Skip to main content

Midkine in Psychiatric and Neurodegenerative Diseases

  • Chapter
  • First Online:
Midkine: From Embryogenesis to Pathogenesis and Therapy

Abstract

Midkine (MK) is strongly expressed during the midgestation period of embryogenesis, while its expression is nearly undetectable in the normal adult brain. However, recent evidences suggest that MK may play various roles in the pathological phenomena of the adult brain. MK binds strongly to Abeta peptides and neutralizes its cytotoxic activity. The findings about elevated MK levels in brain and serum of patients with Alzheimer disease (AD) suggest that MK may be induced to counteract Abeta-related pathophysiology in AD. On the other hand, MK was found to promote the survival of mouse mesencephalic (mainly dopaminergic) neurons in culture. Midkine-deficient (Mdk(−/−)) mice transiently exhibited a delay in postnatal hippocampal development with a working memory deficit and increased anxiety only at the age of 4 weeks. Adult Mdk(−/−) mice exhibited a hypodopaminergic state in the striatum, the prepulse inhibition deficits, and social interaction impairments. These findings suggested that midkine may contribute to the pathophysiology of dopamine-related disorders including schizophrenia and Parkinson’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kadomatsu K, Tomomura M, Muramatsu T (1988) cDNA cloning and sequencing of a new gene intensely expressed in early differentiation stages of embryonal carcinoma cells and in mid-gestation period of mouse embryogenesis. Biochem Biophys Res Commun 151:1312–1318

    Article  PubMed  CAS  Google Scholar 

  2. Haynes L, Rumsby M (2001) The pleiotropin/midkine family of cytokines: role in glial-neuronal signalling. Prog Brain Res 132:313–324

    Article  PubMed  CAS  Google Scholar 

  3. Muramatsu H, Shirahama H, Yonezawa S et al (1993) Midkine, a retinoic acid-inducible growth/differentiation factor: immunochemical evidence for the function and distribution. Dev Biol 159:392–402

    Article  PubMed  CAS  Google Scholar 

  4. Muramatsu T (2002) Midkine and pleiotrophin: two related proteins involved in development, survival, inflammation and tumorigenesis. J Biochem 132:359–371

    Article  PubMed  CAS  Google Scholar 

  5. Owada K, Sanjo N, Kobayashi T et al (1999) Midkine inhibits caspase-dependent apoptosis via the activation of mitogen-activated protein kinase and phosphatidylinositol 3-kinase in cultured neurons. J Neurochem 73:2084–2092

    PubMed  CAS  Google Scholar 

  6. Kadomatsu K, Huang RP, Suganuma T et al (1990) A retinoic acid responsive gene MK found in the teratocarcinoma system is expressed in spatially and temporally controlled manner during mouse embryogenesis. J Cell Biol 110:607–616

    Article  PubMed  CAS  Google Scholar 

  7. Matsumoto K, Wanaka A, Takatsuji K et al (1994) A novel family of heparin-binding growth factors, pleiotrophin and midkine, is expressed in the developing rat cerebral cortex. Brain Res Dev Brain Res 79:229–241

    Article  PubMed  CAS  Google Scholar 

  8. Nakamoto M, Matsubara S, Miyauchi T et al (1992) A new family of heparin binding growth/differentiation factors: differential expression of the midkine (MK) and HB-GAM genes during mouse development. J Biochem 112:346–349

    PubMed  CAS  Google Scholar 

  9. Wada M, Kamata M, Aizu Y et al (2002) Alteration of midkine expression in the ischemic brain of humans. J Neurol Sci 200:67–73

    Article  PubMed  CAS  Google Scholar 

  10. Mochizuki R, Takeda A, Sato N et al (1998) Induction of midkine expression in reactive astrocytes following rat transient forebrain ischemia. Exp Neurol 149:73–78

    Article  PubMed  CAS  Google Scholar 

  11. Kadomatsu K, Muramatsu T (2004) Midkine and pleiotrophin in neural development and cancer. Cancer Lett 204:127–143

    Article  PubMed  CAS  Google Scholar 

  12. Kato S, Ishihara K, Shinozawa T et al (1999) Monoclonal antibody to human midkine reveals increased midkine expression in human brain tumors. J Neuropathol Exp Neurol 58:430–441

    Article  PubMed  CAS  Google Scholar 

  13. Mishima K, Asai A, Kadomatsu K et al (1997) Increased expression of midkine during the progression of human astrocytomas. Neurosci Lett 233:29–32

    Article  PubMed  CAS  Google Scholar 

  14. Grossberg GT (2003) Diagnosis and treatment of Alzheimer’s disease. J Clin Psychiatry 64(Suppl 9):3–6

    PubMed  Google Scholar 

  15. Yasuhara O, Matsuo A, Tooyama I et al (1995) Pick’s disease immunohistochemistry: new alterations and Alzheimer’s disease comparisons. Acta Neuropathol 89:322–330

    Article  PubMed  CAS  Google Scholar 

  16. Yasuhara O, Schwab C, Matsuo A et al (1996) Midkine-like immunoreactivity in extracellular neurofibrillary tangles in brains of patients with parkinsonism-dementia complex of Guam. Neurosci Lett 205:107–110

    Article  PubMed  CAS  Google Scholar 

  17. Kato S, Shinozawa T, Takikawa M et al (2000) Midkine, a new neurotrophic factor, is present in glial cytoplasmic inclusions of multiple system atrophy brains. Acta Neuropathol 100:481–489

    Article  PubMed  CAS  Google Scholar 

  18. Monji A, Yoshida I, Tashiro K et al (2000) Inhibition of A beta fibril formation and A beta-induced cytotoxicity by senile plaque-associated proteins. Neurosci Lett 278:81–84

    Article  PubMed  CAS  Google Scholar 

  19. Yu GS, Hu J, Nakagawa H (1998) Inhibition of beta-amyloid cytotoxicity by midkine. Neurosci Lett 254:125–128

    Article  PubMed  CAS  Google Scholar 

  20. Muramatsu H, Song XJ, Koide N et al (1996) Enzyme-linked immunoassay for midkine, and its application to evaluation of midkine levels in developing mouse brain and sera from patients with hepatocellular carcinomas. J Biochem 119:1171–1175

    Article  PubMed  CAS  Google Scholar 

  21. Ikematsu S, Yano A, Aridome K et al (2000) Serum midkine levels are increased in patients with various types of carcinomas. Br J Cancer 83:701–706

    Article  PubMed  CAS  Google Scholar 

  22. Salama RH, Muramatsu H, Shimizu E et al (2005) Increased midkine levels in sera from patients with Alzheimer’s disease. Prog Neuropsychopharmacol Biol Psychiatry 29:611–616

    Article  PubMed  CAS  Google Scholar 

  23. Kikuchi S, Muramatsu H, Muramatsu T et al (1993) Midkine, a novel neurotrophic factor, promotes survival of mesencephalic neurons in culture. Neurosci Lett 160:9–12

    Article  PubMed  CAS  Google Scholar 

  24. Marchionini DM, Lehrmann E, Chu Y et al (2007) Role of heparin binding growth factors in nigrostriatal dopamine system development and Parkinson’s disease. Brain Res 1147:77–88

    Article  PubMed  CAS  Google Scholar 

  25. Hida H, Jung CG, Wu CZ et al (2003) Pleiotrophin exhibits a trophic effect on survival of dopaminergic neurons in vitro. Eur J Neurosci 17:2127–2134

    Article  PubMed  Google Scholar 

  26. Nakamura E, Kadomatsu K, Yuasa S et al (1998) Disruption of the midkine gene (Mdk) resulted in altered expression of a calcium binding protein in the hippocampus of infant mice and their abnormal behaviour. Genes Cells 3:811–822

    Article  PubMed  CAS  Google Scholar 

  27. Ohgake S, Shimizu E, Hashimoto K et al (2009) Dopaminergic hypofunctions and prepulse inhibition deficits in mice lacking midkine. Prog Neuropsychopharmacol Biol Psychiatry 33:541–546

    Article  PubMed  CAS  Google Scholar 

  28. Prediger RD, Rojas-Mayorquin AE, Aguiar AS Jr et al (2011) Mice with genetic deletion of the heparin-binding growth factor midkine exhibit early preclinical features of Parkinson’s disease. J Neural Transm 118:1215–1225

    Article  PubMed  CAS  Google Scholar 

  29. Bogerts B (1993) Recent advances in the neuropathology of schizophrenia. Schizophr Bull 19:431–445

    PubMed  CAS  Google Scholar 

  30. Gothelf D, Soreni N, Nachman RP et al (2000) Evidence for the involvement of the hippocampus in the pathophysiology of schizophrenia. Eur Neuropsychopharmacol 10:389–395

    Article  PubMed  CAS  Google Scholar 

  31. Fatemi SH, Folsom TD (2009) The neurodevelopmental hypothesis of schizophrenia, revisited. Schizophr Bull 35:528–548

    Article  PubMed  Google Scholar 

  32. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia: natural history and neurobiology. Neuron 28:325–334

    Article  PubMed  CAS  Google Scholar 

  33. Lewis SW, Murray RM (1987) Obstetric complications, neurodevelopmental deviance, and risk of schizophrenia. J Psychiatr Res 21:413–421

    Article  PubMed  CAS  Google Scholar 

  34. Rapoport JL, Addington AM, Frangou S et al (2005) The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 10:434–449

    Article  PubMed  CAS  Google Scholar 

  35. Buka SL, Tsuang MT, Torrey EF et al (2001) Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 15:411–420

    Article  PubMed  CAS  Google Scholar 

  36. Durany N, Thome J (2004) Neurotrophic factors and the pathophysiology of schizophrenic psychoses. Eur Psychiatry 19:326–337

    Article  PubMed  Google Scholar 

  37. Kronfol Z, Remick DG (2000) Cytokines and the brain: implications for clinical psychiatry. Am J Psychiatry 157:683–694

    Article  PubMed  CAS  Google Scholar 

  38. Meyer U, Feldon J, Yee BK (2009) A review of the fetal brain cytokine imbalance hypothesis of schizophrenia. Schizophr Bull 35(5):959–972

    Article  PubMed  Google Scholar 

  39. Thome J, Foley P, Riederer P (1998) Neurotrophic factors and the maldevelopmental hypothesis of schizophrenic psychoses. Review article. J Neural Transm 105:85–100

    Article  PubMed  CAS  Google Scholar 

  40. van Beveren NJ, van der Spelt JJ, de Haan L et al (2006) Schizophrenia-associated neural growth factors in peripheral blood. A review. Eur Neuropsychopharmacol 16:469–480

    Article  PubMed  Google Scholar 

  41. Davis KL, Kahn RS, Ko G et al (1991) Dopamine in schizophrenia: a review and reconceptualization. Am J Psychiatry 148:1474–1486

    PubMed  CAS  Google Scholar 

  42. Stahl SM (2001) Dopamine system stabilizers, aripiprazole, and the next generation of antipsychotics, part 2: illustrating their mechanism of action. J Clin Psychiatry 62:923–924

    Article  PubMed  CAS  Google Scholar 

  43. Shimizu E, Hashimoto K, Salama RH et al (2003) Two clusters of serum midkine levels in drug-naive patients with schizophrenia. Neurosci Lett 344:95–98

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

I thank Dr. Shintaro Ohgake, Prof. Masaomi Iyo (Department of Psychiatry, Chiba University Graduate School of Medicine), Prof. Kenji Hashimoto (Division of Clinical Neuroscience, Chiba University Center for Forensic Mental Health), Prof. Hisako Muramatsu, and Prof. Takashi Muramatsu (Department of Health Science, Faculty of Psychological and Physical Sciences, Aichi Gakuin University), whose work has been integral to the development of this review paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eiji Shimizu .

Editor information

Editors and Affiliations

Additional information

Funding: This research was supported by the Grant-in-Aid for Scientific Research of the Ministry of Education, Culture, Sports, Science and Technology, Japan (MEXT Grant 18500289&21500344).

Conflict of interest:  We have no conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Shimizu, E., Matsuzawa, D. (2012). Midkine in Psychiatric and Neurodegenerative Diseases. In: Ergüven, M., Muramatsu, T., Bilir, A. (eds) Midkine: From Embryogenesis to Pathogenesis and Therapy. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4234-5_14

Download citation

Publish with us

Policies and ethics