Skip to main content

Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 740))

Abstract

Aim of this review is to give an overview and discuss recent findings on the role of Ca2+/calmodulin-dependent protein kinase II (CaMKII) in the heart. Special attention is drawn to excitation-contraction coupling (ECC) and excitation-transcription coupling (ETC). Because CaMKII expression and activity are increased in cardiac hypertrophy, heart failure, and during arrhythmias both in animal models as well as in the human heart a clinical significance of CaMKII is implied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jett MF, Schworer CM, Bass M, Soderling TR (1987) Identification of membrane-bound calcium, calmodulin-dependent protein kinase II in canine heart. Arch Biochem Biophys 255:354–360

    Article  PubMed  CAS  Google Scholar 

  2. Braun AP, Schulman H (2005) The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. Annu Rev Physiol 57:417–445

    Article  Google Scholar 

  3. Maier LS, Bers DM (2007) Role of Ca2+/calmodulin-dependent protein kinase (CaMK) in excitation-contraction coupling in the heart. Cardiovasc Res 73:631–640

    Article  PubMed  CAS  Google Scholar 

  4. Kirchhefer U, Schmitz W, Scholz H, Neumann J (1999) Activity of cAMP-dependent protein kinase and Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human hearts. Cardiovasc Res 42:254–261

    Article  PubMed  CAS  Google Scholar 

  5. Hoch B, Meyer R, Hetzer R, Krause EG, Karczewski P (1999) Identification and expression of delta-isoforms of the multifunctional Ca2+/calmodulin-dependent protein kinase in failing and nonfailing human myocardium. Circ Res 84:713–721

    PubMed  CAS  Google Scholar 

  6. Zhang T, Brown JH (2004) Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res 63:476–486

    Article  PubMed  CAS  Google Scholar 

  7. Edman CF, Schulman H (1994) Identification and characterization of δB-CaM kinase and δC-CaM kinase from rat heart, two new multifunctional Ca/calmodulin-dependent protein kinase isoforms. Biochim Biophys Acta 1221:89–101

    Article  PubMed  CAS  Google Scholar 

  8. Maier LS, Ziolo MT, Bossuyt J, Persechini A, Mestril R, Bers DM (2006) Dynamic changes in free Ca-calmodulin levels in adult cardiac myocytes. J Mol Cell Cardiol 41:451–458

    Article  PubMed  CAS  Google Scholar 

  9. Rostas JAP, Dunkley PR (1992) Multiple forms and distribution of calcium/calmodulin-stimulated protein kinase II in brain. J Neurochem 59:1191–1202

    Article  PubMed  CAS  Google Scholar 

  10. Meyer T, Hanson PI, Stryer L, Schulman H (1992) Calmodulin trapping by calcium-calmodulin-dependent protein kinase. Science 256:1199–1202

    Article  PubMed  CAS  Google Scholar 

  11. Lai Y, Nairn AC, Greengard P (1986) Autophosphorylation reversibly regulates the Ca/calmodulin-dependent protein kinase II. Proc Natl Acad Sci USA 83:4253–4257

    Article  PubMed  CAS  Google Scholar 

  12. Lou LL, Lloyd SJ, Schulman H (1986) Activation of the multifunctional Ca/calmodulin-dependent protein kinase by autophosphorylation: ATP modulates production of an autonomous enzyme. Proc Natl Acad Sci USA 83:9497–9501

    Article  PubMed  CAS  Google Scholar 

  13. Schworer CM, Colbran RJ, Soderling TR (1986) Reversible generation of a Ca-independent form of Ca (calmodulin)-dependent protein kinase II by an autophosphorylation mechanism. J Biol Chem 261:8581–8584

    PubMed  CAS  Google Scholar 

  14. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474

    Article  PubMed  CAS  Google Scholar 

  15. Wagner S, Ruff HM, Weber SL, Bellmann S, Sowa T, Schulte T, Anderson ME, Grandi E, Bers DM, Backs J, Belardinelli L, Maier LS (2011) ROS-activated Ca/calmodulin kinase IIδ is required for late INa augmentation leading to cellular Na and Ca overload. Circ Res 108:555–565

    Article  PubMed  CAS  Google Scholar 

  16. Curran J, Hinton MJ, Ríos E, Bers DM, Shannon TR (2007) Beta-adrenergic enhancement of sarcoplasmic reticulum calcium leak in cardiac myocytes is mediated by calcium/calmodulin-dependent protein kinase. Circ Res 100:391–398

    Article  PubMed  CAS  Google Scholar 

  17. Pereira L, Métrich M, Fernández-Velasco M, Lucas A, Leroy J, Perrier R, Morel E, Fischmeister R, Richard S, Bénitah JP, Lezoualc’h F, Gómez AM (2007) The cAMP binding protein Epac modulates Ca2+ sparks by a Ca2+/calmodulin kinase signalling pathway in rat cardiac myocytes. J Physiol 583(2):685–694

    Article  PubMed  CAS  Google Scholar 

  18. Mangmool S, Shukla AK, Rockman HA (2010) beta-Arrestin-dependent activation of Ca2+/calmodulin kinase II after ß1-adrenergic receptor stimulation. J Cell Biol 189:573–587

    Article  PubMed  CAS  Google Scholar 

  19. Oestreich EA, Malik S, Goonasekera SA, Blaxall BC, Kelley GG, Dirksen RT, Smrcka AV (2009) Epac and phospholipase Cepsilon regulate Ca2+ release in the heart by activation of protein kinase Cepsilon and calcium-calmodulin kinase II. J Biol Chem 284:1514–1522

    Article  PubMed  CAS  Google Scholar 

  20. Li L, Satoh H, Ginsburg KS, Bers DM (1997) The effect of Ca2+-calmodulin-dependent protein kinase II on cardiac excitation-contraction coupling in ferret ventricular myocytes. J Physiol 501(Pt 1):17–31

    Article  PubMed  CAS  Google Scholar 

  21. Ishida A, Kameshita I, Okuno S, Kitani T, Fujisawa H (1995) A novel specific and potent inhibitor of calmodulin-dependent protein kinase II. Biochem Biophys Res Commun 212:806–812

    Article  PubMed  CAS  Google Scholar 

  22. Anderson ME, Brown JH, Bers DM (2011) CaMKII in myocardial hypertrophy and heart failure. J Mol Cell Cardiol 51(4):468–473, Epub 2011 Jan 27

    Article  PubMed  CAS  Google Scholar 

  23. Colomer JM, Means AR (2000) Chronic elevation of calmodulin in the ventricles of transgenic mice increases the autonomous activity of calmodulin-dependent protein kinase II, which regulates atrial natriuretic factor gene expression. Mol Endocrinol 14:1125–1136

    Article  PubMed  CAS  Google Scholar 

  24. Ramirez MT, Zhao XL, Schulman H, Brown JH (1997) The nuclear δB isoform of Ca/calmodulin-dependent protein kinase II regulates atrial natriuretic factor gene expression in ventricular myocytes. J Biol Chem 272:31203–31208

    Article  PubMed  CAS  Google Scholar 

  25. Zhang T, Johnson EN, Gu Y, Morissette MR, Sah VP, Gigena MS, Belke DD, Dillmann WH, Rogers TB, Schulman H, Ross J Jr, Brown JH (2002) The cardiac-specific nuclear δB isoform of Ca2+/calmodulin-dependent protein kinase II induces hypertrophy and dilated cardiomyopathy associated with increased protein phosphatase 2A activity. J Biol Chem 277:1261–1267

    Article  PubMed  CAS  Google Scholar 

  26. Passier R, Zeng H, Frey N, Naya FJ, Nicol RL, McKinsey TA, Overbeek P, Richardson JA, Grant SR, Olson EN (2000) CaM kinase signaling induces cardiac hypertrophy and activates the MEF2 transcription factor in vivo. J Clin Invest 105:1395–1406

    Article  PubMed  CAS  Google Scholar 

  27. Wu Y, Temple J, Zhang R, Dzhura I, Zhang W, Trimble R, Roden DM, Passier R, Olson EN, Colbran RJ, Anderson ME (2002) Calmodulin kinase II and arrhythmias in a mouse model of cardiac hypertrophy. Circulation 106:1288–1293

    Article  PubMed  CAS  Google Scholar 

  28. Zhang T, Maier LS, Dalton ND, Miyamoto S, Ross J Jr, Bers DM, Heller BJ (2003) The δC isoform of CaMKII is activated in cardiac hypertrophy and induces dilated cardiomyopathy and heart failure. Circ Res 92:912–919

    Article  PubMed  CAS  Google Scholar 

  29. Zhang R, Khoo MS, Wu Y, Yang Y, Grueter CE, Ni G, Price EE Jr, Thiel W, Guatimosim S, Song LS, Madu EC, Shah AN, Vishnivetskaya TA, Atkinson JB, Gurevich VV, Salama G, Lederer WJ, Colbran RJ, Anderson ME (2005) Calmodulin kinase II inhibition protects against structural heart disease. Nat Med 11:409–417

    Article  PubMed  CAS  Google Scholar 

  30. Ling H, Zhang T, Pereira L, Means CK, Cheng H, Gu Y, Dalton ND, Peterson KL, Chen J, Bers D, Brown JH (2009) Requirement for Ca2+/calmodulin-dependent kinase II in the transition from pressure overload-induced cardiac hypertrophy to heart failure in mice. J Clin Invest 119(5):1230–1240

    Article  PubMed  CAS  Google Scholar 

  31. Backs J, Backs T, Neef S, Kreusser MM, Lehmann LH, Patrick DM, Grueter CE, Qi X, Richardson JA, Hill JA, Katus HA, Bassel-Duby R, Maier LS, Olson EN (2009) The δ isoform of CaM kinase II is required for pathological cardiac hypertrophy and remodeling after pressure overload. Proc Natl Acad Sci USA 106:2342–2347

    Article  PubMed  CAS  Google Scholar 

  32. Toischer K, Rokita AG, Unsöld B, Zhu W, Kararigas G, Sossalla S, Reuter SP, Becker A, Teucher N, Seidler T, Grebe C, Preuß L, Gupta SN, Schmidt K, Lehnart SE, Krüger M, Linke WA, Backs J, Regitz-Zagrosek V, Schäfer K, Field LJ, Maier LS, Hasenfuss G (2010) Differential cardiac remodeling in preload versus afterload. Circulation 122:993–1003

    Article  PubMed  Google Scholar 

  33. Lu J, McKinsey TA, Nicol RL, Olson EN (2000) Signal-dependent activation of the MEF2 transcription factor by dissociation from histone deacetylases. Proc Natl Acad Sci USA 97:4070–4075

    Article  PubMed  CAS  Google Scholar 

  34. Sparrow DB, Miska EA, Langley E, Reynaud-Deonauth S, Kotecha S, Towers N, Spohr G, Kouzarides T, Mohun TJ (1999) MEF-2 function is modified by a novel co-repressor, MITR. EMBO J 18:5085–5098

    Article  PubMed  CAS  Google Scholar 

  35. Frey N, McKinsey TA, Olson EN (2000) Decoding calcium signals involved in cardiac growth and function. Nat Med 6:1221–1227

    Article  PubMed  CAS  Google Scholar 

  36. Zhang T, Kohlhaas M, Backs J, Phillips W, Mishra S, Dybkova N, Chang S, Bers DM, Maier LS, Olson EN, Brown JH (2007) Cytoplasmic and nuclear isoforms of CaMKII differentially affect calcium handling but similarly regulate HDAC/MEF2 transcriptional response. J Biol Chem 282:35078–35087

    Article  PubMed  CAS  Google Scholar 

  37. Zhang CL, McKinsey TA, Chang S, Antos CL, Hill JA, Olson EN (2002) Class II histone deacetylases act as signal-responsive repressors of cardiac hypertrophy. Cell 110:479–488

    Article  PubMed  CAS  Google Scholar 

  38. Bossuyt J, Helmstadter K, Wu X, Clements-Jewery H, Haworth RS, Avkiran M, Martin JL, Pogwizd SM, Bers DM (2008) Ca2+/calmodulin-dependent protein kinase IIdelta and protein kinase D overexpression reinforce the histone deacetylase 5 redistribution in heart failure. Circ Res 102:695–702

    Article  PubMed  CAS  Google Scholar 

  39. Métrich M, Laurent AC, Breckler M, Duquesnes N, Hmitou I, Courillau D, Blondeau JP, Crozatier B, Lezoualc’h F, Morel E (2010) Epac activation induces histone deacetylase nuclear export via a Ras-dependent signalling pathway. Cell Signal 22:1459–1468

    Article  PubMed  CAS  Google Scholar 

  40. Bare DJ, Kettlun CS, Liang M, Bers DM, Mignery GA (2005) Cardiac type 2 inositol 1,4,5-trisphosphate receptor: interaction and modulation by calcium/calmodulin-dependent protein kinase II. J Biol Chem 280:15912–15920

    Article  PubMed  CAS  Google Scholar 

  41. Wu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Olson EN, Chen J, Brown JH, Bers DM (2006) Local InsP3-dependent perinuclear Ca2+ signaling in cardiac myocyte excitation-transcription coupling. J Clin Invest 116:675–682

    Article  PubMed  CAS  Google Scholar 

  42. Kemi OJ, Ellingsen O, Ceci M, Grimaldi S, Smith GL, Condorelli G, Wisloff U (2007) Aerobic interval training enhances cardiomyocyte contractility and Ca2+ cycling by phosphorylation of CaMKII and Thr-17 of phospholamban. J Mol Cell Cardiol 43:354–361

    Article  PubMed  CAS  Google Scholar 

  43. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum E, Larsen T, Rolim N, Condorelli G, Smith GL, Wisloff U (2009) Interval training normalizes cardiomyocyte function, diastolic Ca2? control, and SR Ca2+ release synchronicity in a mouse model of diabetic cardiomyopathy. Circ Res 105:527–536

    Article  PubMed  CAS  Google Scholar 

  44. Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  45. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144–11152

    PubMed  CAS  Google Scholar 

  46. Hain J, Onoue H, Mayrleitner M, Fleischer S, Schindler H (1995) Phosphorylation modulates the function of the calcium release channel of sarcoplasmic reticulum from cardiac muscle. J Biol Chem 270:2074–2081

    Article  PubMed  CAS  Google Scholar 

  47. Davis BA, Schwartz A, Samaha FJ, Kranias EG (1983) Regulation of cardiac sarcoplasmic reticulum calcium transport by calcium-calmodulin-dependent phosphorylation. J Biol Chem 258:13587–13591

    PubMed  CAS  Google Scholar 

  48. Simmerman HKB, Collins JH, Theibert JL, Wegener AD, Jones LR (1986) Sequence analysis of PLB: Identification of phosphorylation sites and two major structural domains. J Biol Chem 261:13333–13341

    PubMed  CAS  Google Scholar 

  49. Anderson ME, Braun AP, Schulman H, Premack BA (1994) Multifunctional Ca/calmodulin-dependent protein kinase mediates Ca-induced enhancement of the L-type Ca current in rabbit ventricular myocytes. Circ Res 75:854–861

    PubMed  CAS  Google Scholar 

  50. Xiao RP, Cheng H, Lederer WJ, Suzuki T, Lakatta EG (1994) Dual regulation of Ca/calmodulin kinase II activity by membrane voltage and by calcium influx. Proc Natl Acad Sci USA 91:9659–9663

    Article  PubMed  CAS  Google Scholar 

  51. Yuan W, Bers DM (1994) Ca-dependent facilitation of cardiac Ca current is due to Ca-calmodulin dependent protein kinase. Am J Physiol 267:H982–H993

    PubMed  CAS  Google Scholar 

  52. Hudmon A, Schulman H, Kim J, Maltez JM, Tsien RW, Pitt GS (2005) CaMKII tethers to L-type Ca2+ channels, establishing a local and dedicated integrator of Ca2+ signals for facilitation. J Cell Biol 171:537–547

    Article  PubMed  CAS  Google Scholar 

  53. Grueter CE, Abiria SA, Dzhura I, Wu Y, Ham AJL, Mohler PJ, Anderson ME, Colbran RJ (2006) L-type Ca2+ channel facilitation mediated by phosphorylation of the ß subunit by CaMKII. Mol Cell 23:641–650

    Article  PubMed  CAS  Google Scholar 

  54. Dzhura I, Wu Y, Colbran RJ, Balser JR, Anderson ME (2000) Calmodulin kinase determines calcium-dependent facilitation of L-type calcium channels. Nat Cell Biol 2:173–177

    Article  PubMed  CAS  Google Scholar 

  55. Maier LS, Zhang T, Chen L, DeSantiago J, Heller Brown J, Bers DM (2003) Transgenic CaMKIIδC overexpression uniquely alters cardiac myocyte Ca2+ handling: reduced SR Ca2+ load and activated SR Ca2+ release. Circ Res 92:904–911

    Article  PubMed  CAS  Google Scholar 

  56. Kohlhaas M, Zhang T, Seidler T, Zibrova D, Dybkova N, Steen A, Wagner S, Chen L, Heller Brown J, Bers DM, Maier LS (2006) Increased sarcoplasmic reticulum calcium leak but unaltered contractility by acute CaMKII overexpression in isolated rabbit cardiac myocytes. Circ Res 98:235–244

    Article  PubMed  CAS  Google Scholar 

  57. Thiel WH, Chen B, Hund TJ, Koval OM, Purohit A, Song LS, Mohler PJ, Anderson ME (2008) Proarrhythmic defects in Timothy Syndrome require calmodulin kinase II. Circulation 118:2225–2234

    Article  PubMed  CAS  Google Scholar 

  58. Ronkainen JJ, Hänninen SL, Korhonen T, Koivumäki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P (2011) Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel 1C-subunit gene (Cacna1c) by DREAM translocation.J Physiol 589(Pt 11):2669–2686

    Article  PubMed  CAS  Google Scholar 

  59. Rodriguez P, Bhogal MS, Coyler J (2003) Stoichiometric phosphorylation of cardiac ryanodine receptor on serine-2809 by calmodulin-dependent kinase II and protein kinase A. J Biol Chem 278:38593–38600

    Article  PubMed  CAS  Google Scholar 

  60. Lokuta AJ, Rogers TB, Lederer WJ, Valdivia HH (1997) Modulation of cardiac ryanodine receptors of swine and rabbit by a phosphorylation-dephosphorylation mechanism. J Physiol (Lond) 487:609–622

    Google Scholar 

  61. Wu Y, Colbran RJ, Anderson ME (2001) Calmodulin kinase is a molecular switch for cardiac excitation-contraction coupling. Proc Natl Acad Sci USA 98:2877–2881

    Article  PubMed  CAS  Google Scholar 

  62. Yang D, Zhu WZ, Xiao B, Brochet DX, Chen SR, Lakatta EG, Xiao RP, Cheng H (2007) Ca2+/calmodulin kinase II-dependent phosphorylation of ryanodine receptors suppresses Ca2+ sparks and Ca2+ waves in cardiac myocytes. Circ Res 100:399–407

    Article  PubMed  CAS  Google Scholar 

  63. Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004) Ca2+/calmodulin-dependent protein kinase II phosphorylation regulates the cardiac ryanodine receptor. Circ Res 94:e61–e70

    Article  PubMed  CAS  Google Scholar 

  64. Currie S, Loughrey CM, Craig MA, Smith GL (2004) Calcium/calmodulin-dependent protein kinase IIδ associates with the ryanodine receptor complex and regulates channel function in rabbit heart. Biochem J 377:357–366

    Article  PubMed  CAS  Google Scholar 

  65. Guo T, Zhang T, Mestril R, Bers DM (2006) Ca/calmodulin-dependent protein kinase II phosphorylation of ryanodine receptor does affect calcium sparks in mouse ventricular myocytes. Circ Res 99:398–406

    Article  PubMed  CAS  Google Scholar 

  66. Ai X, Curran JW, Shannon TR, Bers DM, Pogwizd SM (2005) Ca2+-calmodulin-dependent protein kinase modulates RyR2 phosphorylation and SR Ca2+ leak in a rabbit heart failure. Circ Res 97:1314–1322

    Article  PubMed  CAS  Google Scholar 

  67. Shannon TR, Pogwizd SM, Bers DM (2003) Elevated sarcoplasmic reticulum Ca leak in intact ventricular myocytes from rabbits in heart failure. Circ Res 93:592–594

    Article  PubMed  CAS  Google Scholar 

  68. Sossalla S, Fluschnik N, Schotola H, Ort K, Neef S, Schulte T, Wittköpper K, Renner A, Schmitto JD, Gummert J, El-Armouche A, Hasenfuss G, Maier LS (2010) Inhibition of elevated Ca2+/calmodulin-dependent protein kinase II (CaMKII) improves contractility in human failing myocardium. Circ Res 107:1150–1161

    Article  PubMed  CAS  Google Scholar 

  69. Sag CM, Wadsack DP, Khabbazzadeh S, Abesser M, Grefe C, Neef S, Maier SKG, Maier LS (2009) CaMKII contributes to cardiac arrhythmogenesis in transgenic CaMKIIδC mice having heart failure. Circ Heart Fail 2:664–675

    Article  PubMed  CAS  Google Scholar 

  70. van Oort RJ, McCauley MD, Dixit SS, Pereira L, Yang Y, Respress JL, Wang Q, De Almeida AC, Skapura DG, Anderson ME, Bers DM, Wehrens XH (2010) Ryanodine receptor phosphorylation by calcium/calmodulin-dependent protein kinase II promotes life-threatening ventricular arrhythmias in mice with heart failure. Circulation 122:2669–2679

    Article  PubMed  CAS  Google Scholar 

  71. Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, Schotten U, Anderson ME, Valderrábano M, Dobrev D, Wehrens XH (2009) Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest 119:1940–1951

    PubMed  CAS  Google Scholar 

  72. Neef S, Dybkova N, Sossalla S, Ort KR, Fluschnik N, Neumann K, Seipelt R, Schöndube FA, Hasenfuss G, Maier LS (2010) CaMKII dependent diastolic SR Ca2+ leak and elevated diastolic Ca2+ levels in right atrial myocardium of patients with atrial fibrillation. Circ Res 106:1134–1144

    Article  PubMed  CAS  Google Scholar 

  73. Bassani RA, Mattiazzi A, Bers DM (1995) CaMKII is responsible for activity-dependent acceleration of relaxation in rat ventricular myocytes. Am J Physiol 268:H703–H712

    PubMed  CAS  Google Scholar 

  74. DeSantiago J, Maier LS, Bers DM (2004) Phospholamban is required for CaMKII-dependent recovery of Ca transients and SR Ca reuptake during acidosis in cardiac myocytes. J Mol Cell Cardiol 36:67–74

    Article  PubMed  CAS  Google Scholar 

  75. Hagemann D, Kuschel M, Kuramochi T, Zhu W, Cheng H, Xiao RP (2000) Frequency-encoding Thr17 phospholamban phosphorylation is independent of Ser16 phosphorylation in cardiac myocytes. J Biol Chem 275:22532–22536

    Article  PubMed  CAS  Google Scholar 

  76. DeSantiago J, Maier LS, Bers DM (2002) Frequency-dependent acceleration of relaxation in the heart depends on CaMKII, but not phospholamban. J Mol Cell Cardiol 34:975–984

    Article  PubMed  CAS  Google Scholar 

  77. Huke S, Bers DM (2007) Temporal dissociation of frequency-dependent acceleration of relaxation and protein phosphorylation by CaMKII. J Mol Cell Cardiol 42:590–599

    Article  PubMed  CAS  Google Scholar 

  78. Grimm M, El-Armouche A, Zhang R, Anderson ME, Eschenhagen T (2007) Reduced contractile response to alpha1-adrenergic stimulation in atria from mice with chronic cardiac calmodulin kinase II inhibition. J Mol Cell Cardiol 42:643–652

    Article  PubMed  CAS  Google Scholar 

  79. Li L, Chu G, Kranias EG, Bers DM (1998) Cardiac myocyte calcium transport in phospholamban knockout mouse: relaxation and endogenous CaMKII effects. Am J Physiol 274:H1335–H1347

    PubMed  CAS  Google Scholar 

  80. Hussain M, Drago GA, Colyer J, Orchard CH (1997) Rate-dependent abbreviation of Ca2+ transient in rat heart is independent of phospholamban phosphorylation. Am J Physiol 273:H695–H706

    PubMed  CAS  Google Scholar 

  81. Kassiri Z, Myers R, Kaprielian R, Banijamali HS, Backx PH (2000) Rate-dependent changes of twitch force duration in rat cardiac trabeculae: a property of the contractile system. J Physiol 524:221–231

    Article  PubMed  CAS  Google Scholar 

  82. Wagner S, Dybkova N, Rasenack ECL, Jacobshagen C, Fabritz L, Kirchhof P, Maier SK, Zhang T, Hasenfuss G, Heller Brown J, Bers DM, Maier LS (2006) Ca/calmodulin-dependent protein kinase II regulates cardiac Na channels. J Clin Invest 116:3127–3138

    Article  PubMed  CAS  Google Scholar 

  83. Maltsev VA, Reznikov V, Undrovinas NA, Sabbah HN, Undrovinas A (2008) Modulation of late sodium current by Ca2+, calmodulin, and CaMKII in normal and failing dog cardiomyocytes: similarities and differences. Am J Physiol Heart Circ Physiol 294:H1597–H1608

    Article  PubMed  CAS  Google Scholar 

  84. Maltsev VA, Sabbah HN, Higgins RSD, Silverman N, Lesch M, Undrovinas AI (1998) Novel, ultraslow inactivating sodium current in human ventricular cardiomyocytes. Circulation 98:2545–2552

    PubMed  CAS  Google Scholar 

  85. Sossalla SR, Rasenack ECL, Wagner S, Ruff H, Hasenfuss G, Belardinelli L, Maier LS (2008) Inhibition of late sodium current by ranolazine reduces diastolic dysfunction in human heart failure. J Mol Cell Cardiol 45:32–43

    Article  PubMed  CAS  Google Scholar 

  86. Song Y, Shryock JC, Wagner S, Maier LS, Belardinelli L (2006) Blocking late sodium current reduces hydrogen peroxide-induced arrhythmogenic activity and contractile dysfunction. J Pharmacol Exp Ther 318:214–222

    Article  PubMed  CAS  Google Scholar 

  87. Kupershmidt S, Yang T, Roden DM (1998) Modulation of cardiac Na+ current phenotype by ß1-subunit expression. Circ Res 83:441–447

    PubMed  CAS  Google Scholar 

  88. Viswanathan PC, Balser JR (2004) Inherited sodium channelopathies a continuum of channel dysfunction. Trends Cardiovasc Med 14:28–35

    Article  PubMed  CAS  Google Scholar 

  89. Abriel H, Kass RS (2005) Regulation of the voltage-gated cardiac sodium channel Nav1.5 by interacting proteins. Trends Cardiovasc Med 15:35–40

    Article  PubMed  CAS  Google Scholar 

  90. Deschênes I, Neyroud N, DiSilvestre D, Marbán E, Yue DT, Tomaselli GF (2002) Isoform-specific modulation of voltage-gated Na+ channels by calmodulin. Circ Res 90:e49–e57

    Article  PubMed  Google Scholar 

  91. Colomer JM, Mao L, Rockman HA, Means AR (2003) Pressure overload selectively up-regulates Ca2+/calmodulin-dependent protein kinase II in vivo. Mol Endocrinol 17:183–192

    Article  PubMed  CAS  Google Scholar 

  92. Hund TJ, Koval OM, Li J, Wright PJ, Qian L, Snyder JS, Gudmundsson H, Kline CF, Davidson NP, Cardona N, Rasband MN, Anderson ME, Mohler PJ (2010) A βIV-spectrin/CaMKII signaling complex is essential for membrane excitability in mice. J Clin Invest 120:3508–3519

    Article  PubMed  CAS  Google Scholar 

  93. Currie S, Smith GL (1999) Calcium/calmodulin-dependent protein kinase II activity is increased in sarcoplasmic reticulum from coronary artery ligated rabbit hearts. FEBS Lett 459:244–248

    Article  PubMed  CAS  Google Scholar 

  94. Veldkamp MW, Viswanathan PC, Bezzina C, Baartscheer A, Wilde AAM, Balser JR (2000) Two distinct congenital arrhythmias evoked by a multidysfunctional Na+ channel. Circ Res 86:e91–e97

    PubMed  CAS  Google Scholar 

  95. Bezzina C, Veldkamp MW, van Den Berg MP, Postma AV, Rook MB, Viersma JW, van Langen IM, Tan-Sindhunata G, Bink-Boelkens MT, van Der Hout AH, Mannens MM, Wilde AA (1999) A single Na+ channel mutation causing both long-QT and Brugada syndromes. Circ Res 85:1206–1213

    PubMed  CAS  Google Scholar 

  96. Sossalla S, Kallmeyer B, Wagner S, Mazur M, Maurer U, Toischer K, Schmitto JD, Seipelt R, Schöndube F, Hasenfuss G, Belardinelli L, Maier LS (2010) Altered Na+ currents in atrial fibrillation: effects of ranolazine on arrhythmias and contractility in human atrial myocardium. J Am Coll Cardiol 55:2330–2342

    Article  PubMed  CAS  Google Scholar 

  97. Livshitz LM, Rudy Y (2007) Regulation of Ca2+ and electrical alternans in cardiac myocytes: role of CaMKII and repolarizing currents. Am J Physiol Heart Circ Physiol 292:H2854–H2866

    Article  PubMed  CAS  Google Scholar 

  98. Grandi E, Puglisi JL, Wagner S, Maier LS, Severi S, Bers DM (2007) Simulation of Ca/calmodulin-dependent protein kinase II on rabbit ventricular myocyte ion currents and action potentials. Biophys J 93:3835–3847

    Article  PubMed  CAS  Google Scholar 

  99. Tessier S, Karczewski P, Krause EG, Pansard Y, Acar C, Lang-Lazdunski M, Mercadier JJ, Hatem SN (1999) Regulation of the transient outward K+ current by Ca2+/calmodulin-dependent protein kinases II in human atrial myocytes. Circ Res 85:810–819

    PubMed  CAS  Google Scholar 

  100. Tessier S, Godreau D, Vranckx R, Lang-Lazdunski L, Mercadier JJ, Hatem SN (2001) Cumulative inactivation of the outward potassium current: a likely mechanism underlying electrical memory in human atrial myocytes. J Mol Cell Cardiol 33:755–767

    Article  PubMed  CAS  Google Scholar 

  101. Colinas O, Gallego M, Setien R, Lopez-Lopez JR, Perez-Garcia MT, Casis O (2006) Differential modulation of KV4.2 and KV4.3 channels by calmodulin-dependent protein kinase II in rat cardiac myocytes. Am J Physiol Heart Circ Physiol 291:H1978–H1987

    Article  PubMed  CAS  Google Scholar 

  102. Sergeant GP, Ohya S, Reihill JA, Perrino BA, Amberg GC, Imaizumi Y, Horowitz B, Sanders KM, Koh SD (2005) Regulation of Kv4.3 currents by Ca2+/calmodulin-dependent protein kinase II. Am J Physiol Cell Physiol 288:C304–C313

    Article  PubMed  CAS  Google Scholar 

  103. Keskanokwong T, Lim HJ, Zhang P, Cheng J, Xu L, Lai D, Wang Y (2011) Dynamic Kv4.3-CaMKII unit in heart: an intrinsic negative regulator for CaMKII activation. Eur Heart J 32:305–315

    Article  PubMed  CAS  Google Scholar 

  104. Xiao L, Coutu P, Villeneuve LR, Tadevosyan A, Maguy A, Le Bouter S, Allen BG, Nattel S (2008) Mechanisms underlying rate-dependent remodeling of transient outward potassium current in canine ventricular myocytes. Circ Res 103:733–742

    Article  PubMed  CAS  Google Scholar 

  105. Wagner S, Hacker E, Grandi E, Weber SL, Dybkova N, Sossalla S, Sowa T, Bers DM, Maier LS (2009) Ca/calmodulin kinase II differentially modulates potassium currents. Circ Arrhythm Electrophysiol 2:285–294

    Article  PubMed  CAS  Google Scholar 

  106. Li J, Marionneau C, Zhang R, Shah V, Hell JW, Nerbonne JM, Anderson ME (2006) Calmodulin kinase II inhibition shortens action potential duration by upregulation of K+ currents. Circ Res 99:1092–1099

    Article  PubMed  CAS  Google Scholar 

  107. Khoo MS, Li J, Singh MV, Yang Y, Kannankeril P, Wu Y, Grueter CE, Guan X, Oddis CV, Zhang R, Mendes L, Ni G, Madu EC, Yang J, Bass M, Gomez RJ, Wadzinski BE, Olson EN, Colbran RJ, Anderson ME (2006) Death, cardiac dysfunction, and arrhythmias are increased by calmodulin kinase II in calcineurin cardiomyopathy. Circulation 114:1352–1359

    Article  PubMed  CAS  Google Scholar 

  108. Dybkova N, Sedej S, Napolitano C, Neef S, Rokita AG, Hünlich M, Brown JH, Kockskämper J, Priori SG, Pieske B, Maier LS (2011) Overexpression of CaMKIIδc in RyR2R4496C knock-in mice leads to altered intracellular Ca2+ handling and increased mortality. J Am Coll Cardiol 57:469–479

    Article  PubMed  CAS  Google Scholar 

  109. January CT, Riddle JM (1989) Early afterdepolarizations: Mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64:977–990

    PubMed  CAS  Google Scholar 

  110. Marban E, Robinson SW, Wier WG (1987) Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 78:1185–1192

    Article  Google Scholar 

  111. Carlsson L, Drews L, Duker G (1996) Rhythm anomalies related to delayed repolarization in vivo: influence of sarcolemmal Ca++ entry and intracellular Ca++ overload. J Pharmacol Exp Ther 279:231–239

    PubMed  CAS  Google Scholar 

  112. Wu Y, Kimbrough JT, Colbran RJ, Anderson ME (2004) Calmodulin kinase is functionally targeted to the action potential plateau for regulation of L-type Ca2+ current in rabbit cardiomyocytes. J Physiol 554:145–155

    Article  PubMed  CAS  Google Scholar 

  113. Wu Y, Roden DM, Anderson ME (1999) Calmodulin kinase inhibition prevents development of the arrhythmogenic transient inward current. Circ Res 84:906–912

    PubMed  CAS  Google Scholar 

  114. Hund TJ, Decker KF, Kanter E, Mohler PJ, Boyden PA, Schuessler RB, Yamada KA, Rudy Y (2008) Role of activated CaMKII in abnormal calcium homeostasis and INa remodeling after myocardial infarction: insights from mathematical modeling. J Mol Cell Cardiol 45:420–428

    Article  PubMed  CAS  Google Scholar 

  115. Swaminathan PD, Purohit A, Soni S, Voigt N, Singh MV, Glukhov AV, Gao Z, He BJ, Luczak ED, Joiner ML, Kutschke W, Yang J, Donahue JK, Weiss RM, Grumbach IM, Ogawa M, Chen PS, Efimov I, Dobrev D, Mohler PJ, Hund TJ, Anderson ME (2011) Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. doi:10.1172/JCI57833

Download references

Acknowledgements

Supported by grants from the DFG through a Heisenberg-grant (MA 1982/4-1), a grant for a Clinical Research group KFO155 (MA 1982/2-1), and the Fondation Leducq Award to the Alliance for Calmodulin Kinase Signaling in Heart Disease.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars S. Maier MD, FESC, FAHA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Maier, L.S. (2012). Ca2+/Calmodulin-Dependent Protein Kinase II (CaMKII) in the Heart. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_30

Download citation

Publish with us

Policies and ethics