Skip to main content

New Challenges in the Design of Bio(Sensors) for Biological Warfare Agents

  • Conference paper
  • First Online:
Portable Chemical Sensors

Abstract

The chapter highlights new concepts for the design of biosensing ­material in order to develop sensors for different biological warfare agents. Biosensing technologies that use electrochemical, piezoelectric, optical, acoustic and thermal transducers for detection of pathogenic bacteria are highlighted. Special attention is paid to methods for improving the sensitivity and analysis time of biosensors. Recent developments in physical transducers in biosensors for bacterial detection are overviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kamboj DV, Goel AK, Singh L (2006) Biological warfare agents. Def Sci J 56:495

    Google Scholar 

  2. Velusamy V, Arshak K, Korostynska O, Oliwa K, Adley C (2010) An overview of foodborne pathogen detection: in the perspective of biosensors. Biotechnol Adv 28:232

    Article  CAS  Google Scholar 

  3. Taitt CR, Shriver-Lake LC, Ngundi MM, Ligler FS (2008) Array biosensor for toxin detection: continued advances. Sensors 8:8361

    Article  CAS  Google Scholar 

  4. Rasooly A, Herold KE (2006) Biosensors for the analysis of food- and waterborne pathogens and their toxins. J AOAC Int 89:873

    CAS  Google Scholar 

  5. Ivnitski D, Abdel-Hamid I, Atanasov P, Wilkins E (1999) Biosensors for detection of pathogenic bacteria. Biosens Bioelectron 14:599

    Article  CAS  Google Scholar 

  6. Lim DV, Simpson JM, Kearns EA, Kramer MF (2005) Current and developing technologies for monitoring agents of bioterrorism and biowarfare. Clin Microbiol Rev 18:583

    Article  CAS  Google Scholar 

  7. Caygill RL, Blair GE, Millner PA (2010) A review on viral biosensors to detect human pathogens. Anal Chim Acta 681:8

    Article  CAS  Google Scholar 

  8. Palchetti I, Mascini M (2008) Electroanalytical biosensors and their potential for food pathogen and toxin detection. Anal Bioanal Chem 391:455

    Article  CAS  Google Scholar 

  9. Shah J, Wilkins E (2003) Electrochemical biosensors for detection of biological warfare agents. Electroanalysis 15:157

    Article  CAS  Google Scholar 

  10. Wang Y, Li Z, Wang J, Li J, Lin Y (2011) Graphene and graphene oxide: biofunctionalization and applications in biotechnology. Trends Biotechnol 29:205

    Article  CAS  Google Scholar 

  11. Granda Valdes M, Valdes Gonzalez AC, Garcia Calzon JA, Elena Diaz-Garcia M (2009) Analytical nanotechnology for food analysis. Microchimica Acta 166:1

    Article  CAS  Google Scholar 

  12. Arora P, Sindhu A, Dilbaghi N, Chaudhury A (2011) Biosensors as innovative tools for the detection of food borne pathogens. Biosens Bioelectron 28:1

    Article  CAS  Google Scholar 

  13. Shu K, Qin Y, Luo H, Zhang P, Guo ZX (2011) Preparation of carbon nanotube/chitosan/gold nanoparticle composite microspheres. Mater Lett 65:1510

    Article  CAS  Google Scholar 

  14. Liu F, Choi KS, Park TJ, Lee SY, Seo TS (2011) Graphene-based electrochemical biosensor for pathogenic virus detection. Biochip J 5:123

    Article  CAS  Google Scholar 

  15. Hu P, Zhang J, Wen Z, Zhang C (2011) Network single-walled carbon nanotube biosensors for fast and highly sensitive detection of proteins. Nanotechnology 22:33

    Google Scholar 

  16. Gomathi P, Kim MK, Park JJ, Ragupathy D, Rajendran A, Lee SC, Kim JC, Lee SH, Ghim HD (2011) Multiwalled carbon nanotubes grafted chitosan nanobiocomposite: a prosperous functional nanomaterials for glucose biosensor application. Sens Actuators B Chem 155:897

    Article  CAS  Google Scholar 

  17. Pemberton RM, Rawson FJ, Xu J, Pittson R, Drago GA, Griffiths J, Jackson SK, Hart JP (2010) Application of screen-printed microband biosensors incorporated with cells to monitor metabolic effects of potential environmental toxins. Microchim Acta 170:321

    Article  CAS  Google Scholar 

  18. Gurban AM, Rotariu L, Tudorache M, Bala C, Noguer T (2009) Development of biological sensors based on screen-printed electrodes for environmental pollution monitoring. In: Baraton MI (ed) Sensors for environment, health and security: advanced materials and technologies. Springer, Dordrecht, p 401

    Chapter  Google Scholar 

  19. Escamilla-Gomez V, Campuzano S, Pedrero M, Pingarron JM (2009) Gold screen-printed-based impedimetric immunobiosensors for direct and sensitive Escherichia coli quantisation. Biosens Bioelectron 24:3365

    Article  CAS  Google Scholar 

  20. Tudorache M, Bala C (2007) Biosensors based on screen-printing technology, and their applications in environmental and food analysis. Anal Bioanal Chem 388:565

    Article  CAS  Google Scholar 

  21. Avramescu A, Andreescu S, Noguer T, Bala C, Andreescu D, Marty JL (2002) Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations. Anal Bioanal Chem 374:25

    Article  CAS  Google Scholar 

  22. Alonso-Lomillo MA, Dominguez-Renedo O, Arcos-Martinez MJ (2010) Screen-printed biosensors in microbiology; a review. Talanta 82:1629

    Article  CAS  Google Scholar 

  23. Zamaleeva AI, Sharipova IR, Shamagsumova RV, Ivanov AN, Evtugyn GA, Ishmuchametova DG, Fakhrullin RF (2011) A whole-cell amperometric herbicide biosensor based on magnetically functionalised microalgae and screen-printed electrodes. Anal Method 3:509

    Article  CAS  Google Scholar 

  24. Shen Z-Q, Wang J-F, Qiu Z-G, Jin M, Wang X-W, Chen Z-L, Li J-W, Cao F-H (2011) QCM immunosensor detection of Escherichia coli O157:H7 based on beacon immunomagnetic nanoparticles and catalytic growth of colloidal gold. Biosens Bioelectron 26:3376

    Article  CAS  Google Scholar 

  25. Frisk ML, Lin G, Johnson EA, Beebe DJ (2011) Synaptotagmin II peptide-bead conjugate for botulinum toxin enrichment and detection in microchannels. Biosens Bioelectron 26:1929

    Article  CAS  Google Scholar 

  26. Zhao Y, Ye MQ, Chao QG, Jia NQ, Ge Y, Shen HB (2009) Simultaneous detection of multifood-borne pathogenic bacteria based on functionalized quantum dots coupled with immunomagnetic separation in food samples. J Agric Food Chem 57:517

    Article  CAS  Google Scholar 

  27. Ravindranath SP, Mauer LJ, Deb-Roy C, Irudayaraj J (2009) Biofunctionalized magnetic nanoparticle integrated mid-infrared pathogen sensor for food matrixes. Anal Chem 81:2840

    Article  CAS  Google Scholar 

  28. Kwon Y, Hara CA, Knize MG, Hwang MH, Venkateswaran KS, Wheeler EK, Bell PM, Renzi RF, Fruetel JA, Bailey CG (2008) Magnetic bead based immunoassay for autonomous detection of toxins. Anal Chem 80:8416

    Article  CAS  Google Scholar 

  29. Meyer MHF, Krause H-J, Hartmann M, Miethe P, Oster J, Keus-gen M (2007) Francisella tularensis detection using magnetic labels and a magnetic biosensor based on frequency mixing. J Magn Magn Mater 311:259

    Article  CAS  Google Scholar 

  30. Tudorache M, Bala C (2008) Sensitive aflatoxin b1 determination using a magnetic particles-based enzyme-linked immunosorbent assay. Sensors 8:7571

    Article  CAS  Google Scholar 

  31. Situ C, Buijs J, Mooney MH, Elliott CT (2010) Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis. Trac Trends Anal Chem 29:1305

    Article  CAS  Google Scholar 

  32. Zhu S, Du C, Fu Y (2009) Localized surface plasmon resonance-based hybrid Au-Ag nanoparticles for detection of Staphylococcus aureus enterotoxin B. Opt Mater 31:1608

    Article  CAS  Google Scholar 

  33. Tsai W-C, Li I-C (2009) SPR-based immunosensor for determining staphylococcal enterotoxin A. Sens Actuators B Chem 136:8

    Article  CAS  Google Scholar 

  34. Soelberg SD, Stevens RC, Limaye AP, Furlong CE (2009) Surface plasmon resonance detection using antibody-linked magnetic nanoparticles for analyte capture, purification, concentration, and signal amplification. Anal Chem 81:2357

    Article  CAS  Google Scholar 

  35. Piliarik M, Parova L, Homola J (2009) High-throughput SPR sensor for food safety. Biosens Bioelectron 24:1399

    Article  CAS  Google Scholar 

  36. Lan Yb, Wang Sz, Yin Yg, Hoffmann WC, Zheng Xz (2008) Using a surface plasmon resonance biosensor for rapid detection of Salmonella typhimurium in chicken carcass. J Bion Eng 5:239

    Article  Google Scholar 

  37. Shankaran DR, Gobi KVA, Miura N (2007) Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sens Actuators B Chem 121:158

    Article  CAS  Google Scholar 

  38. Hodnik V, Anderluh G (2009) Toxin detection by Surface Plasmon Resonance. Sensors 9:1339

    Article  CAS  Google Scholar 

  39. Bergwerff AA, Van Knapen F (2006) Surface plasmon resonance biosensors for detection of pathogenic microorganisms: Strategies to secure food and environmental safety. J AOAC Int 89:826

    CAS  Google Scholar 

  40. Edwards KA, Clancy HA, Baeumner AJ (2006) Bacillus anthracis: toxicology, epidemiology and current rapid-detection methods. Anal Bioanal Chem 384:73

    Article  CAS  Google Scholar 

  41. Tran Ngoc H, Ganesh T, Han S-H, Yoon M-Y, Chung H (2011) Sensitive detection of an Anthrax biomarker using a glassy carbon electrode with a consecutively immobilized layer of polyaniline/carbon nanotube/peptide. Biosens Bioelectron 26:4227

    Article  CAS  Google Scholar 

  42. Hao R-Z, Song H-B, Zuo G-M, Yang R-F, Wei H-P, Wang D-B, Cui Z-Q, Zhang Z, Cheng Z-X, Zhang X-E (2011) DNA probe functionalized QCM biosensor based on gold nanoparticle amplification for Bacillus anthracis detection. Biosens Bioelectron 26:3398

    Article  CAS  Google Scholar 

  43. Choi JS, Kim SG, Lahousse M, Park H-Y, Park H-C, Jeong B, Kim J, Kim S-K, Yoon M-Y (2011) Screening and characterization of high-affinity ssDNA aptamers against Anthrax protective antigen. J Biomol Screen 16:266

    Article  CAS  Google Scholar 

  44. Hynes A, Mohanraj B, Schiele N, Corr DT, Plopper GE, Dinu CZ, Chrisey DB (2009) Cell-based detection of Bacillus cereus Anthrax simulant ssing cell impedance sensing. Sens Lett 8:528

    Article  CAS  Google Scholar 

  45. Huan TN, Ha VTT, Hung LQ, Yoon M-Y, Han S-H, Chung H (2009) Square wave voltammetric detection of Anthrax utilizing a peptide for selective recognition of a protein biomarker. Biosens Bioelectron 25:469

    Article  CAS  Google Scholar 

  46. Hao R, Wang D, Zhang Xe, Zuo G, Wei H, Yang R, Zhang Z, Cheng Z, Guo Y, Cui Z, Zhou Y (2009) Rapid detection of Bacillus anthracis using monoclonal antibody functionalized QCM sensor. Biosens Bioelectron 24:1330

    Article  CAS  Google Scholar 

  47. Acharya G, Doorneweerd DD, Chang C-L, Henne WA, Low PS, Savran CA (2007) Label-free optical detection of anthrax-causing spores. J Am Chem Soc 129:732

    Article  CAS  Google Scholar 

  48. Baeumner AJ, Leonard B, McElwee J, Montagna RA (2004) A rapid biosensor for viable B-anthracis spores. Anal Bioanal Chem 380:15

    Article  CAS  Google Scholar 

  49. Wan J, Johnson ML, Guntupalli R, Petrenko VA, Chin BA (2007) Detection of Bacillus anthracis spores in liquid using phage-based magnetoelastic micro-resonators. Sens Actuators B Chem 127:559

    Article  CAS  Google Scholar 

  50. Grate JW, Ozanich RM Jr, Warner MG, Marks JD, Bruckner-Lea CJ (2010) Advances in assays and analytical approaches for botulinum-toxin detection. Trac Trends Anal Chem 29:1137

    Article  CAS  Google Scholar 

  51. Caleo M, Schiavo G (2009) Central effects of tetanus and botulinum neurotoxins. Toxicon 54:593

    Article  CAS  Google Scholar 

  52. Sinha K, Box M, Lalli G, Schiavo G, Schneider H, Groves M, Siligardi G, Fairweather N (2000) Analysis of mutants of tetanus toxin H-C fragment: ganglioside binding, cell binding and retrograde axonal transport properties. Mol Microbiol 37:1041

    Article  CAS  Google Scholar 

  53. Warner MG, Grate JW, Tyler A, Ozanich RM, Miller KD, Lou JL, Marks JD, Bruckner-Lea CJ (2009) Quantum dot immunoassays in renewable surface column and 96-well plate formats for the fluorescence detection of botulinum neurotoxin using high-affinity antibodies. Biosens Bioelectron 25:179

    Article  CAS  Google Scholar 

  54. Stanker LH, Merrill P, Scotcher MC, Cheng LW (2008) Development and partial characterization of high-affinity monoclonal antibodies for botulinum toxin type A and their use in analysis of milk by sandwich ELISA. J Immunol Method 336:1

    Article  CAS  Google Scholar 

  55. Golden JP, Floyd-Smith TM, Mott DR, Ligler FS (2007) Target delivery in a microfluidic immunosensor. Biosens Bioelectron 22:2763

    Article  CAS  Google Scholar 

  56. Ogert RA, Brown JE, Singh BR, Shriverlake LC, Ligler FS (1992) Detection of clostridium-botulinum toxin A using a fiber optic-based biosensor. Anal Biochem 205:306

    Article  CAS  Google Scholar 

  57. Ferracci G, Marconi S, Mazuet C, Jover E, Blanchard M-P, Seagar M, Popoff M, Leveque C (2011) A label-free biosensor assay for botulinum neurotoxin B in food and human serum. Anal Biochem 410:281

    Article  CAS  Google Scholar 

  58. Grate JW, Warner MG, Ozanich RM Jr, Miller KD, Colburn HA, Dockendorff B, Antolick KC, Anheier NC Jr, Lind MA, Lou J, Marks JD, Bruckner-Lea CJ (2009) Renewable surface fluorescence sandwich immunoassay biosensor for rapid sensitive botulinum toxin detection in an automated fluidic format. Analyst 134:987

    Article  CAS  Google Scholar 

  59. Sapsford KE, Sun S, Francis J, Sharma S, Kostov Y, Rasooly A (2008) A fluorescence detection platform using spatial electroluminescent excitation for measuring botulinum neurotoxin A activity. Biosens Bioelectron 24:618

    Article  CAS  Google Scholar 

  60. Sun S, Ossandon M, Kostov Y, Rasooly A (2009) Lab-on-a-chip for botulinum neurotoxin a (BoNT-A) activity analysis. Lab Chip 9:3275

    Article  CAS  Google Scholar 

  61. Ladd J, Taylor AD, Homola J, Jiang S (2008) Detection of botulinum neurotoxins in buffer and honey using a surface plasmon resonance (SPR) sensor. Sens Actuators B Chem 130:129

    Article  CAS  Google Scholar 

  62. Pohanka M, Pavlis O, Skladal P (2007) Diagnosis of tularemia using piezoelectric biosensor technology. Talanta 71:981

    Article  CAS  Google Scholar 

  63. Pohanka M, Skladal P (2007) Serological diagnosis of tularemia in mice using the amperometric immunosensor. Electroanalysis 19:2507

    Article  CAS  Google Scholar 

  64. Cooper KL, Bandara AB, Wang Y, Wang A, Inzana TJ (2011) Photonic biosensor assays to detect and distinguish subspecies of Francisella tularensis. Sensors 11:3004

    Article  CAS  Google Scholar 

  65. Wang D, Chen H, Li H, He Q, Ding X, Deng L (2011) Detection of Staphylococcus aureus Carrying the Gene for Toxic Shock Syndrome Toxin 1 by Quantum-Dot-Probe Complexes. J Fluoresc 21:1525

    Article  CAS  Google Scholar 

  66. Tang X, Flandre D, Raskin J-P, Nizet Y, Moreno-Hagelsieb L, Pampin R, Francis LA (2011) A new interdigitated array microelectrode-oxide-silicon sensor with label-free, high sensitivity and specificity for fast bacteria detection. Sens Actuators B Chem 156:578

    Article  CAS  Google Scholar 

  67. Issadore D, Min C, Liong M, Chung J, Weissleder R, Lee H (2011) Miniature magnetic resonance system for point-of-care diagnostics. Lab Chip 11:2282

    Article  CAS  Google Scholar 

  68. Spain E, Kojima R, Kaner RB, Wallace GG, O’Grady J, Lacey K, Barry T, Keyes TE, Forster RJ (2011) High sensitivity DNA detection using gold nanoparticle functionalised polyaniline nanofibres. Biosens Bioelectron 26:2613

    Article  CAS  Google Scholar 

  69. Huang S, Ge S, He L, Cai Q, Grimes CA (2008) A remote-query sensor for predictive indication of milk spoilage. Biosens Bioelectron 23:1745

    Article  CAS  Google Scholar 

  70. Ruan CM, Zeng KF, Varghese OK, Grimes CA (2004) A staphylococcal enterotoxin B magnetoelastic immunosensor. Biosens Bioelectron 20:585

    Article  CAS  Google Scholar 

  71. Pividori MI, Merkoci A, Alegret S (2003) Graphite-epoxy composites as a new transducing material for electrochemical genosensing. Biosens Bioelectron 19:473

    Article  CAS  Google Scholar 

  72. Lin HC, Tsai WC (2003) Piezoelectric crystal immunosensor for the detection of staphylococcal enterotoxin B. Biosens Bioelectron 18:1479

    Article  CAS  Google Scholar 

  73. Campbell GA, Medina MB, Mutharasan R (2007) Detection of Staphylococcus enterotoxin B at picogram levels using piezoelectric-excited millimeter-sized cantilever sensors. Sens Actuator B Chem 126:354

    Article  CAS  Google Scholar 

  74. Maraldo D, Mutharasan R (2007) Detection and confirmation of staphylococcal enterotoxin B in apple juice and milk using piezoelectric-excited millimeter-sized cantilever sensors at 2.5 fg/mL. Anal Chem 79:7636

    Article  CAS  Google Scholar 

  75. Labib M, Hedstroem M, Amin M, Mattiasson B (2009) A capacitive biosensor for detection of staphylococcal enterotoxin B. Anal Bioanal Chem 393:1539

    Article  CAS  Google Scholar 

  76. Chatrathi MP, Wang J, Collins GE (2007) Sandwich electrochemical immunoassay for the detection of Staphylococcal enterotoxin B based on immobilized thiolated antibodies. Biosens Bioelectron 22:2932

    Article  CAS  Google Scholar 

  77. Medyantseva EP, Safina GR, Khaldeeva EV, Vershinin AA, Glushko NI, Budnikov GK (2004) Application of amperometric immunoenzyme sensors to the determination of bacterial antigens. J Anal Chem 59:168

    Article  CAS  Google Scholar 

  78. Novotny I, Rehacek V, Tvarozek V, Nikolelis DP, Andreou VG, Siontorou CG, Ziegler W (1997) Stabilized bilayer lipid membranes (BLMs) on agar-thin film electrode system support. Mater Sci Eng C 5:55

    Article  Google Scholar 

  79. Liu N, Gao Z, Zhou H, Yue M (2007) Detection of SEB gene by bilayer lipid membranes nucleic acid biosensor supported by modified patch-clamp pipette electrode. Biosens Bioelectron 22:2371

    Article  CAS  Google Scholar 

  80. Yang MH, Kostov Y, Bruck HA, Rasooly A (2008) Carbon nanotubes with enhanced chemiluminescence immunoassay for CCD-based detection of Staphylococcal enterotoxin B in food. Anal Chem 80:8532

    Article  CAS  Google Scholar 

  81. Yang MH, Bruck HA, Kostov Y, Rasooly A (2010) Biological Semiconductor Based on Electrical Percolation. Anal Chem 82:3567

    Article  CAS  Google Scholar 

  82. Yang M, Sun S, Bruck HA, Kostov Y, Rasooly A (2010) Electrical percolation-based biosensor for real-time direct detection of staphylococcal enterotoxin B (SEB). Biosens Bioelectron 25:2573

    Article  CAS  Google Scholar 

  83. Medina MB (2006) A biosensor method for detection of Staphylococcal enterotoxin A in raw whole egg. J Rapid Methods Automation Microbiol 14:119

    Article  CAS  Google Scholar 

  84. Rasooly A (2001) Surface plasmon resonance analysis of staphylococcal enterotoxin B in food. J Food Prot 64:37

    CAS  Google Scholar 

  85. Slavik R, Homola J, Brynda E (2002) A miniature fiber optic surface plasmon resonance sensor for fast detection of staphylococcal enterotoxin B. Biosens Bioelectron 17:591

    Article  CAS  Google Scholar 

  86. Naimushin AN, Soelberg SD, Nguyen DK, Dunlap L, Bartholo-mew D, Elkind J, Melendez J, Furlong CE (2002) Detection of Staphylococcus aureus enterotoxin B at femtomolar levels with a miniature integrated two-channel surface plasmon resonance (SPR) sensor. Biosens Bioelectron 17:573

    Article  CAS  Google Scholar 

  87. Medina MB (2005) A biosensor method for a competitive immunoassay detection of staphylococcal enterotoxin B (SEB) in milk. J Rapid Methods Automation Microbiol 13:37

    Article  CAS  Google Scholar 

  88. Serra B, Gamella M, Reviejo AJ, Pingarron JM (2008) Lectin-modified piezoelectric biosensors for bacteria recognition and quantification. Anal Bioanal Chem 391:1853

    Article  CAS  Google Scholar 

  89. Shen Z, Huang M, Xiao C, Zhang Y, Zeng X, Wang PG (2007) Nonlabeled quartz crystal microbalance biosensor for bacterial detection using carbohydrate and lectin recognitions. Anal Chem 79:2312

    Article  CAS  Google Scholar 

  90. Setterington EB, Alocilja EC (2011) Rapid electrochemical detection of polyaniline-labeled Escherichia coli O157:H7. Biosens Bioelectron 26:2208

    Article  CAS  Google Scholar 

  91. Zelada-Guillen GA, Bhosale SV, Riu J, Xavier Rius F (2010) Real-time potentiometric detection of bacteria in complex samples. Anal Chem 82:9254

    Article  CAS  Google Scholar 

  92. Shriver-Lake LC, Turner S, Taitt CR (2007) Rapid detection of Escherichia coli O157:H7 spiked into food matrices. Anal Chim Acta 584:66

    Article  CAS  Google Scholar 

  93. Ligler FS, Taitt CR, Shriver-Lake LC, Sapsford KE, Shubin Y, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469

    Article  CAS  Google Scholar 

  94. Subramanian AS, Irudayaraj JM (2006) Surface plasmon resonance based immunosensing of E. coli O157:H7 in apple juice. Trans Asabe 49:1257

    CAS  Google Scholar 

  95. Ho JAA, Hsu HW, Huang MR (2004) Liposome-based microcapillary immunosensor for detection of Escherichia coli O157:H7. Anal Biochem 330:342

    Article  CAS  Google Scholar 

  96. Kim G-Y, Son A (2010) Quantitative detection of E. coli 0157:H7 eaeA gene using quantum dots and magnetic particles. Biotechnol Bioprocess Eng 15:1084

    Article  CAS  Google Scholar 

  97. Wojciechowski J, Danley D, Cooper J, Yazvenko N, Taitt CR (2010) Multiplexed electrochemical detection of Yersinia pestis and Staphylococcal enterotoxin B using an antibody microarray. Sensors 10:3351

    Article  CAS  Google Scholar 

  98. Lian W, Wu D, Lim DV, Jin S (2010) Sensitive detection of multiplex toxins using antibody microarray. Anal Biochem 401:271

    Article  CAS  Google Scholar 

  99. Banerjee P, Bhunia AK (2010) Cell-based biosensor for rapid screening of pathogens and toxins. Biosens Bioelectron 26:99

    Article  CAS  Google Scholar 

  100. Huang S, Yang H, Lakshmanan RS, Johnson ML, Wan J, Chen IH, Wikle HC III, Petrenko VA, Barbaree JM, Chin BA (2009) Sequential detection of Salmonella typhimurium and Bacillus anthracis spores using magnetoelastic biosensors. Biosens Bioelectron 24:1730

    Article  CAS  Google Scholar 

  101. Dolores Morales M, Serra B, Guzman-Vazquez de Prada A, Julio Reviejo A, Manuel Pingarron J (2007) An electrochemical method for simultaneous detection and identification of Escherichia coli, Staphylococcus aureus and Salmonella choleraesuis using a glucose oxidase-peroxidase composite biosensor. Analyst 132:572

    Article  CAS  Google Scholar 

  102. Taylor AD, Ladd J, Yu Q, Chen S, Homola J, Jiang S (2006) Quantitative and simultaneous detection of four foodborne bacterial pathogens with a multi-channel SPR sensor. Biosens Bioelectron 22:752

    Article  CAS  Google Scholar 

  103. Song LN, Ahn S, Walt DR (2006) Fiber-optic microsphere-based arrays for multiplexed biological warfare agent detection. Anal Chem 78:1023

    Article  CAS  Google Scholar 

  104. Rucker VC, Havenstrite KL, Herr AE (2005) Antibody microarrays for native toxin detection. Anal Biochem 339:262

    Article  CAS  Google Scholar 

  105. Rotman B, Cote MA (2003) Application of a real-time biosensor to detect bacteria in platelet concentrates. Biochem Biophys Res Commun 300:197

    Article  CAS  Google Scholar 

  106. Taitt CR, Anderson GP, Lingerfelt BM, Feldstein MJ, Ligler FS (2002) Nine-analyte detection using an array-based biosensor. Anal Chem 74:6114

    Article  CAS  Google Scholar 

  107. Yang LJ, Li YB (2006) Simultaneous detection of Escherichia coli O157:H7 and Salmonella Typhimurium using quantum dots as fluorescence labels. Analyst 131:394

    Article  CAS  Google Scholar 

  108. Ngundi MM, Taitt CR, McMurry SA, Kahne D, Ligler FS (2006) Detection of bacterial toxins with monosaccharide arrays. Biosens Bioelectron 21:1195

    Article  CAS  Google Scholar 

  109. McBride MT, Gammon S, Pitesky M, O’Brien TW, Smith T, Al-drich J, Langlois RG, Colston B, Venkateswaran KS (2003) Multiplexed liquid arrays for simultaneous detection of simulants of biological warfare agents. Anal Chem 75:1924

    Article  CAS  Google Scholar 

  110. Huelseweh B, Ehricht R, Marschall HJ (2006) A simple and rapid protein array based method for the simultaneous detection of biowarfare agents. Proteomics 6:2972

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by a grant of the Romanian National Authority for Scientific Research, CNCS-UEFISCDI, project PN-II-ID-PCE-2011-3-0286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Camelia Bala .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this paper

Cite this paper

Bala, C. (2012). New Challenges in the Design of Bio(Sensors) for Biological Warfare Agents. In: Nikolelis, D. (eds) Portable Chemical Sensors. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2872-1_2

Download citation

Publish with us

Policies and ethics