Scholar 

  • Messmer TO, Skelton SK, Moroney JF et al (1997) Application of a nested, multiplex PCR to psittacosis outbreaks. J Clin Microbiol 35(8):2043–2046

    PubMed  CAS  Google Scholar 

  • Millman KL, Tavare S, Dean D (2001) Recombination in the ompA gene but not the omcB gene of Chlamydia contributes to serovar-specific differences in tissue tropism, immune surveillance, and persistence of the organism. J Bacteriol 183(20):5997–6008

    PubMed  CAS  Google Scholar 

  • Miyairi I, Byrne GI (2006) Chlamydia and programmed cell death. Curr Opin Microbiol 9(1):102–108

    PubMed  CAS  Google Scholar 

  • Molestina RE, Klein JB, Miller RD et al (2002) Proteomic analysis of differentially expressed Chlamydia pneumoniae genes during persistent infection of HEp-2 cells. Infect Immun 70(6):2976–2981

    PubMed  CAS  Google Scholar 

  • Morrison SG, Su H, Caldwell HD et al (2000) Immunity to murine Chlamydia trachomatis genital tract reinfection involves B cells and CD4(+) T cells but not CD8(+) T cells. Infect Immun 68(12):6979–6987

    PubMed  CAS  Google Scholar 

  • Mulder MM, Heddema ER, Pannekoek Y et al (2006) No evidence for an association of ocular adnexal lymphoma with Chlamydia psittaci in a cohort of patients from the Netherlands. Leuk Res 30(10):1305–1307

    PubMed  Google Scholar 

  • Müller AM, Ihorst G, Mertelsmann R et al (2005) Epidemiology of non-Hodgkin’s lymphoma (NHL): trends, geographic distribution, and etiology. Ann Hematol 84(1):1–12

    PubMed  Google Scholar 

  • Mussa FF, Chai H, Wang X et al (2006) Chlamydia pneumoniae and vascular disease: an update. J Vasc Surg 43(6):1301–1307

    PubMed  Google Scholar 

  • Nathwani BN, Anderson JR, Armitage JO et al (1999) Marginal zone B-cell lymphoma: a clinical comparison of nodal and mucosa-associated lymphoid tissue types. Non-Hodgkin’s Lymphoma Classification Project. J Clin Oncol 17(8):2486–2492

    PubMed  CAS  Google Scholar 

  • Nieuwenhuis RF, Ossewaarde JM, Götz HM et al (2004) Resurgence of lymphogranuloma venereum in Western Europe: an outbreak of Chlamydia trachomatis serovar l2 proctitis in The Netherlands among men who have sex with men. Clin Infect Dis 39(7):996–1003

    PubMed  Google Scholar 

  • Novak U, Rinaldi A, Kwee I et al (2009) The NF-{kappa}B negative regulator TNFAIP3 (A20) is inactivated by somatic mutations and genomic deletions in marginal zone lymphomas. Blood 113(20):4918–4921

    PubMed  CAS  Google Scholar 

  • O’Connor CM, Dunne MW, Pfeffer MA et al (2003) Azithromycin for the secondary prevention of coronary heart disease events: the WIZARD study: a randomized controlled trial. JAMA 290(11):1459–1466

    PubMed  Google Scholar 

  • Ohashi K, Burkart V, Flohe S et al (2000) Cutting edge: heat shock protein 60 is a putative endogenous ligand of the Toll-like receptor-4 complex. J Immunol 164(2):558–561

    PubMed  CAS  Google Scholar 

  • Olejek A, Kozak-Darmas I, Kellas-Sleczka S et al (2009) Chlamydia trachomatis infection in women with lichen sclerosus vulvae and vulvar cancer. Neuro Endocrinol 30(5):671–674

    Google Scholar 

  • Ossewaarde JM, Meijer A (1999) Molecular evidence for the existence of additional members of the order Chlamydiales. Microbiology 145(Pt 2):411–417

    PubMed  CAS  Google Scholar 

  • Parkin DM (2001) Global cancer statistics in the year 2000. Lancet Oncol 2(9):533–543

    PubMed  CAS  Google Scholar 

  • Perfettini JL, Darville T, Dautry-Varsat A et al (2002) Inhibition of apoptosis by gamma interferon in cells and mice infected with Chlamydia muridarum (the mouse pneumonitis strain of Chlamydia trachomatis). Infect Immun 70(5):2559–2565

    PubMed  CAS  Google Scholar 

  • Peters J, Wilson DP, Myers G et al (2007) Type III secretion a` la Chlamydia. Trends Microbiol 15(6):241–251

    PubMed  CAS  Google Scholar 

  • Pockley AG (2003) Heat shock proteins as regulators of the immune response. Lancet 362(9382):469–476

    PubMed  CAS  Google Scholar 

  • Polack S, Brooker S, Kuper H et al (2005) Mapping the global distribution of trachoma. Bull World Health Organ 83(12):913–919

    PubMed  Google Scholar 

  • Ponzoni M, Ferreri AJ, Guidoboni M et al (2008) Chlamydia infection and lymphomas: association beyond ocular adnexal lymphomas highlighted by multiple detection methods. Clin Cancer Res 14(18):5794–5800

    PubMed  CAS  Google Scholar 

  • Ponzoni M, Ferreri AJ, Doglioni C et al (2010) Unconventional therapies in ocular adnexal lymphomas. Expert Rev Anticancer Ther 10(9):1341–1343

    PubMed  Google Scholar 

  • Ponzoni M, Bonetti F, Poliani PL et al (2011) Central nervous system marginal zone B-cell lymphoma associated with Chlamydophila psittaci infection. Hum Pathol 42(5):738–742

    PubMed  Google Scholar 

  • Pruckler JM, Masse N, Stevens VA et al (1999) Optimizing culture of Chlamydia pneumoniae by using multiple centrifugations. J Clin Microbiol 37(10):3399–3401

    PubMed  CAS  Google Scholar 

  • Quirk JT, Kupinski JM (2001) Chronic infection, inflammation, and epithelial ovarian cancer. Med Hypotheses 57(4):426–428

    PubMed  CAS  Google Scholar 

  • Raggam RB, Leitner E, Berg J et al (2005) Single-run, parallel detection of DNA from three pneumonia-producing bacteria by real-time polymerase chain reaction. J Mol Diagn 7(1):133–138

    PubMed  CAS  Google Scholar 

  • Rasanen L, Lehto M, Jokinen I et al (1986) Polyclonal antibody formation of human lymphocytes to bacterial components. Immunology 58(4):577–581

    PubMed  CAS  Google Scholar 

  • Rasmussen SJ, Eckmann L, Quayle AJ et al (1997) Secretion of proinflammatory cytokines by epithelial cells in response to Chlamydia infection suggests a central role for epithelial cells in Chlamydial pathogenesis. J Clin Invest 99(1):77–87

    PubMed  CAS  Google Scholar 

  • Raulston JE (1997) Response of Chlamydia trachomatis serovar E to iron restriction in vitro and evidence for iron-regulated Chlamydial proteins. Infect Immun 65(11):4539–4547

    PubMed  CAS  Google Scholar 

  • Redecke V, Dalhoff K, Bohnet S et al (1998) Interaction of Chlamydia pneumoniae and human alveolar macrophages: infection and inflammatory response. Am J Respir Cell Mol Biol 19(5):721–727

    PubMed  CAS  Google Scholar 

  • Resnikoff S, Pascolini D, Mariotti SP et al (2008) Global magnitude of visual impairment caused by uncorrected refractive errors in 2004. Bull World Health Organ 86(1):63–70

    PubMed  Google Scholar 

  • Risch HA, Howe GR (1995) Pelvic inflammatory disease and the risk of epithelial ovarian cancer. Cancer Epidemiol Biomarkers Prev 4(5):447–451

    PubMed  CAS  Google Scholar 

  • Rosado MF, Byrne GE Jr, Ding F et al (2006) Ocular adnexal lymphoma: a clinicopathological study of a large cohort of patients with no evidence for an association with Chlamydia psittaci. Blood 107(2):467–472

    PubMed  CAS  Google Scholar 

  • Saikku P, Leinonen M, Mattila K et al (1988) Serological evidence of an association of a novel Chlamydia, TWAR, with chronic coronary heart disease and acute myocardial infarction. Lancet 2(8618):983–986

    PubMed  CAS  Google Scholar 

  • Samaras V, Rafailidis PI, Mourtzoukou EG et al (2010) Chronic bacterial and parasitic infections and cancer: a review. J Infect Dev Ctries 4(5):267–281

    PubMed  Google Scholar 

  • Sardinia LM, Segal E, Ganem D (1988) Developmental regulation of the cysteine-rich outer-membrane proteins of murine Chlamydia trachomatis. J Gen Microbiol 134(4):997–1004

    PubMed  CAS  Google Scholar 

  • Schachter J, Hill EC, King EB et al (1975) Chlamydial infection in women with cervical dysplasia. Am J Obstet Gynecol 123(7):753–757

    PubMed  CAS  Google Scholar 

  • Sessa R, Di Pietro M, Schiavoni G et al (2007) Measurement of Chlamydia pneumoniae bacterial load in peripheral blood mononuclear cells may be helpful to assess the state of Chlamydial infection in patients with carotid atherosclerotic disease. Atherosclerosis 195(1):e224–e230

    PubMed  CAS  Google Scholar 

  • Shen D, Yuen HK, Galita DA et al (2006) Detection of Chlamydia pneumoniae in a bilateral orbital mucosa-associated lymphoid tissue lymphoma. Am J Ophthalmol 141(6):1162–1163

    PubMed  Google Scholar 

  • Slater DN (2001) Borrelia burgdorferi–associated primary cutaneous B-cell lymphoma. Histopathology 38(1):73–77

    PubMed  CAS  Google Scholar 

  • Smith KA, Bradley KK, Stobierski MG et al (2005) Compendium of measures to control Chlamydophila psittaci (formerly Chlamydia psittaci) infection among humans (psittacosis) and pet birds. J Am Vet Med Assoc 226(4):532–539

    PubMed  Google Scholar 

  • Sriram S, Ljunggren-Rose A, Yao SY et al (2005) Detection of chlamydial bodies and antigens in the central nervous system of patients with multiple sclerosis. J Infect Dis 192(7):1219–1228

    PubMed  Google Scholar 

  • Stephens RS (2003) The cellular paradigm of Chlamydial pathogenesis. Trends Microbiol 11(1):44–51

    PubMed  CAS  Google Scholar 

  • Stratton CW, Mitchell WM (1997) The immunopathology of Chlamydial infections. Antimicrob Infect Dis Newsl 16:89–94

    Google Scholar 

  • Stratton CW, Sriram S (2003) Association of Chlamydia pneumoniae with central nervous system disease. Microbes Infect 5(13):1249–1253

    PubMed  Google Scholar 

  • Streubel B, Simonitsch-Klupp I, Müllauer L et al (2004) Variable frequencies of MALT lymphoma-associated genetic aberrations in MALT lymphomas of different sites. Leukemia 18(10):1722–1726

    PubMed  CAS  Google Scholar 

  • Sueltenfuss EA, Pollard M (1963) Cytochemical assay of interferon produced by duck hepatitis virus. Science 139(3555):595–596

    PubMed  CAS  Google Scholar 

  • Suzuki M, Rappe MS, Giovannoni SJ (1998) Kinetic bias in estimates of coastal picoplankton community structure obtained by measurements of small-subunit rRNA gene PCR amplicon length heterogeneity. Appl Environ Microbiol 64(11):4522–4529

    PubMed  CAS  Google Scholar 

  • Sykes JE, Anderson GA, Studdert VP et al (1999) Prevalence of feline Chlamydia psittaci and feline herpesvirus 1 in cats with upper respiratory tract disease. J Vet Intern Med 13(3):153–162

    PubMed  CAS  Google Scholar 

  • Teig N, Anders A, Schmidt C et al (2005) Chlamydophila pneumoniae and Mycoplasma pneumoniae in respiratory specimens of children with chronic lung diseases. Thorax 60(11):962–966

    PubMed  CAS  Google Scholar 

  • Thieblemont C, Berger F, Coiffier B (1995) Mucosa-associated lymphoid tissue lymphomas. Curr Opin Oncol 7(5):415–420

    PubMed  CAS  Google Scholar 

  • Tong CY, Sillis M (1993) Detection of Chlamydia pneumoniae and Chlamydia psittaci in sputum samples by PCR. J Clin Pathol 46(4):313–317

    PubMed  CAS  Google Scholar 

  • Toye B, Laferrière C, Claman P et al (1993) Association between antibody to the Chlamydial heat-shock protein and tubal infertility. J Infect Dis 168(5):1236–1240

    PubMed  CAS  Google Scholar 

  • Ulcickas Yood M, Quesenberry CP Jr, Guo D et al (2007) Incidence of non-Hodgkin’s lymphoma among individuals with chronic hepatitis B virus infection. Hepatology 46(1):107–112

    PubMed  Google Scholar 

  • Van Zandbergen G, Gieffers J, Kothe H et al (2004) Chlamydia pneumoniae multiply in neutrophil granulocytes and delay their spontaneous apoptosis. J Immunol 172(3):1768–1776

    PubMed  Google Scholar 

  • Vargas RL, Fallone E, Felgar RE et al (2006) Is there an association between ocular adnexal lymphoma and infection with Chlamydia psittaci? The University of Rochester experience. Leuk Res 30(5):547–551

    PubMed  Google Scholar 

  • Verma V, Shen D, Sieving PC et al (2008) The role of infectious agents in the etiology of ocular adnexal neoplasia. Surv Ophthalmol 53(4):312–331

    PubMed  Google Scholar 

  • Wang JH, Liu YC, Cheng DL et al (1993) Seroprevalence of Chlamydia pneumoniae in Taiwan. Scand J Infect Dis 25(5):565–568

    PubMed  CAS  Google Scholar 

  • Watson C, Alp NJ (2008) Role of Chlamydia pneumoniae in atherosclerosis. Clin Sci 114(8):509–531

    PubMed  CAS  Google Scholar 

  • Wuppermann FN, Mölleken K, Julien M, Jantos CA, Hegemann JH (2008) Chlamydia pneumoniae GroEL1 protein is cell surface associated and required for infection of HEp-2 cells. J Bacteriol 190(10):3757–3767, Epub 2008 Feb 29

    PubMed  CAS  Google Scholar 

  • Wyatt JI, Rathbone BJ (1988) Immune response of the gastric mucosa to Campylobacter pylori. Scand J Gastroenterol Suppl 142:44–49

    PubMed  CAS  Google Scholar 

  • Wyrick PB, Knight ST (2004) Pre-exposure of infected human endometrial epithelial cells to penicillin in vitro renders Chlamydia trachomatis refractory to azithromycin. J Antimicrob Chemother 54(1):79–85

    PubMed  CAS  Google Scholar 

  • Yakushijin Y, Kodama T, Takaoka I et al (2007) Absence of Chlamydial infection in Japanese patients with ocular adnexal lymphoma of mucosa-associated lymphoid tissue. Int J Hematol 85(3):223–230

    PubMed  CAS  Google Scholar 

  • Yeung L, Tsao YP, Chen PY et al (2004) Combination of adult inclusion conjunctivitis and mucosa-associated lymphoid tissue (MALT) lymphoma in a young adult. Cornea 23(1):71–75

    PubMed  Google Scholar 

  • Yoo C, Ryu MH, Huh J et al (2007) Chlamydia psittaci infection and clinicopathologic analysis of ocular adnexal lymphomas in Korea. Am J Hematol 82(9):821–823

    PubMed  Google Scholar 

  • Yucesan C, Sriram S (2001) Chlamydia pneumoniae infection of the central nervous system. Curr Opin Neurol 14(3):355–359

    PubMed  CAS  Google Scholar 

  • Zhan P, Suo LJ, Qian Q et al (2011) Chlamydia pneumoniae infection and lung cancer risk: meta-analysis. Eur J Cancer 47(5):742–747

    PubMed  Google Scholar 

  • Zhang GS, Winter JN, Variakojis D et al (2007) Lack of an association between Chlamydia psittaci and ocular adnexal lymphoma. Leuk Lymphoma 48(3):577–583

    PubMed  CAS  Google Scholar 

  • Zhong G (2009) Killing me softly: Chlamydial use of proteolysis for evading host defenses. Trends Microbiol 17(10):467–474

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carlo Contini .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Contini, C., Seraceni, S. (2012). Chlamydial Disease: A Crossroad Between Chronic Infection and Development of Cancer. In: Khan, A. (eds) Bacteria and Cancer. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2585-0_4

Download citation

Publish with us

Policies and ethics