Skip to main content

Bone Reconstruction Utilizing Mesenchymal Stem Cell Sheets for Cell Delivery

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 5

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 5))

  • 1088 Accesses

Abstract

Large bone defects often arise from traumatic injury. Mesenchymal stem cells (MSCs) hold great potential for bone regeneration. However to date, MSCs have not yet been incorporated into structural bone allografts in clinical practice. MSCs possess high proliferative capacity and the potential to differentiate into at least three mesodermal lineages – bone, cartilage and fat. The high proliferative capacity of bMSCs enables a more rapid formation of cell sheets compared to terminally differentiated cell types. The multi-lineage differentiation potential of MSCs broadens the application of the cell sheet technique, providing a wider scope of application for connective tissue engineering. In particular, assembly of MSC sheets and large allografts provides a convenient and practical tissue engineering platform for clinical regeneration of large musculoskeletal defects. This is anticipated to be a major future direction for enhancing allograft healing and repair via tissue engineering and stem cell engraftment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arinzeh TL, Tran T, Mcalary J, Daculsi G (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26:3631–3638

    Article  PubMed  CAS  Google Scholar 

  • Choi Y, Oldenburg FP, Sage L, Johnstone B, Yoo JU (2007) A bridging demineralized bone implant facilitates posterolateral lumbar fusion in New Zealand white rabbits. Spine (Phila Pa 1976) 32:36–41

    Article  Google Scholar 

  • Colton CK (1995) Implantable biohybrid artificial organs. Cell Transplant 4:415–436

    Article  PubMed  CAS  Google Scholar 

  • De Bari C, Dell’Accio F, Karystinou A, Guillot PV, Fisk NM, Jones EA, McGonagle D, Khan IM, Archer CW, Mitsiadis TA, Donaldson AN, Luyten FP, Pitzalis C (2008) A biomarker-based mathematical model to predict bone-forming potency of human synovial and periosteal mesenchymal stem cells. Arthritis Rheum 58:240–250

    Article  PubMed  Google Scholar 

  • Dennis JE, Esterly K, Awadallah A, Parrish CR, Poynter GM, Goltry KL (2007) Clinical-scale expansion of a mixed population of bone-marrow-derived stem and progenitor cells for potential use in bone-tissue regeneration. Stem Cells 25:2575–2582

    Article  PubMed  Google Scholar 

  • Emery SE, Brazinski MS, Koka A, Bensusan JS, Stevenson S (1994) The biological and biomechanical effects of irradiation on anterior spinal bone grafts in a canine model. J Bone Joint Surg Am 76:540–548

    PubMed  CAS  Google Scholar 

  • Fox EJ, Hau MA, Gebhardt MC, Hornicek FJ, Tomford WW, Mankin HJ (2002) Long-term followup of proximal femoral allografts. Clin Orthop Relat Res 397:106–113

    Article  PubMed  Google Scholar 

  • Gray JC, Elves MW (1982) Donor cells’ contribution to osteogenesis in experimental cancellous bone grafts. Clin Orthop Relat Res 163:261–271

    PubMed  Google Scholar 

  • Gurevitch O, Kurkalli BG, Prigozhina T, Kasir J, Gaft A, Slavin S (2003) Reconstruction of cartilage, bone, and hematopoietic microenvironment with demineralized bone matrix and bone marrow cells. Stem Cells 21:588–597

    Article  PubMed  Google Scholar 

  • Kadiyala S, Young RG, Thiede MA, Bruder SP (1997) Culture expanded canine mesenchymal stem cells possess osteochondrogenic potential in vivo and in vitro. Cell Transplant 6:125–134

    Article  PubMed  CAS  Google Scholar 

  • Karaoglu S, Baktir A, Kabak S, Arasi H (2002) Experimental repair of segmental bone defects in rabbits by demineralized allograft covered by free autogenous periosteum. Injury 33:679–683

    Article  PubMed  Google Scholar 

  • Krampera M, Pizzolo G, Aprili G, Franchini M (2006) Mesenchymal stem cells for bone, cartilage, tendon and skeletal muscle repair. Bone 39:678–683

    Article  PubMed  CAS  Google Scholar 

  • Mauney JR, Jaquiery C, Volloch V, Heberer M, Martin I, Kaplan DL (2005) In vitro and in vivo evaluation of differentially demineralized cancellous bone scaffolds combined with human bone marrow stromal cells for tissue engineering. Biomaterials 26:3173–3185

    Article  PubMed  CAS  Google Scholar 

  • Mygind T, Stiehler M, Baatrup A, Li H, Zou X, Flyvbjerg A, Kassem M, Bunger C (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28:1036–1047

    Article  PubMed  CAS  Google Scholar 

  • Ouyang HW, Goh JC, Lee EH (2004) Use of bone marrow stromal cells for tendon graft-to-bone healing: histological and immunohistochemical studies in a rabbit model. Am J Sports Med 32:321–327

    Article  PubMed  Google Scholar 

  • Pouliot R, Larouche D, Auger FA, Juhasz J, Xu W, Li H, Germain L (2002) Reconstructed human skin produced in vitro and grafted on athymic mice. Transplantation 73:1751–1757

    Article  PubMed  Google Scholar 

  • Stevenson S (1999) Biology of bone grafts. Orthop Clin North Am 30:543–552

    Article  PubMed  CAS  Google Scholar 

  • Stevenson S, Li XQ, Davy DT, Klein L, Goldberg VM (1997) Critical biological determinants of incorporation of non-vascularized cortical bone grafts. Quantification of a complex process and structure. J Bone Joint Surg Am 79:1–16

    Article  PubMed  CAS  Google Scholar 

  • Uebersax L, Hagenmuller H, Hofmann S, Gruenblatt E, Muller R, Vunjak-Novakovic G, Kaplan DL, Merkle HP, Meinel L (2006) Effect of scaffold design on bone morphology in vitro. Tissue Eng 12:3417–3429

    Article  PubMed  CAS  Google Scholar 

  • Vilquin JT, Rosset P (2006) Mesenchymal stem cells in bone and cartilage repair: current status. Regen Med 1:589–604

    Article  PubMed  CAS  Google Scholar 

  • Xin X, Hussain M, Mao JJ (2007) Continuing differentiation of human mesenchymal stem cells and induced chondrogenic and osteogenic lineages in electrospun PLGA nanofiber scaffold. Biomaterials 28:316–325

    Article  PubMed  CAS  Google Scholar 

  • Yaszemski MJ, Payne RG, Hayes WC, Langer R, Mikos AG (1996) Evolution of bone transplantation: molecular, cellular and tissue strategies to engineer human bone. Biomaterials 17:175–185

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Xie C, Lin AS, Ito H, Awad H, Lieberman JR, Rubery PT, Schwarz EM, O’Keefe RJ, Guldberg RE (2005) Periosteal progenitor cell fate in segmental cortical bone graft transplantations: implications for functional tissue engineering. J Bone Miner Res 20:2124–2137

    Article  PubMed  CAS  Google Scholar 

  • Zund G, Ye Q, Hoerstrup SP, Schoeberlein A, Schmid AC, Grunenfelder J, Vogt P, Turina M (1999) Tissue engineering in cardiovascular surgery: MTT, a rapid and reliable quantitative method to assess the optimal human cell seeding on polymeric meshes. Eur J Cardiothorac Surg 15:519–524

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouyang Hong Wei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Hui, Z.X., Liang, S.W., Heng, B.C., Wei, O.H. (2012). Bone Reconstruction Utilizing Mesenchymal Stem Cell Sheets for Cell Delivery. In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 5. Stem Cells and Cancer Stem Cells, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2900-1_13

Download citation

Publish with us

Policies and ethics