Skip to main content

Harboring of NOS to the Cell Membrane

  • Chapter
  • First Online:
The Biology of Subcellular Nitric Oxide

Abstract

The cell membrane establishes the physical barrier of the cell and separates the inner cell volume from the extracellular environment. This single phospholipid bilayer harbors membrane proteins, which serve a plethora of membrane functions and are essential for the life of a cell: transport mechanisms, signal transduction, cell adhesion, organization of the cytoskeleton, regulation of cell volume, and determination of the landscape of the cell surface. Cell membranes are major sites of NO synthesis in various cell types: the sarcolemma of skeletal muscle fibers (Cell 82:743–752, 1995; Physiol Rev 81:209–237, 2001; Ann Neurol 53:512–520, 2003) and cardiomyocytes(Handb Clin Neurol 101:135–142, 2011), the specialized membrane rafts of endothelial cells (Pflugers Arch 459:817–827, 2010; Pflugers Arch 459:793–806, 2010; Pflugers Arch 459:807–816, 2010), and membranes of the postsynaptic densities (Exp Neurol 148:34–44, 1997) all bind distinct NOS isoforms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Various cells of the testis express eNOS, iNOS and nNOS, and one testis-specific truncated nNOS (TnNOS). To date only eNOS and iNOS have been implicated in the control of tight junction regulation.

Bibliography

  • Adak S, Santolini J, Tikunova S, Wang Q, Johnson JD, Stuehr DJ (2001) Neuronal nitric-oxide synthase mutant (Ser-1412 -->Asp) demonstrates surprising connections between heme reduction, NO complex formation, and catalysis. J Biol Chem 276:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Alonso F, Boittin FX, Beny JL, Haefliger JA (2010) Loss of connexin40 is associated with decreased endothelium-dependent relaxations and eNOS levels in the mouse aorta. Am J Physiol Heart Circ Physiol 299:H1365–H1373

    Article  PubMed  CAS  Google Scholar 

  • Anderson RG (1998) The caveolae membrane system. Annu Rev Biochem 67:199–225

    Article  PubMed  CAS  Google Scholar 

  • Andreakis N, D’Aniello S, Albalat R, Patti FP, Garcia-Fernandez J, Procaccini G, Sordino P, Palumbo A (2011) Evolution of the nitric oxide synthase family in metazoans. Mol Biol Evol 28:163–179

    Article  PubMed  CAS  Google Scholar 

  • Andries LJ, Brutsaert DL, Sys SU (1998) Nonuniformity of endothelial constitutive nitric oxide synthase distribution in cardiac endothelium. Circ Res 82:195–203

    Article  PubMed  CAS  Google Scholar 

  • Arundine M, Sanelli T, Ping He B, Strong MJ (2003) NMDA induces NOS 1 translocation to the cell membrane in NGF-differentiated PC 12 cells. Brain Res 976:149–158

    Article  PubMed  CAS  Google Scholar 

  • Aspenstrom P, Fransson A, Richnau N (2006) Pombe Cdc15 homology proteins: regulators of membrane dynamics and the actin cytoskeleton. Trends Biochem Sci 31:670–679

    Article  PubMed  CAS  Google Scholar 

  • Atochin DN, Huang PL (2010) Endothelial nitric oxide synthase transgenic models of endothelial dysfunction. Pflugers Arch 460:965–974

    Article  PubMed  CAS  Google Scholar 

  • Bagi Z, Frangos JA, Yeh JC, White CR, Kaley G, Koller A (2005) PECAM-1 mediates NO-dependent dilation of arterioles to high temporal gradients of shear stress. Arterioscler Thromb Vasc Biol 25:1590–1595

    Article  PubMed  CAS  Google Scholar 

  • Balercia G, Moretti S, Vignini A, Magagnini M, Mantero F, Boscaro M, Ricciardo-Lamonica G, Mazzanti L (2004) Role of nitric oxide concentrations on human sperm motility. J Androl 25:245–249

    PubMed  CAS  Google Scholar 

  • Bechade C, Pascual O, Triller A, Bessis A (2011) Nitric oxide regulates astrocyte maturation in the hippocampus: involvement of NOS2. Mol Cell Neurosci 46:762–769

    Article  PubMed  CAS  Google Scholar 

  • Beigi F, Oskouei BN, Zheng M, Cooke CA, Lamirault G, Hare JM (2009) Cardiac nitric oxide synthase-1 localization within the cardiomyocyte is accompanied by the adaptor protein, CAPON. Nitric Oxide 21:226–233

    Article  PubMed  CAS  Google Scholar 

  • Brenman JE, Chao DS, Xia H, Aldape K, Bredt DS (1995) Nitric oxide synthase complexed with dystrophin and absent from skeletal muscle sarcolemma in Duchenne muscular dystrophy. Cell 82:743–752

    Article  PubMed  CAS  Google Scholar 

  • Brennan RE, Russell K, Zhang G, Samuel JE (2004) Both inducible nitric oxide synthase and NADPH oxidase contribute to the control of virulent phase I Coxiella burnetii infections. Infect Immun 72:6666–6675

    Article  PubMed  CAS  Google Scholar 

  • Brouet A, Sonveaux P, Dessy C, Balligand JL, Feron O (2001) Hsp90 ensures the transition from the early Ca2+-dependent to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J Biol Chem 276:32663–32669

    Article  PubMed  CAS  Google Scholar 

  • Bucci M, Gratton JP, Rudic RD, Acevedo L, Roviezzo F, Cirino G, Sessa WC (2000) In vivo delivery of the caveolin-1 scaffolding domain inhibits nitric oxide synthesis and reduces inflammation. Nat Med 6:1362–1367

    Article  PubMed  CAS  Google Scholar 

  • Buldreghini E, Mahfouz RZ, Vignini A, Mazzanti L, Ricciardo-Lamonica G, Lenzi A, Agarwal A, Balercia G (2010) Single nucleotide polymorphism (SNP) of the endothelial nitric oxide synthase (eNOS) gene (Glu298Asp variant) in infertile men with asthenozoospermia. J Androl 31:482–488

    Article  PubMed  CAS  Google Scholar 

  • Busconi L, Michel T (1995) Recombinant endothelial nitric oxide synthase: post-translational modifications in a baculovirus expression system. Mol Pharmacol 47:655–659

    PubMed  CAS  Google Scholar 

  • Chaudhury A, He XD, Goyal RK (2009) Role of PSD95 in membrane association and catalytic activity of nNOSalpha in nitrergic varicosities in mice gut. Am J Physiol Gastrointest Liver Physiol 297:G806–G813

    Article  PubMed  CAS  Google Scholar 

  • Cheah JH, Kim SF, Hester LD, Clancy KW, Patterson SE 3rd, Papadopoulos V, Snyder SH (2006) NMDA receptor-nitric oxide transmission mediates neuronal iron homeostasis via the GTPase Dexras1. Neuron 51:431–440

    Article  PubMed  CAS  Google Scholar 

  • Choi YJ, Cho SY, Kim HW, Kim JA, Bae SH, Park SS (2005) Cloning and characterization of mouse disabled 2 interacting protein 2, a mouse orthologue of human NOSTRIN. Biochem Biophys Res Commun 326:594–599

    Article  PubMed  CAS  Google Scholar 

  • Crockett J, Newman DK, Newman PJ (2010) PECAM-1 functions as a negative regulator of laminin-induced platelet activation. J Thromb Haemost 8:1584–1593

    Article  PubMed  CAS  Google Scholar 

  • Dedio J, Konig P, Wohlfart P, Schroeder C, Kummer W, Muller-Esterl W (2001) NOSIP, a novel modulator of endothelial nitric oxide synthase activity. FASEB J 15:79–89

    Article  PubMed  CAS  Google Scholar 

  • Dejana E (2004) Endothelial cell–cell junctions: happy together. Nat Rev Mol Cell Biol 5:261–270

    Article  PubMed  CAS  Google Scholar 

  • Dessy C, Feron O, Balligand JL (2010) The regulation of endothelial nitric oxide synthase by caveolin: a paradigm validated in vivo and shared by the ‘endothelium-derived hyperpolarizing factor’. Pflugers Arch 459:817–827

    Article  PubMed  CAS  Google Scholar 

  • Dimaio TA, Wang S, Huang Q, Scheef EA, Sorenson CM, Sheibani N (2008) Attenuation of retinal vascular development and neovascularization in PECAM-1-deficient mice. Dev Biol 315:72–88

    Article  PubMed  CAS  Google Scholar 

  • Domoto T, Teramoto M, Tamura K, Yasui Y (1994) Ultrastructural study on NOS-immunoreactive nerve terminals in the rat coeliac ganglion. Neuroreport 6:169–172

    Article  PubMed  CAS  Google Scholar 

  • Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci 16:553–567

    Article  PubMed  CAS  Google Scholar 

  • Drab M, Verkade P, Elger M, Kasper M, Lohn M, Lauterbach B, Menne J, Lindschau C, Mende F, Luft FC, Schedl A, Haller H, Kurzchalia TV (2001) Loss of caveolae, vascular dysfunction, and pulmonary defects in caveolin-1 gene-disrupted mice. Science 293:2449–2452

    Article  PubMed  CAS  Google Scholar 

  • Dreyer J, Schleicher M, Tappe A, Schilling K, Kuner T, Kusumawidijaja G, Muller-Esterl W, Oess S, Kuner R (2004) Nitric oxide synthase (NOS)-interacting protein interacts with neuronal NOS and regulates its distribution and activity. J Neurosci 24:10454–10465

    Article  PubMed  CAS  Google Scholar 

  • Dusserre N, L’Heureux N, Bell KS, Stevens HY, Yeh J, Otte LA, Loufrani L, Frangos JA (2004) PECAM-1 interacts with nitric oxide synthase in human endothelial cells: implication for flow-induced nitric oxide synthase activation. Arterioscler Thromb Vasc Biol 24:1796–1802

    Article  PubMed  CAS  Google Scholar 

  • Ensminger SM, Spriewald BM, Steger U, Morris PJ, Mak TW, Wood KJ (2002) Platelet-endothelial cell adhesion molecule-1 (CD31) expression on donor endothelial cells attenuates the development of transplant arteriosclerosis. Transplantation 74:1267–1273

    Article  PubMed  CAS  Google Scholar 

  • Ermentrout B, Wang JW, Flores J, Gelperin A (2004) Model for transition from waves to synchrony in the olfactory lobe of Limax. J Comput Neurosci 17:365–383

    Article  PubMed  Google Scholar 

  • Fan JS, Zhang Q, Li M, Tochio H, Yamazaki T, Shimizu M, Zhang M (1998) Protein inhibitor of neuronal nitric-oxide synthase, PIN, binds to a 17-amino acid residue fragment of the enzyme. J Biol Chem 273:33472–33481

    Article  PubMed  CAS  Google Scholar 

  • Felley-Bosco E, Bender F, Quest AF (2002) Caveolin-1-mediated post-transcriptional regulation of inducible nitric oxide synthase in human colon carcinoma cells. Biol Res 35:169–176

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Hernando C, Fukata M, Bernatchez PN, Fukata Y, Lin MI, Bredt DS, Sessa WC (2006) Identification of Golgi-localized acyl transferases that palmitoylate and regulate endothelial nitric oxide synthase. J Cell Biol 174:369–377

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Hernando C, Yu J, Davalos A, Prendergast J, Sessa WC (2010) Endothelial-specific overexpression of caveolin-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Am J Pathol 177:998–1003

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Balligand JL (2006) Caveolins and the regulation of endothelial nitric oxide synthase in the heart. Cardiovasc Res 69:788–797

    Article  PubMed  CAS  Google Scholar 

  • Feron O, Belhassen L, Kobzik L, Smith TW, Kelly RA, Michel T (1996) Endothelial nitric oxide synthase targeting to caveolae. Specific interactions with caveolin isoforms in cardiac myocytes and endothelial cells. J Biol Chem 271:22810–22814

    Article  PubMed  CAS  Google Scholar 

  • Firestein BL, Bredt DS (1999) Interaction of neuronal nitric-oxide synthase and phosphofructokinase-M. J Biol Chem 274:10545–10550

    Article  PubMed  CAS  Google Scholar 

  • Fleming I (2010) Molecular mechanisms underlying the activation of eNOS. Pflugers Arch 459:793–806

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Dimmeler S, Kemp BE, Busse R (2001) Phosphorylation of Thr(495) regulates Ca(2+)/calmodulin-dependent endothelial nitric oxide synthase activity. Circ Res 88:E68–E75

    Article  PubMed  CAS  Google Scholar 

  • Fleming I, Fisslthaler B, Dixit M, Busse R (2005) Role of PECAM-1 in the shear-stress-induced activation of Akt and the endothelial nitric oxide synthase (eNOS) in endothelial cells. J Cell Sci 118:4103–4111

    Article  PubMed  CAS  Google Scholar 

  • Florio SK, Loh C, Huang SM, Iwamaye AE, Kitto KF, Fowler KW, Treiberg JA, Hayflick JS, Walker JM, Fairbanks CA, Lai Y (2009) Disruption of nNOS-PSD95 protein–protein interaction inhibits acute thermal hyperalgesia and chronic mechanical allodynia in rodents. Br J Pharmacol 158:494–506

    Article  PubMed  CAS  Google Scholar 

  • Fukata Y, Bredt DS, Fukata M (2006) Protein palmitoylation by DHHC protein family. In: Kittler JT, Moss SJ (eds) The dynamic synapse: molecular methods in ionotropic receptor biology. CRC Press, 83–90

    Google Scholar 

  • Fulton D, Fontana J, Sowa G, Gratton JP, Lin M, Li KX, Michell B, Kemp BE, Rodman D, Sessa WC (2002) Localization of endothelial nitric-oxide synthase phosphorylated on serine 1179 and nitric oxide in Golgi and plasma membrane defines the existence of two pools of active enzyme. J Biol Chem 277:4277–4284

    Article  PubMed  CAS  Google Scholar 

  • Furuse M, Fujita K, Hiiragi T, Fujimoto K, Tsukita S (1998) Claudin-1 and -2: novel integral membrane proteins localizing at tight junctions with no sequence similarity to occludin. J Cell Biol 141:1539–1550

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Oh P, Liu J, Schnitzer JE, Sessa WC (1996) Targeting of nitric oxide synthase to endothelial cell caveolae via palmitoylation: implications for nitric oxide signaling. Proc Natl Acad Sci USA 93:6448–6453

    Article  PubMed  CAS  Google Scholar 

  • Garcia-Cardena G, Martasek P, Masters BS, Skidd PM, Couet J, Li S, Lisanti MP, Sessa WC (1997) Dissecting the interaction between nitric oxide synthase (NOS) and caveolin. Functional significance of the nos caveolin binding domain in vivo. J Biol Chem 272:25437–25440

    Article  PubMed  CAS  Google Scholar 

  • Gath I, Ebert J, Godtel-Armbrust U, Ross R, Reske-Kunz AB, Forstermann U (1999) NO synthase II in mouse skeletal muscle is associated with caveolin 3. Biochem J 340(Pt 3):723–728

    Article  PubMed  CAS  Google Scholar 

  • Gazzerro E, Bonetto A, Minetti C (2011) Caveolinopathies translational implications of caveolin-3 in skeletal and cardiac muscle disorders. Handb Clin Neurol 101:135–142

    Article  PubMed  CAS  Google Scholar 

  • Gossrau R (1998) Caveolin-3 and nitric oxide synthase I in healthy and diseased skeletal muscle. Acta Histochem 100:99–112

    Article  PubMed  CAS  Google Scholar 

  • Govers R, Bevers L, de Bree P, Rabelink TJ (2002) Endothelial nitric oxide synthase activity is linked to its presence at cell–cell contacts. Biochem J 361:193–201

    Article  PubMed  CAS  Google Scholar 

  • Grange RW, Isotani E, Lau KS, Kamm KE, Huang PL, Stull JT (2001) Nitric oxide contributes to vascular smooth muscle relaxation in contracting fast-twitch muscles. Physiol Genomics 5:35–44

    PubMed  CAS  Google Scholar 

  • Greenwood MT, Guo Y, Kumar U, Beausejours S, Hussain SN (1997) Distribution of protein inhibitor of neuronal nitric oxide synthase in rat brain. Biochem Biophys Res Commun 238:617–621

    Article  PubMed  CAS  Google Scholar 

  • Haefliger JA, Meda P, Formenton A, Wiesel P, Zanchi A, Brunner HR, Nicod P, Hayoz D (1999) Aortic connexin43 is decreased during hypertension induced by inhibition of nitric oxide synthase. Arterioscler Thromb Vasc Biol 19:1615–1622

    Article  PubMed  CAS  Google Scholar 

  • Harris MB, Ju H, Venema VJ, Liang H, Zou R, Michell BJ, Chen ZP, Kemp BE, Venema RC (2001) Reciprocal phosphorylation and regulation of endothelial nitric-oxide synthase in response to bradykinin stimulation. J Biol Chem 276:16587–16591

    Article  PubMed  CAS  Google Scholar 

  • Hebeda CB, Teixeira SA, Muscara MN, Vinolo MA, Curi R, de Mello SB, Farsky SH (2008) In vivo blockade of Ca(+2)-dependent nitric oxide synthases impairs expressions of L-selectin and PECAM-1. Biochem Biophys Res Commun 377:694–698

    Article  PubMed  CAS  Google Scholar 

  • Hermann A, Erxleben C (2001) Nitric oxide activates voltage-dependent potassium currents of crustacean skeletal muscle. Nitric Oxide 5:361–369

    Article  PubMed  CAS  Google Scholar 

  • Heydemann A, McNally E (2009) NO more muscle fatigue. J Clin Invest 119:448–450

    Article  PubMed  CAS  Google Scholar 

  • Huang S, Kerschbaum HH, Engel E, Hermann A (1997) Biochemical characterization and histochemical localization of nitric oxide synthase in the nervous system of the snail, Helix pomatia. J Neurochem 69:2516–2528

    Article  PubMed  CAS  Google Scholar 

  • Huke S, Liu LH, Biniakiewicz D, Abraham WT, Periasamy M (2003) Altered force-frequency response in non-failing hearts with decreased SERCA pump-level. Cardiovasc Res 59:668–677

    Article  PubMed  CAS  Google Scholar 

  • Hung A, Vernet D, Xie Y, Rajavashisth T, Rodriguez JA, Rajfer J, Gonzalez-Cadavid NF (1995) Expression of inducible nitric oxide synthase in smooth muscle cells from rat penile corpora cavernosa. J Androl 16:469–481

    PubMed  CAS  Google Scholar 

  • Icking A, Matt S, Opitz N, Wiesenthal A, Muller-Esterl W, Schilling K (2005) NOSTRIN functions as a homotrimeric adaptor protein facilitating internalization of eNOS. J Cell Sci 118:5059–5069

    Article  PubMed  CAS  Google Scholar 

  • Icking A, Schilling K, Wiesenthal A, Opitz N, Muller-Esterl W (2006) FCH/Cdc15 domain determines distinct subcellular localization of NOSTRIN. FEBS Lett 580:223–228

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snyder SH (1996) PIN: an associated protein inhibitor of neuronal nitric oxide synthase. Science 274:774–777

    Article  PubMed  CAS  Google Scholar 

  • Jaffrey SR, Snowman AM, Eliasson MJ, Cohen NA, Snyder SH (1998) CAPON: a protein associated with neuronal nitric oxide synthase that regulates its interactions with PSD95. Neuron 20:115–124

    Article  PubMed  CAS  Google Scholar 

  • Jia SJ, Zhang BK, Lai YQ, Deng HW, Li YJ (2011) 3,4,5,6-Tetrahydroxyxanthone preserves intercellular communication by reduction of the endogenous nitric oxide synthase inhibitor level. J Asian Nat Prod Res 13:20–26

    Article  PubMed  CAS  Google Scholar 

  • Kamei M, Carman CV (2010) New observations on the trafficking and diapedesis of monocytes. Curr Opin Hematol 17:43–52

    Article  PubMed  Google Scholar 

  • Kasai K, Shin H-W, Shinotsuka C, Murakami K, Nakayamat K (1999) Dynamin II is involved in endocytosis but not in the formation of transport vesicles from the trans -golgi network1. J Biochem 125:780–789

    Article  PubMed  CAS  Google Scholar 

  • Khan SA, Skaf MW, Harrison RW, Lee K, Minhas KM, Kumar A, Fradley M, Shoukas AA, Berkowitz DE, Hare JM (2003) Nitric oxide regulation of myocardial contractility and calcium cycling: independent impact of neuronal and endothelial nitric oxide synthases. Circ Res 92:1322–1329

    Article  PubMed  CAS  Google Scholar 

  • King SM, Barbarese E, Dillman JF 3rd, Patel-King RS, Carson JH, Pfister KK (1996) Brain cytoplasmic and flagellar outer arm dyneins share a highly conserved Mr 8,000 light chain. J Biol Chem 271:19358–19366

    Article  PubMed  CAS  Google Scholar 

  • Komeima K, Hayashi Y, Naito Y, Watanabe Y (2000) Inhibition of neuronal nitric-oxide synthase by calcium/calmodulin-dependent protein kinase IIalpha through Ser847 phosphorylation in NG108-15 neuronal cells. J Biol Chem 275:28139–28143

    PubMed  CAS  Google Scholar 

  • Konig P, Dedio J, Muller-Esterl W, Kummer W (2002) Distribution of the novel eNOS-interacting protein NOSIP in the liver, pancreas, and gastrointestinal tract of the rat. Gastroenterology 123:314–324

    Article  PubMed  CAS  Google Scholar 

  • Konig P, Dedio J, Oess S, Papadakis T, Fischer A, Muller-Esterl W, Kummer W (2005) NOSIP and its interacting protein, eNOS, in the rat trachea and lung. J Histochem Cytochem 53:155–164

    Article  PubMed  CAS  Google Scholar 

  • Kotsyuba EP, Vaschenko MA (2010) Neuroplastic and neuropathological changes in the central nervous system of the Gray mussel Crenomytilus grayanus (Dunker) under environmental stress. Invert Neurosci 10:35–46

    Article  PubMed  Google Scholar 

  • Krasteva G, Pfeil U, Filip AM, Lips KS, Kummer W, Konig P (2007) Caveolin-3 and eNOS colocalize and interact in ciliated airway epithelial cells in the rat. Int J Biochem Cell Biol 39:615–625

    Article  PubMed  CAS  Google Scholar 

  • Kubisch C, Schoser BG, von During M, Betz RC, Goebel HH, Zahn S, Ehrbrecht A, Aasly J, Schroers A, Popovic N, Lochmuller H, Schroder JM, Bruning T, Malin JP, Fricke B, Meinck HM, Torbergsen T, Engels H, Voss B, Vorgerd M (2003) Homozygous mutations in caveolin-3 cause a severe form of rippling muscle disease. Ann Neurol 53:512–520

    Article  PubMed  CAS  Google Scholar 

  • Kunert J (2000) Effect of peroxynitrite on dormant spores and germlings of Aspergillus fumigatus in vitro. Folia Microbiol (Praha) 45:325–329

    Article  CAS  Google Scholar 

  • Lai Y, Thomas GD, Yue Y, Yang HT, Li D, Long C, Judge L, Bostick B, Chamberlain JS, Terjung RL, Duan D (2009) Dystrophins carrying spectrin-like repeats 16 and 17 anchor nNOS to the sarcolemma and enhance exercise performance in a mouse model of muscular dystrophy. J Clin Invest 119:624–635

    Article  PubMed  CAS  Google Scholar 

  • Lapidos KA, Kakkar R, McNally EM (2004) The dystrophin glycoprotein complex: signaling strength and integrity for the sarcolemma. Circ Res 94:1023–1031

    Article  PubMed  CAS  Google Scholar 

  • Lee NP, Cheng CY (2003) Regulation of Sertoli cell tight junction dynamics in the rat testis via the nitric oxide synthase/soluble guanylate cyclase/3′, 5′-cyclic guanosine monophosphate/protein kinase G signaling pathway: an in vitro study. Endocrinology 144:3114–3129

    Article  PubMed  CAS  Google Scholar 

  • Li XA, Everson WV, Smart EJ (2005) Caveolae, lipid rafts, and vascular disease. Trends Cardiovasc Med 15:92–96

    Article  PubMed  CAS  Google Scholar 

  • Li X, Cheng C, Fei M, Gao S, Niu S, Chen M, Liu Y, Guo Z, Wang H, Zhao J, Yu X, Shen A (2008) Spatiotemporal expression of Dexras1 after spinal cord transection in rats. Cell Mol Neurobiol 28:371–388

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Garcia-Cardena G, Sessa WC (1995) Biosynthesis and palmitoylation of endothelial nitric oxide synthase: mutagenesis of palmitoylation sites, cysteines-15 and/or -26, argues against depalmitoylation-induced translocation of the enzyme. Biochemistry 34:12333–12340

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Garcia-Cardena G, Sessa WC (1996) Palmitoylation of endothelial nitric oxide synthase is necessary for optimal stimulated release of nitric oxide: implications for caveolae localization. Biochemistry 35:13277–13281

    Article  PubMed  CAS  Google Scholar 

  • Liu L, Li Y, Lin J, Liang Q, Sheng X, Wu J, Huang R, Liu S (2010) Connexin43 interacts with Caveolin-3 in the heart. Mol Biol Rep 37:1685–1691

    Article  PubMed  CAS  Google Scholar 

  • Loot AE, Schreiber JG, Fisslthaler B, Fleming I (2009) Angiotensin II impairs endothelial function via tyrosine phosphorylation of the endothelial nitric oxide synthase. J Exp Med 206:2889–2896

    Article  PubMed  CAS  Google Scholar 

  • Luo CX, Zhu DY (2011) Research progress on neurobiology of neuronal nitric oxide synthase. Neurosci Bull 27:23–35

    Article  PubMed  CAS  Google Scholar 

  • Marletta MA (1994) Nitric oxide synthase: aspects concerning structure and catalysis. Cell 78:927–930

    Article  PubMed  CAS  Google Scholar 

  • Martinez A (1995) Nitric oxide synthase in invertebrates. Histochem J 27:770–776

    PubMed  CAS  Google Scholar 

  • McCauley SD, Gilchrist M, Befus AD (2007) Regulation and function of the protein inhibitor of nitric oxide synthase (PIN)/dynein light chain 8 (LC8) in a human mast cell line. Life Sci 80:959–964

    Article  PubMed  CAS  Google Scholar 

  • McCormick ME, Goel R, Fulton D, Oess S, Newman D, Tzima E (2011) Platelet-endothelial cell adhesion molecule-1 regulates endothelial NO synthase activity and localization through signal transducers and activators of transcription 3-dependent NOSTRIN expression. Arterioscler Thromb Vasc Biol 31:643–649

    Article  PubMed  CAS  Google Scholar 

  • McKinnon RL, Bolon ML, Wang HX, Swarbreck S, Kidder GM, Simon AM, Tyml K (2009) Reduction of electrical coupling between microvascular endothelial cells by NO depends on connexin37. Am J Physiol Heart Circ Physiol 297:H93–H101

    Article  PubMed  CAS  Google Scholar 

  • Michel T, Vanhoutte PM (2010) Cellular signaling and NO production. Pflugers Arch 459:807–816

    Article  PubMed  CAS  Google Scholar 

  • Michel JB, Feron O, Sacks D, Michel T (1997) Reciprocal regulation of endothelial nitric-oxide synthase by Ca2+-calmodulin and caveolin. J Biol Chem 272:15583–15586

    Article  PubMed  CAS  Google Scholar 

  • Mitchell DA, Vasudevan A, Linder ME, Deschenes RJ (2006) Protein palmitoylation by a family of DHHC protein S-acyltransferases. J Lipid Res 47:1118–1127

    Article  PubMed  CAS  Google Scholar 

  • Nadolski MJ, Linder ME (2007) Protein lipidation. FEBS J 274:5202–5210

    Article  PubMed  CAS  Google Scholar 

  • Navarro-Lerida I, Alvarez-Barrientos A, Rodriguez-Crespo I (2006) N-terminal palmitoylation within the appropriate amino acid environment conveys on NOS2 the ability to progress along the intracellular sorting pathways. J Cell Sci 119:1558–1569

    Article  PubMed  CAS  Google Scholar 

  • Nguyen CH, Watts VJ (2005) Dexras1 blocks receptor-mediated heterologous sensitization of adenylyl cyclase 1. Biochem Biophys Res Commun 332:913–920

    Article  PubMed  CAS  Google Scholar 

  • Oess S, Icking A, Fulton D, Govers R, Muller-Esterl W (2006) Subcellular targeting and trafficking of nitric oxide synthases. Biochem J 396:401–409

    Article  PubMed  CAS  Google Scholar 

  • Park S, DiMaio TA, Scheef EA, Sorenson CM, Sheibani N (2010) PECAM-1 regulates proangiogenic properties of endothelial cells through modulation of cell–cell and cell-matrix interactions. Am J Physiol Cell Physiol 299:C1468–C1484

    Article  PubMed  CAS  Google Scholar 

  • Peitzsch RM, McLaughlin S (1993) Binding of acylated peptides and fatty acids to phospholipid vesicles: pertinence to myristoylated proteins. Biochemistry 32:10436–10443

    Article  PubMed  CAS  Google Scholar 

  • Percival JM, Anderson KN, Huang P, Adams ME, Froehner SC (2010) Golgi and sarcolemmal neuronal NOS differentially regulate contraction-induced fatigue and vasoconstriction in exercising mouse skeletal muscle. J Clin Invest 120:816–826

    Article  PubMed  CAS  Google Scholar 

  • Pfenniger A, Derouette JP, Verma V, Lin X, Foglia B, Coombs W, Roth I, Satta N, Dunoyer-Geindre S, Sorgen P, Taffet S, Kwak BR, Delmar M (2010) Gap junction protein Cx37 interacts with endothelial nitric oxide synthase in endothelial cells. Arterioscler Thromb Vasc Biol 30:827–834

    Article  PubMed  CAS  Google Scholar 

  • Privratsky JR, Newman DK, Newman PJ (2010) PECAM-1: conflicts of interest in inflammation. Life Sci 87:69–82

    Article  PubMed  CAS  Google Scholar 

  • Qian J, Zhang Q, Church JE, Stepp DW, Rudic RD, Fulton DJ (2010) Role of local production of endothelium-derived nitric oxide on cGMP signaling and S-nitrosylation. Am J Physiol Heart Circ Physiol 298:H112–H118

    Article  PubMed  CAS  Google Scholar 

  • Radosinska J, Bacova B, Bernatova I, Navarova J, Zhukovska A, Shysh A, Okruhlicova L, Tribulova N (2011) Myocardial NOS activity and connexin-43 expression in untreated and omega-3 fatty acids-treated spontaneously hypertensive and hereditary hypertriglyceridemic rats. Mol Cell Biochem 347:163–173

    Article  PubMed  CAS  Google Scholar 

  • Rameau GA, Chiu LY, Ziff EB (2004) Bidirectional regulation of neuronal nitric-oxide synthase phosphorylation at serine 847 by the N-methyl-D-aspartate receptor. J Biol Chem 279:14307–14314

    Article  PubMed  CAS  Google Scholar 

  • Rameau GA, Tukey DS, Garcin-Hosfield ED, Titcombe RF, Misra C, Khatri L, Getzoff ED, Ziff EB (2007) Biphasic coupling of neuronal nitric oxide synthase phosphorylation to the NMDA receptor regulates AMPA receptor trafficking and neuronal cell death. J Neurosci 27:3445–3455

    Article  PubMed  CAS  Google Scholar 

  • Rath G, Dessy C, Feron O (2009) Caveolae, caveolin and control of vascular tone: nitric oxide (NO) and endothelium derived hyperpolarizing factor (EDHF) regulation. J Physiol Pharmacol 60(Suppl 4):105–109

    PubMed  Google Scholar 

  • Ravalli S, Albala A, Ming M, Szabolcs M, Barbone A, Michler RE, Cannon PJ (1998) Inducible nitric oxide synthase expression in smooth muscle cells and macrophages of human transplant coronary artery disease. Circulation 97:2338–2345

    Article  PubMed  CAS  Google Scholar 

  • Resh MD (1999) Fatty acylation of proteins: new insights into membrane targeting of myristoylated and palmitoylated proteins. Biochim Biophys Acta 1451:1–16

    Article  PubMed  CAS  Google Scholar 

  • Rodriguez-Crespo I, Straub W, Gavilanes F, Ortiz de Montellano PR (1998) Binding of dynein light chain (PIN) to neuronal nitric oxide synthase in the absence of inhibition. Arch Biochem Biophys 359:297–304

    Article  PubMed  CAS  Google Scholar 

  • Rőszer T, Kiss-Tóth É, Petkó M, Szentmiklósi AJ, Bánfalvi G (2006) Phe-met-arg-phe (FMRF)-amide is a substrate source of NO synthase in the gastropod nervous system. Cell Tissue Res 325:567–575

    Article  PubMed  CAS  Google Scholar 

  • Rőszer T, Kiss-Tóth E, Rózsa D, Józsa T, Szentmiklósi AJ, Bánfalvi G (2010) Hypothermia translocates nitric oxide synthase from cytosol to membrane in snail neurons. Cell Tissue Res 342:191–203

    Article  PubMed  CAS  Google Scholar 

  • Saitoh F, Tian QB, Okano A, Sakagami H, Kondo H, Suzuki T (2004) NIDD, a novel DHHC-containing protein, targets neuronal nitric-oxide synthase (nNOS) to the synaptic membrane through a PDZ-dependent interaction and regulates nNOS activity. J Biol Chem 279:29461–29468

    Article  PubMed  CAS  Google Scholar 

  • Sandvig K, Torgersen ML, Raa HA, van Deurs B (2008) Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem Cell Biol 129:267–276

    Article  PubMed  CAS  Google Scholar 

  • Sauer H, Sharifpanah F, Hatry M, Steffen P, Bartsch C, Heller R, Padmasekar M, Howaldt HP, Bein G, Wartenberg M (2011) NOS inhibition synchronizes calcium oscillations in human adipose tissue-derived mesenchymal stem cells by increasing gap-junctional coupling. J Cell Physiol 226:1642–1650

    Article  PubMed  CAS  Google Scholar 

  • Schilling K, Opitz N, Wiesenthal A, Oess S, Tikkanen R, Muller-Esterl W, Icking A (2006) Translocation of endothelial nitric-oxide synthase involves a ternary complex with caveolin-1 and NOSTRIN. Mol Biol Cell 17:3870–3880

    Article  PubMed  CAS  Google Scholar 

  • Sladek SM, Westerhausen-Larson A, Roberts JM (1999) Endogenous nitric oxide suppresses rat myometrial connexin 43 gap junction protein expression during pregnancy. Biol Reprod 61:8–13

    Article  PubMed  CAS  Google Scholar 

  • Sowa G, Liu J, Papapetropoulos A, Rex-Haffner M, Hughes TE, Sessa WC (1999) Trafficking of endothelial nitric-oxide synthase in living cells. Quantitative evidence supporting the role of palmitoylation as a kinetic trapping mechanism limiting membrane diffusion. J Biol Chem 274:22524–22531

    Article  PubMed  CAS  Google Scholar 

  • Stamler JS, Meissner G (2001) Physiology of nitric oxide in skeletal muscle. Physiol Rev 81:209–237

    PubMed  CAS  Google Scholar 

  • Stathakis DG, Hoover KB, You Z, Bryant PJ (1997) Human postsynaptic density-95 (PSD95): location of the gene (DLG4) and possible function in nonneural as well as in neural tissues. Genomics 44:71–82

    Article  PubMed  CAS  Google Scholar 

  • Straub AC, Billaud M, Johnstone SR, Best AK, Yemen S, Dwyer ST, Looft-Wilson R, Lysiak JJ, Gaston B, Palmer L, Isakson BE (2011) Compartmentalized connexin 43 S-nitrosylation/denitrosylation regulates heterocellular communication in the vessel wall. Arterioscler Thromb Vasc Biol 31:399–407

    Article  PubMed  CAS  Google Scholar 

  • Sun J, Xin C, Eu JP, Stamler JS, Meissner G (2001) Cysteine-3635 is responsible for skeletal muscle ryanodine receptor modulation by NO. Proc Natl Acad Sci USA 98:11158–11162

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Mizuno H, Warita H, Takeda S, Itoyama Y, Aoki M (2010) Neuronal NOS is dislocated during muscle atrophy in amyotrophic lateral sclerosis. J Neurol Sci 294:95–101

    Article  PubMed  CAS  Google Scholar 

  • Takizawa Y, Kishimoto H, Kitazato T, Tomita M, Hayashi M (2011) Effects of nitric oxide on mucosal barrier dysfunction during early phase of intestinal ischemia/reperfusion. Eur J Pharm Sci 42:246–252

    Article  PubMed  CAS  Google Scholar 

  • Thibeault S, Rautureau Y, Oubaha M, Faubert D, Wilkes BC, Delisle C, Gratton JP (2010) S-nitrosylation of beta-catenin by eNOS-derived NO promotes VEGF-induced endothelial cell permeability. Mol Cell 39:468–476

    Article  PubMed  CAS  Google Scholar 

  • Tyml K (2011) Role of connexins in microvascular dysfunction during inflammation. Can J Physiol Pharmacol 89:1–12

    Article  PubMed  CAS  Google Scholar 

  • Tyryshkin A, Gorgun FM, Abdel Fattah E, Mazumdar T, Pandit L, Zeng S, Eissa NT (2010) Src kinase-mediated phosphorylation stabilizes inducible nitric-oxide synthase in normal cells and cancer cells. J Biol Chem 285:784–792

    Article  PubMed  CAS  Google Scholar 

  • Villanueva C, Giulivi C (2010) Subcellular and cellular locations of nitric oxide synthase isoforms as determinants of health and disease. Free Radic Biol Med 49:307–316

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Wang AX, Liu Z, Chai W, Barrett EJ (2009) The trafficking/interaction of eNOS and caveolin-1 induced by insulin modulates endothelial nitric oxide production. Mol Endocrinol 23:1613–1623

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Viatchenko-Karpinski S, Sun J, Gyorke I, Benkusky NA, Kohr MJ, Valdivia HH, Murphy E, Gyorke S, Ziolo MT (2010) Regulation of myocyte contraction via neuronal nitric oxide synthase: role of ryanodine receptor S-nitrosylation. J Physiol 588:2905–2917

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Humphrey C, Frilot N, Wang G, Nie Z, Moniri NH, Daaka Y (2011) Dynamin2- and endothelial nitric oxide synthase-regulated invasion of bladder epithelial cells by uropathogenic Escherichia coli. J Cell Biol 192:101–110

    Article  PubMed  CAS  Google Scholar 

  • Wehling-Henricks M, Oltmann M, Rinaldi C, Myung KH, Tidball JG (2009) Loss of positive allosteric interactions between neuronal nitric oxide synthase and phosphofructokinase contributes to defects in glycolysis and increased fatigability in muscular dystrophy. Hum Mol Genet 18:3439–3451

    Article  PubMed  CAS  Google Scholar 

  • Wiesenthal A, Hoffmeister M, Siddique M, Kovacevic I, Oess S, Muller-Esterl W, Siehoff-Icking A (2009) NOSTRINbeta—a shortened NOSTRIN variant with a role in transcriptional regulation. Traffic 10:26–34

    Article  PubMed  CAS  Google Scholar 

  • Williams TM, Lisanti MP (2004) The caveolin proteins. Genome Biol 5:214

    Article  PubMed  Google Scholar 

  • Xiang W, Chen H, Xu X, Zhang M, Jiang R (2005) Expression of endothelial nitric oxide synthase traffic inducer in the placentas of women with pre-eclampsia. Int J Gynaecol Obstet 89:103–107

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Wang T, Qin H, Huang C, Feng Y, Xia Y (2011) Endoplasmic reticulum Ca2+ release modulates endothelial nitric oxide synthase via ERK1/2-mediated serine 635 phosphorylation. J Biol Chem 286:20100–20108

    Article  PubMed  CAS  Google Scholar 

  • Yamagata K, Tagami M, Takenaga F, Yamori Y, Itoh S (2004) Hypoxia-induced changes in tight junction permeability of brain capillary endothelial cells are associated with IL-1beta and nitric oxide. Neurobiol Dis 17:491–499

    Article  PubMed  CAS  Google Scholar 

  • Yan XB, Song B, Zhang GY (2004) Postsynaptic density protein 95 mediates Ca2+/calmodulin-dependent protein kinase II-activated serine phosphorylation of neuronal nitric oxide synthase during brain ischemia in rat hippocampus. Neurosci Lett 355:197–200

    Article  PubMed  CAS  Google Scholar 

  • Yang CC, Alvarez RB, Engel WK, Haun CK, Askanas V (1997) Immunolocalization of nitric oxide synthases at the postsynaptic domain of human and rat neuromuscular junctions—light and electron microscopic studies. Exp Neurol 148:34–44

    Article  PubMed  CAS  Google Scholar 

  • Yeh DC, Duncan JA, Yamashita S, Michel T (1999) Depalmitoylation of endothelial nitric-oxide synthase by acyl-protein thioesterase 1 is potentiated by Ca(2+)-calmodulin. J Biol Chem 274:33148–33154

    Article  PubMed  CAS  Google Scholar 

  • Zhao YY, Malik AB (2009) A novel insight into the mechanism of pulmonary hypertension involving caveolin-1 deficiency and endothelial nitric oxide synthase activation. Trends Cardiovasc Med 19:238–242

    Article  PubMed  CAS  Google Scholar 

  • Zimmermann K, Opitz N, Dedio J, Renne C, Muller-Esterl W, Oess S (2002) NOSTRIN: a protein modulating nitric oxide release and subcellular distribution of endothelial nitric oxide synthase. Proc Natl Acad Sci USA 99:17167–17172

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tamás Rőszer .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Rőszer, T. (2012). Harboring of NOS to the Cell Membrane. In: The Biology of Subcellular Nitric Oxide. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2819-6_6

Download citation

Publish with us

Policies and ethics