Skip to main content

Inelastic Composite Materials

  • Chapter
  • First Online:
Micromechanics of Composite Materials

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 186))

Abstract

Initial applications of elastic–plastic and other inelastic constitutive relations in predicting overall response of heterogeneous materials had focused on polycrystalline metals, modeled as a multiphase system of randomly orientated single crystal grains which were assigned certain yield conditions and slip mechanisms. Early work includes the slip theory of Batdorf and Budiansky (1949), the rigid-plastic single crystal system of Bishop and Hill (1951), the elastic–plastic K.B.W. model of Kröner (1961) and the self-consistent approximation by Hershey (1954) and by Budiansky and Wu (1962). Further developed by Hill (1965c, 1967) and implemented by Hutchinson (1970), the SCM approximation extended the elasticity form of the method to polycrystals and two-phase composites. That and numerous other extensions of elastic micromechanical methods to inelastic systems provide an interface with the latter. However, they often assume uniform elastic and inelastic deformation in each grain, or in the entire matrix of a particulate or fibrous composite, according to a specified constitutive relation. Since local deformation is not uniform, the overall response predicted by such theories is not supported by experiments, as shown in Sect. 12.2.2. Nonuniform local deformation was examined on composite cylinders under axisymmetric and thermal loads, and in shakedown state, by Dvorak and Rao (1976a, b), Tarn, et al. (1975). General loading effects were investigated with models which constrained only longitudinal deformation by elastic fibers (Dvorak and Bahei-El-Din 1979, 1980, 1982). More recent work, supported by numerical methods, has focused on realistic aspects of deformation mechanisms of polycrystals and composites, as reviewed by Dawson, Hutchinson, Torquato and others in a report on research trends in solid mechanics (Dvorak 1999).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aboudi, J. (1991). Mechanics of composite materials – A unified micromechanical approach. Amsterdam: Elsevier.

    MATH  Google Scholar 

  • Accorsi, M. L., & Nemat-Nasser, S. (1986). Bounds on the overall elastic and instantaneous elastoplastic moduli of periodic composites. Mechanics of Materials, 5, 209–220.

    Article  Google Scholar 

  • Bahei-El-Din, Y. A. (1992). Uniform fields, yielding and thermal hardening in fibrous composite laminates. International Journal of Plasticity, 8, 867–892.

    Article  MATH  Google Scholar 

  • Bahei-El-Din, Y. A. (1996). Finite element analysis of viscoplastic composite materials and structures. Mechanics of Composite Materials and Structures, 3, 1–28.

    Article  Google Scholar 

  • Bahei-El-Din, Y. A. (2009). Modeling electromechanical coupling in woven composites exhibiting damage. Journal of Aerospace Engineering, Proceedings of the Institution of Mechanical Engineering, 223(Part G), 485–495.

    Article  Google Scholar 

  • Bahei-El-Din, Y. A., & Dvorak, G. J. (2000). Micromechanics of inelastic composite materials. In A. Kelly & C. Zweben (Eds.), Comprehensive composite materials. In T.-W. Chou (Eds.), I: Fiber Reinforcements and General Theory of Composites, Ch. 1.14. Amsterdam: Elsevier Science B. V., pp. 403–430.

    Google Scholar 

  • Bahei-El-Din, Y. A., Dvorak, G. J., & Wu, J. F. (1989). Fracture of fibrous metal matrix composites – II. Modeling and numerical analysis. Engineering Fracture Mechanics, 34, 105–123.

    Article  Google Scholar 

  • Bahei-El-Din, Y. A., Khire, R., & Hajela, P. (2010). Multiscale transformation field analysis of progressive damage in fibrous laminates. International Journal of Multiscale Computational Engineering, 8, 69–80.

    Article  Google Scholar 

  • Batdorf, S. B., & Budiansky, B. (1949). A matrhmatical theory of plasticity based on the concept of slip (Techical Note 1871). Washington, DC: National Advisory Committee for Aeronautics.

    Google Scholar 

  • Baweja, S., Dvorak, G. J., & Bazant, Z. P. (1998). Composite model for basic creep of concrete. Journal of Engineering Mechanics, 124, 959–965.

    Article  Google Scholar 

  • Benveniste, Y. (1987a). A new approach to the application of Mori-Tanaka theory in composite materials. Mechanics of Materials, 6, 147–157.

    Article  Google Scholar 

  • Benveniste, Y. (1987b). A differential effective medium theory with a composite sphere embedding. ASME Journal of Applied Mechanics, 54, 466–468.

    Article  Google Scholar 

  • Bishop, J. F. W., & Hill, R. (1951). A theory of the plastic distortion of a polycrystalline aggregate under combined stress. Philosophical Magazine, 42, 414–427.

    MathSciNet  MATH  Google Scholar 

  • Brockenbrough, J. R., Suresh, S., & Wienecke, H. A. (1991). Deformation of fiber-reinforced metal-matrix composites: Geometrical effects of fiber shape and distribution. Acta Metallurgica et Materialia, 39, 735–752.

    Article  Google Scholar 

  • Budiansky, B., & Wu, T. T. (1962). Theoretical prediction of plastic strains of polycrystals. In Proceedings of the Fourth U. S. National Congress of Applied Mechanics (pp. 1175–1185). New York: ASME.

    Google Scholar 

  • Chaboche, J.-L. (1989). Constitutive equations for cyclic plasticity and visco-plasticity. International Journal of Plasticity, 5, 274–302.

    Article  Google Scholar 

  • Chaboche, J. L., Kruch, S., & Pottier, T. (1998). Micromechanics versus macromechanics: A combined approach for the metal matrix composites constitutive modelling. European Journal of Mechanics – A/Solids, 17, 885–908.

    Article  MathSciNet  MATH  Google Scholar 

  • Chaboche, J. L., Kruch, S., Maire, J. F., & Pottier, T. (2001). Towards a micromechanics based inelastic and damage modeling of composites. International Journal of Plasticity, 17, 411–439.

    Article  MATH  Google Scholar 

  • Chaboche, J. L., Kanoute, P., & Roos, A. (2005). On the capabilities of mean-field approaches for the description of plasticity in metal matrix composites. International Journal of Plasticity, 21, 1409–1434.

    Article  MATH  Google Scholar 

  • Christensen, R. M. (1969). Viscoelastic properties of heterogeneous media. Journal of the Mechanics and Physics of Solids, 17, 23.

    Article  Google Scholar 

  • Christensen, R. M. (1998). Two theoretical elasticity micromechanics models. Journal of Elasticity, 50, 15–25.

    Article  MATH  Google Scholar 

  • Christensen, R. M. (2003). Mechanics of cellular and other low density materials. International Journal of Solids and Structures, 37, 93–104.

    Article  Google Scholar 

  • deBotton, G., & Ponte Castañeda, P. (1993). Elastoplastic constitutive relations for fiber-reinforced solids. International Journal of Solids and Structures, 30, 1865–1890.

    Article  MATH  Google Scholar 

  • Dvorak, G. J. (1990). On uniform fields in heterogeneous media. Proceedings of the Royal Society of London A, 431, 89–110.

    Article  MathSciNet  MATH  Google Scholar 

  • Dvorak, G. J. (1992). Transformation field analysis of inelastic composite materials. Proceedings of the Royal Society London, A437, 311–327.

    Article  MathSciNet  Google Scholar 

  • Dvorak, G. J. (Ed.) (1999) Research trends in solid mechanics, a Report from the U.S. National Committee on Theoretical and Applied Mechanics. Oxford: Elsevier Science Ltd. Also in International Journal of Solids and Structures 37(1&2) (2000).

    Google Scholar 

  • Dvorak, G. J., & Bahei-El-Din, Y. A. (1987). A bimodal plasticity of theory of fibrous composite materials. Acta Mechanica, 69, 219–241.

    Article  MATH  Google Scholar 

  • Dvorak, G. J., & Teply, J. (1985). Periodic hexagonal array models for plasticity analysis of composite materials. In A. Sawczuk & V. Bianchi (Eds.), Plasticity today: Modeling, methods and applications (W. Olszak memorial volume, pp. 623–642). Amsterdam: Elsevier Scientific Publishing Company.

    Google Scholar 

  • Dvorak, G. J., Rao, M. S. M., & Tarn, J. Q. (1974). Generalized yield surfaces for unidirectional composites. Journal of Applied Mechanics, 41, 249–253.

    Article  Google Scholar 

  • Dvorak, G. J., Bahei-El-Din, Y. A., Macheret, Y., & Liu, C. H. (1988). An experimental study of elastic-plastic behavior of fibrous boron-aluminum composites. Journal of the Mechanics and Physics of Solids, 36, 665–687.

    Article  Google Scholar 

  • Dvorak, G. J., Bahei-El-Din, Y. A., Shah, R., & Nigam, H. (1991). Experiments and modeling in plasticity of fibrous composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 270–293). New York: Springer.

    Chapter  Google Scholar 

  • Dvorak, G. J., Bahei-El-Din, Y. A., & Wafa, A. M. (1994). Implementation of the transformation field analysis for inelastic composite materials. Computational Mechanics, 14, 201–228.

    Article  MATH  Google Scholar 

  • Farez, N., & Dvorak, G. J. (1989). Large elastic-plastic deformations of fibrous metal matrix composites. Journal of the Mechanics and Physics of Solids, 39, 725–744.

    Article  Google Scholar 

  • Farez, N., & Dvorak, G. J. (1993). Finite deformation constitutive relations for elastic-plastic fibrous metal matrix composites. Journal of Applied Mechanics, 60, 619–625.

    Article  Google Scholar 

  • Findley, W. N., Lai, J. S., & Onaran, K. (1976). Creep and relaxation of nonlinear viscoelastic materials. Amsterdam: North Holland Publishing Co.

    MATH  Google Scholar 

  • Fish, J., & Shek, K. L. (1999). Finite deformation plasticity of composite structures: Computational models and adaptive strategies. Computer Methods in Applied Mechanics and Engineering, 172, 145–174.

    Article  MATH  Google Scholar 

  • Fish, J., Shek, K. L., Shephard, M. S., & Pandheeradi, M. (1997). Computational plasticity for composite structures based on mathematical homogenization: Theory and practice. Computer Methods in Applied Mechanics and Engineering, 157, 69–94.

    MathSciNet  Google Scholar 

  • Fish, J., Yu, Q., & Shek, K. L. (1999). Computational damage mechanics for composite materials based on mathematical homogenization. International Journal for Numerical Methods in Engineering, 45, 1657–1679.

    Article  MATH  Google Scholar 

  • Freed, A. D., & Walker, K. P. (1993). Viscoplasticity with creep and plasticity bounds. International Journal of Plasticity, 9, 213–242.

    Article  MATH  Google Scholar 

  • Gavazzi, A. C., & Lagoudas, D. C. (1990). On the numerical evaluation of Eshelby’s tensor and its application to elastoplastic fibrous composites. Computational Mechanics, 7, 13–19.

    Article  Google Scholar 

  • Ghahremani, F. (1977). Numerical evaluation of the stresses and strains in ellipsoidalinclusions in an anisotropic elastic material. Mechanics Research Communications, 4, 89–91.

    Article  Google Scholar 

  • Hashin, Z. (1970). Complex moduli of viscoelastic composites I. General theory and applications to particulate composites. International Journal of Solids and Structures, 6, 539–552.

    Article  MATH  Google Scholar 

  • Hershey, A. V. (1954). The elasticity of an isotropic aggregate of anisotropic cubic crystals. ASME Journal of Applied Mechanics, 21, 236–240.

    MATH  Google Scholar 

  • Hill, R. (1948). A theory of the yielding and plastic flow of anisotropic metals. Proceedings of the Royal Society London, A193, 281–297.

    Article  Google Scholar 

  • Hill, R. (1965c). A self-consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids, 13, 213–222.

    Article  Google Scholar 

  • Hill, R. (1967). The essential structure of constitutive laws for metal composites and polycrystals. Journal of the Mechanics and Physics of Solids, 15, 79–95.

    Article  Google Scholar 

  • Hutchinson, J. W. (1970). Elastic-plastic behaviour of polyrystalline metals and composites. Proceedings of the Royal Society London, A319, 247–272.

    Article  Google Scholar 

  • Kanoute, P., Boso, D. P., Chaboche, J. L., & Schrefler, B. A. (2009). Multiscale methods for composites: A review. Archives of Computational Methods in Engineering, 16, 31–75.

    Article  MATH  Google Scholar 

  • Kattan, P., & Voyiadjis, G. (1993). Overall damage and elastoplastic deformation in fibrous metal matrix composites. International Journal of Plasticity, 9, 931–949.

    Article  MATH  Google Scholar 

  • Knauss, W. G., & Emri, I. J. (1981). Non-linear viscoelasticity based on free volume consideration. Computers and Structures, 13, 123–128.

    Article  MATH  Google Scholar 

  • Krempl, E. (2000). Visoplastic models for high temperature applications. International Journal of Solids and Structures, 37, 279–291.

    Article  MATH  Google Scholar 

  • Lissenden, C. J. (2010). Experimental investigation of initial and subsequent yield surfaces for laminated metal matrix composites. International Journal of Plasticity, 26, 1606–1628.

    Article  MATH  Google Scholar 

  • Michel, J. C., & Suquet, P. (2003). Nonuniform transformation field analysis. International Journal of Solids and Structures, 40, 6937–6955.

    Article  MathSciNet  MATH  Google Scholar 

  • Miller, M. F., Christian, J. L., & Wennhold, W. F. (1973). Design, manufacture, development, test and evaluation of boron/aluminum structural components for Space Shuttle. General Dynamics/Convair Aerospace (Contract No. NAS 8-27738).

    Google Scholar 

  • Moulinec, H., & Suquet, P. (1994). A fast numerical method for computing the linear and nonlinear mechanical properties of composites. Comptes Rendus de I’Academie des Sciences Paris, 318(Ser. II), 1417–1423.

    MATH  Google Scholar 

  • Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1967). A continuum model for fibre-reinforced plastic materials. Proceedings of the Royal Society London, A301, 473–492.

    Article  Google Scholar 

  • Mulhern, J. F., Rogers, T. G., & Spencer, A. J. M. (1969). A continuum theory of a plastic-elastic fibre-reinforced material. International Journal of Engineering Science, 7, 129–152.

    Article  MATH  Google Scholar 

  • Nemat-Nasser, S. (1992). Phenomenological theories of elastoplasticity and strain localization at high strain rates. Applied Mechanics Reviews, 45, 519–545.

    Article  MathSciNet  Google Scholar 

  • Nemat-Nasser, S. (2004). Plasticity: A treatise on finite deformation of heterogeneous inelastic materials. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nemat-Nasser, S., & Hori, M. (1999). Micromechanics: Overall properties of hetero-geneous materials (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  • Nigam, H., Dvorak, G. J., & Bahei-El-Din, Y. A. (1994). An experimental investigation of elastic-plastic behavior of a fibrous boron-aluminum composite: I. Matrix-dominated mode. II. Fiber dominated mode. International Journal of Plasticity, 10, 23–62.

    Article  Google Scholar 

  • Oskay, C., & Fish, J. (2007). Eigendeformation-based reduced order homogenization for failure analysis of heterogeneous materials. Computer Methods in Applied Mechanics and Engineering, 196, 1216–1243.

    Article  MathSciNet  MATH  Google Scholar 

  • Phillips, A., & Weng, G. J. (1975). An analytical study of an experimentally verified hardening law. Journal of Applied Mechanics, 42, 375–378.

    Article  Google Scholar 

  • Ponte Castaneda, P. (1991). The effective mechanical properties of nonlinear isotropic composites. Journal of the Mechanics and Physics of Solids, 39, 45–71.

    Article  MathSciNet  MATH  Google Scholar 

  • Ponte Castaneda, P. (1996). A second-order theory for nonlinear composite materials. Computes Rendus de I’Academie des Sciences Paris, 322(Série II b), 3–10.

    MATH  Google Scholar 

  • Ponte Castaneda, P., & Suquet, P. (1998). Nonlinear composites. Advances in Applied Mechanics, 34, 171–302.

    Article  Google Scholar 

  • Ponte Castaneda, P., & Willis, J. R. (1995). The effect of spatial distribution on the effective behavior of composite materials and cracked media. Journal of the Mechanics and Physics of Solids, 43, 1919–1951.

    Article  MathSciNet  MATH  Google Scholar 

  • Sacco, E. (2009). A nonlinear homogenization procedure for periodic masonry. European Journal of Mechanics A/Solids, 28, 2090–2222.

    Article  Google Scholar 

  • Schapery, R. A. (1997). Nonlinear viscoelastic and viscoplastic constitutive equations based on thermodynamics. Mechanics of Time-Dependent Materials, 1, 209–240.

    Article  Google Scholar 

  • Smith, G. E., & Spencer, A. J. M. (1970). A continuum theory of a plastic-rigid solid reinforced by two families of inextensible fibres. Quarterly Journal of Mechanics and Applied Mathematics, 23, 489–504.

    Article  MATH  Google Scholar 

  • Spencer, A. J. M. (1972). Deformation of fibre-reinforced materials. London: Oxford University Press.

    Google Scholar 

  • Spencer, A. J. M. (1987). Kinematic constraints, constitutive equations and failure rules for anisotropic materials. In J. P. Boehler (Ed.), Chapter 10 of Applications of tensor functions in continuum mechanics, CISM Courses and Lectures (No. 292, pp. 187–201). Wien: Springer.

    Google Scholar 

  • Spencer, A. J. M. (1992). Plasticity theory for fibre-reinforced composites. Journal of Engineering Mathematics, 26, 107–118.

    Article  MathSciNet  MATH  Google Scholar 

  • Suquet, P. (1987). Elements of homogenization for inelastic solid mechanics. In E. Sanchez-Palencia & A. Zaoui (Eds.), Homogenization techniques for composite media. New York: Springer.

    Google Scholar 

  • Suquet, P. (1997). Effective properties of nonlinear composites. In P. Suquet (Ed.), Continuum micromechanics (Vol. 337 of CISM Lecture Notes, pp. 197–264). New York: Springer.

    Google Scholar 

  • Talbot, D. R. S., & Willis, J. R. (1985). Variational principles for inhomogeneous nonlinear media. Journal of Applied Mathematics, 35, 39–54.

    MathSciNet  MATH  Google Scholar 

  • Talbot, D. R. S., & Willis, J. R. (1992). Some simple explicit bounds for the overall behaviour of nonlinear composites. International Journal of Solids and Structures, 29, 1981–1987.

    Article  MathSciNet  MATH  Google Scholar 

  • Talbot, D. R. S., & Willis, J. R. (1997). Bounds of third order for the overall response of nonlinear composites. Journal of the Mechanics and Physics of Solids, 45, 87–111.

    Article  MathSciNet  MATH  Google Scholar 

  • Teply, J. L., & Dvorak, G. J. (1987). Dual estimates of instantaneous properties of elastic-plastic composites. In A. J. M. Spencer (Ed.), Continuum models of discrete systems (pp. 205–2l6). Rotterdam: A. A. Balkema Press.

    Google Scholar 

  • Teply, J. L., & Dvorak, G. J. (1988). Bounds on overall instantaneous properties of elastic-plastic composites. Journal of the Mechanics and Physics of Solids, 36, 29–58.

    Article  MATH  Google Scholar 

  • Teply, J. L., & Reddy, J. N. (1990). A unified formulation of micromechanics models of fiber-reinforced composites. In G. J. Dvorak (Ed.), Inelastic deformation of composite materials (pp. 341–372). New York: Springer.

    Google Scholar 

  • Teply, J. L., Reddy, J. N., & Brockenbrough, J. R. (1992). A unified formulation of micromechanics models of fiber-reinforced composites. In J. N. Reddy & A. V. Krishna Murty (Eds.), Composite structures (pp. 294–325). New Delhi: Narosa Publication House.

    Chapter  Google Scholar 

  • Walker, K. P., Jordan, E. H., & Freed, A. D. (1990). Equivalence of Green’s function and the Fourier series representation of composites with periodic structure. In G. J. Weng, M. Taya, & H. Abé (Eds.), Micromechanics and inhomogeneity, The T. Mura 65-th anniversary volume (pp. 535–558). New York: Springer.

    Chapter  Google Scholar 

  • Willis, J. R. (1991). On methods for bounding the overall properties of nonlinear composites. Journal of the Mechanics and Physics of Solids, 39, 73–86. Errata ibid. 40, (1992) 441–445.

    Google Scholar 

  • Green, A. E., & Atkins, J. E. (1960). Large elastic deformations and non-linear continuum mechanics. Oxford: Clarendon Press.

    Google Scholar 

  • Franciosi, P., & Berberinni, S. (2007). Heterogeneous crystal and poly-crystal plasticity modeling from a transformation field analysis with a regularized Schmid law. Journal of the Mechanics and Physics of Solids, 55, 2265–2299.

    Article  MathSciNet  MATH  Google Scholar 

  • Michel, J. C., & Suquet, P.(2004). Computational analysis of nonlinear composite structures using the nonuniform transformation field analysis. Computer Methods in Applied Mechanics and Engineering, 193, 5477–5502.

    Article  MathSciNet  MATH  Google Scholar 

  • Prochazka, P. (1997). Slope optimization using transformation field analysis. Engineering Analysis with Boundary Elements, 20, 179–184.

    Article  Google Scholar 

  • Wu, J. F., Shephard, M. S., Dvorak, G. J., & Bahei-El-Din, Y. A. (1989). A material Model for the finite element analysis of metal matrix composites. Composites Science and Technology, 35, 347–366.

    Article  Google Scholar 

  • Dvorak, G. J., & Benveniste, Y. (1997). On micromechanics of inelastic and piezoelectric composites. In T. Tatsumi, E. Watanabe, & T. Kambe (Eds), Theoretical and Applied Mechanics 1996 (pp. 217 – 237 ). Elsevier Science B.V.

    Google Scholar 

  • Dvorak, G. J (2001). Damage evolution and prevention in composite materials. In H. Aref & J. W. Phillips (Eds), Mechanics for the New Millenium Proceedings of ICTAM 2000, the 20th International Congress of Theoretical and Applied Mechanics (pp. 197–210). Kluver Academic Publishers.

    Google Scholar 

  • Michel, J. C., Moulinec, H., & Suquet, P. (1999). Effective properties of composite materials with periodic microstructure:a computational approach. Computer Methods in Applied Mechanics and Engineering, 172, 109–143.

    Article  MathSciNet  MATH  Google Scholar 

  • Dvorak, G. J., Rao, M.S.M., & Tarn, J. Q. (1973). Yielding in unidirectional composites under external loads and temperature changes. Journal of Composite Materials, 7, l94–216.

    Article  Google Scholar 

  • Dvorak, G. J. (1997). Thermomechanics of heterogeneous media. Journal of Thermal Stresses, 20, 799–817.

    Article  Google Scholar 

  • Dvorak, G. J., & Johnson, W. S. (1980). Fatigue of metal matrix composites. International Journal of Fracture, 16, 585–607.

    Article  Google Scholar 

  • Tarn, J. Q., Dvorak, G, J., & Rao, M.S.M. (1975). Shakedown of unidirectional composites, Intl. J. Solids Structures, 6, 75l–764.

    Google Scholar 

  • Dvorak, G. J., Lagoudas. D. C., & Huang, C-M. (2000). Shakedown and fatigue damage in metal matrix composites. In D. Weichert & G. Maier (Eds), Inelastic Analysis of Structures under Variable Repeated Loads (pp. 193 – 196). Kluver Academic Publishers.

    Google Scholar 

  • Brinson, H. F., & Brinson, L. C. (2008). Polymer Engineering Science and Viscoelasticity: An Introduction. Springer Science, New York.

    Google Scholar 

  • Krempl, E. (1985). Inelastic work and thermomechanical coupling in viscoplasticity. In A. Sawczuk and V. Bianchi (Eds), Plasticity Today: Modeling Methods and Applications. Elsevier Scientific Publishing Company, Amsterdam, The Netherlands.

    Google Scholar 

  • Dvorak, G, J., & Rao, M.S.M. (1976a). Axisymmetric plasticity theory of fibrous composites. International Journal of Engineering Science, 14, 36l–373.

    Article  Google Scholar 

  • Dvorak, G, J., & Rao, M.S.M. (1976b). Thermal stresses in heat-treated fibrous composites. ASME Journal of Applied Mechanics. 43, 6l9–624.

    Google Scholar 

  • Maier, G. (1969) Shakedown theory in perfect elastoplasticity with associated and nonassociated flow laws: A finite element linear programing approach. Meccanica. 4, 250–260.

    Google Scholar 

  • Maier, G. (1973) A shakedown matrix theory allowing for workhardening and second order geometric effects. In Foundations of Plasticity, Vol. 1, Sawczuck A. (ed). Noordoff: Leyden, 417–433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Dvorak, G.J. (2013). Inelastic Composite Materials. In: Micromechanics of Composite Materials. Solid Mechanics and Its Applications, vol 186. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4101-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4101-0_12

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4100-3

  • Online ISBN: 978-94-007-4101-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics