Skip to main content

Soil-Plant Relationships of Heavy Metals and Metalloids

  • Chapter
  • First Online:
Heavy Metals in Soils

Part of the book series: Environmental Pollution ((EPOL,volume 22))

Abstract

Nutrient uptake by plants is essential for their development and for the passage of minerals into the food chain, but it also faces several limitations. Whereas soil physicochemical characteristics impose limiting factors on element availability for plants, excess of non-essential metals and metalloids pose a threat for plant health and the environment. To improve nutrient uptake, the plant possesses several mechanisms to explore the soil for minerals such as root development, but the symbiosis with microorganisms clearly improves the ability of plants to overcome these limitations. After metal uptake by the plants, plants make use of different strategies to maintain the metal homeostasis and to limit the metal-induced cellular damage. Also in the research on metal phytotoxicity, microorganisms are shown to be important players in the protection of the plant to excess metal exposure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Ghany, S. E., Burkhead, J. L., Gogolin, K. A., Andrés-Colás, N., Bodecker, J. R., Puig, S., Peñarrubia, L., & Pilon, M. (2005). AtCCS is a functional homolog of the yeast copper chaperone Ccs1/Lys7. FEBS Letters, 579, 2307–2312.

    CAS  Google Scholar 

  2. Abercrombie, J. M., Halfhill, M. D., Ranjan, P., Rao, M. R., Saxton, A. M., Yuan, J. S., & Stewart, C. N. (2008). Transcriptional responses of Arabidopsis thaliana plants to As (V) stress. BMC Plant Biology, 8, 87.

    Google Scholar 

  3. Adriaensen, K., Vrålstad, T., Noben, J. P., Vangronsveld, J., & Colpaert, J. V. (2005). Copper-adapted Suillus luteus, a symbiotic solution for pines colonizing Cu mine spoils. Applied and Environmental Microbiology, 71, 7279–7284.

    CAS  Google Scholar 

  4. Adriaensen, K., Vangronsveld, J., & Colpaert, J. V. (2006). Zinc tolerant Suillus bovinus improves growth of Zn-exposed Pinus sylvestris seedlings. Mycorrhiza, 16, 553–558.

    CAS  Google Scholar 

  5. Ali, M. B., Singh, N., Shohael, A. M., Hahn, E. J., & Paek, K. Y. (2006). Phenolics metabolism and lignin synthesis in root suspension cultures of Panox ginseng in response to copper stress. Plant Science, 171, 147–154.

    CAS  Google Scholar 

  6. Amir, H., Jasper, D. A., & Abbott, L. K. (2008). Tolerance and induction of tolerance to Ni of arbuscular mycorrhizal fungi from New Caledonian ultramafic soils. Mycorrhiza, 19, 1–6.

    CAS  Google Scholar 

  7. Anca, I. A., Lumini, E., Ghignone, S., Salvioli, A., Bianciotto, V., & Bonfante, P. (2009). The ftsZ gene of the endocellular bacterium ‘Candidatus Glomeribacter gigasporarum’ is preferentially expressed during the symbiotic phases of its host mycorrhizal fungus. Molecular Plant-Microbe Interactions, 22, 302–310.

    CAS  Google Scholar 

  8. Angelov, M., Tsonev, T., Uzunova, A., & Gaidardijeva, K. (1993). Cu(2+) effect upon photosynthesis, chloroplast structure, RNA protein synthesis of pea plants. Photosynthetica, 28, 341–350.

    CAS  Google Scholar 

  9. Arahou, M., & Diem, H. G. (1997). Iron deficiency induces cluster (proteoid) root formation in Casuarina glauca. Plant and Soil, 196, 71–79.

    CAS  Google Scholar 

  10. Ashford, A. E., & Allaway, W. G. (2002). The role of the motile tubular vacuole system in mycorrhizal fungi. Plant and Soil, 244, 177–187.

    CAS  Google Scholar 

  11. Barcelo, J., & Poschenrieder, C. (1990). Plant water relations as affected by heavy metal stress: A review. Journal of Plant Nutrition, 13, 1–37.

    CAS  Google Scholar 

  12. Bardi, D. V., Weir, T. L., van der Lelie, D., & Vivanco, J. M. (2009). Rhizosphere chemical dialogues: Plant-microbe interactions. Current Opinion in Biotechnology, 20, 642–650.

    Google Scholar 

  13. Barka, E. A., Gognies, S., Nowak, J., Audran, J. C., & Belarbi, A. (2002). Inhibitory effect of endophytic bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biological Control, 24, 135–142.

    Google Scholar 

  14. Baryla, A., Carrier, P., Franck, F., Coulomb, C., Sahut, C., & Havaux, M. (2001). Leaf chlorosis in oilseed rape plants (Brassica napus) grown on cadmium-polluted soil: Causes and consequences for photosynthesis and growth. Planta, 212, 696–709.

    CAS  Google Scholar 

  15. Barzanti, R., Ozino, F., Bazzicalupo, M., Gabbrielli, R., Galardi, F., Gonnelli, C., & Mengoni, A. (2007). Isolation and charactrization of endophytic bacteria from the nickel hyperaccumulator plant Alyssum bertolonii. Microbial Ecology, 53, 306–316.

    CAS  Google Scholar 

  16. Baszynski, T., Wajda, L., Krol, M., Wolinska, D., Krupa, Z., & Tukendorf, A. (1980). Photosynthetic activities of cadmium-treated tomato plants. Physiologia Plantarum, 48, 365–370.

    CAS  Google Scholar 

  17. Beauclair, L., Yu, A., & Bouché, N. (2010). MicroRNA-directed cleavage and translational repression of the copper chaperone for superoxide dismutase mRNA in Arabidopsis. The Plant Journal, 62, 454–462.

    CAS  Google Scholar 

  18. Bellion, M., Courbot, M., Jacob, C., Blaudez, D., & Chalot, M. (2006). Extracellular and cellular mechanisms sustaining metal tolerance in ectomycorrhizal fungi. FEMS Microbiology Letters, 254, 173–181.

    CAS  Google Scholar 

  19. Bhattacharjee, S. (2005). Reactive oxygen species and oxidative burst: Roles in stress, senescence and signal transduction in plants. Current Science, 89, 1113–1121.

    CAS  Google Scholar 

  20. Bi, Y. H., Chen, W. L., Zhang, W. N., Zhou, Q., Yun, L. J., & Xing, D. (2009). Production of reactive oxygen species, impairment of photosynthetic function and dynamic changes in mitochondria are early events in cadmium-induced cell death in Arabidopsis thaliana. Biology of the Cell, 101, 629–643.

    CAS  Google Scholar 

  21. Bienert, G. P., Thorsen, M., Schüssler, M. D., Nilsson, H. R., Wagner, A., Tamás, M. J., & Jahn, T. P. (2008). A subgroup of plant aquaporins facilitate the bi-directional diffusion of As(OH)3 and Sb(OH)3 across membranes. BMC Biology, 10, 26.

    Google Scholar 

  22. Blaudez, D., Jacob, C., Turnau, K., Colpaert, J. V., Ahonen-Jonnarth, U., Finlay, R., Botton, B., & Chalot, M. (2000). Differential responses of ectomycorrhizal fungi to heavy metals in vitro. Mycological Research, 104, 1366–1371.

    CAS  Google Scholar 

  23. Boddey, R. M., Oliveira, O. C., Urquiaga, S., Reis, V. M., Olivares, F. L., Baldani, V. L. D., & Döbereiner, J. (1995). Biological nitrogen fixation associated with sugarcane and rice: Contribution and prospects for improvement. Plant and Soil, 174, 195–209.

    CAS  Google Scholar 

  24. Bonneville, S., Smits, M. M., Brown, A., Harrington, J., Leake, J. R., Brydson, R., & Benning, L. G. (2009). Plant-driven fungal weathering: Early stages of mineral alteration at the nanometer scale. Geology, 37, 615–618.

    CAS  Google Scholar 

  25. Braud, A., Jézéquel, K., Bazot, S., & Lebeau, T. (2009). Enhanced phytoextraction of an agricultural Cr-, Hg-, and Pb-contaminated soil by bioaugmentation with siderophore-producing bacteria. Chemosphere, 74, 280–286.

    Google Scholar 

  26. Brundrett, M. C. (2002). Coevolution of roots and mycorrhizas of land plants. New Phytologist, 154, 275–304.

    Google Scholar 

  27. Burkhead, J. L., Gogolin Reynolds, K. A., Abdel-Ghany, S. E., Cohu, C. M., & Pilon, M. (2009). Copper homeostasis. New Phytologist, 182, 799–816.

    CAS  Google Scholar 

  28. Calvaruso, C., Turpault, M. P., Uroz, S., Leclerc, E., Kies, A., & Frey-Klett, P. (2010). Laccaria bicolor S238N improves Scots pine mineral nutrition by increasing root nutrient uptake from soil minerals but does not increase mineral weathering. Plant and Soil, 328, 145–154.

    CAS  Google Scholar 

  29. Carrier, P., Baryla, A., & Havaux, M. (2003). Cadmium distribution and microlocalization in oilseed rape (Brassica napus) after long-term growth on camium-contaminated soil. Planta, 216, 939–950.

    CAS  Google Scholar 

  30. Chamseddine, M., Wided, B. A., Guy, H., Marie-Edith, C., & Fatma, J. (2009). Cadmium and copper induction of oxidative stress and antioxidative response in tomato (Solanum lycopersicon) leaves. Plant Growth Regulation, 57, 89–99.

    CAS  Google Scholar 

  31. Chaoui, A., Mazhoudi, S., Ghorbal, M. H., & El Ferjani, E. (1997). Cadmium and zinc induction of lipid peroxidation and effects on antioxidant enzyme activities in bean (Phaseolus vulgaris L). Plant Science, 127, 139–147.

    CAS  Google Scholar 

  32. Cho, U. H., & Park, J. O. (2000). Mercury-induced oxidative stress in tomato seedlings. Plant Science, 156, 1–9.

    CAS  Google Scholar 

  33. Cho, U. H., & Seo, N. H. (2005). Oxidative stress in Arabidopsis thaliana exposed to cadmium is due to hydrogen peroxide accumulation. Plant Science, 168, 113–120.

    CAS  Google Scholar 

  34. Choudhury, S., & Panda, S. K. (2004). Induction of oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under lead and arsenic phytotoxicity. Current Science, 87, 342–348.

    CAS  Google Scholar 

  35. Choudhury, S., & Panda, S. K. (2005). Toxic effects, oxidative stress and ultrastructural changes in moss Taxithelium nepalense (Schwaegr.) Broth. under chromium and lead phytotoxicity. Water, Air, and Soil Pollution, 167, 73–90.

    CAS  Google Scholar 

  36. Ciscato, M., Valcke, R., van Loven, K., Clijsters, H., & Navari-Izzo, F. (1997). Effects of in vivo copper treatment on the photosynthetic apparatus of two Triticum durum cultivars with different stress sensitivity. Physiologia Plantarum, 100, 901–908.

    CAS  Google Scholar 

  37. Clemens, S. (2006). Toxic metal accumulation, responses to exposure and mechanisms of tolerance in plants. Biochimie, 88, 1707–1719.

    CAS  Google Scholar 

  38. Clemens, S., & Peršoh, D. (2009). Multi-tasking phytochelatin synthases. Plant Science, 177, 266–271.

    CAS  Google Scholar 

  39. Clijsters, H., Cuypers, A., & Vangronsveld, J. (1999). Physiological responses to heavy metals in higher plants: Defence against oxidative stress. Zeitschrift fur Naturforschung C: Bioscience, 54, 730–734.

    CAS  Google Scholar 

  40. Collin, V. C., Eymery, F., Genty, B., Rey, P., & Havaux, M. (2008). Vitamin E is essential for the tolerance of Arabidopsis thaliana to metal-induced oxidative stress. Plant, Cell & Environment, 31, 244–257.

    CAS  Google Scholar 

  41. Colpaert, J. V., Vandenkoornhuyse, P., Adriaensen, K., & Vangronsveld, J. (2000). Genetic variation and heavy metal tolerance in the ectomycorrhizal basidiomycete Suillus luteus. New Phytologist, 147, 367–379.

    CAS  Google Scholar 

  42. Colpaert, J. V., Muller, L. A. H., Lambaerts, M., Adriaensen, K., & Vangronsveld, J. (2004). Evolutionary adaptation to Zn toxicity in populations of Suilloid fungi. New Phytologist, 162, 549–559.

    CAS  Google Scholar 

  43. Colpaert, J. V., Adriaensen, K., Muller, L. A. H., Lambaerts, M., Faes, C., Carleer, R., & Vangronsveld, J. (2005). Element profiles and growth in Zn-sensitive and Zn-resistant Suilloid fungi. Mycorrhiza, 15, 628–634.

    CAS  Google Scholar 

  44. Connolly, E. L., Fett, J. P., & Guerinot, M. L. (2002). Expression of the IRT1 metal transporter is controlled by metals at the levels of transcript and protein accumulation. The Plant Cell, 14, 1347–1357.

    CAS  Google Scholar 

  45. Connolly, E. L., Campbell, N. H., Grotz, N., Prichard, C. L., & Guerinot, M. L. (2003). Overexpression of the FRO2 ferric chelate reductase confers tolerance to growth on low iron and uncovers posttranscriptional control. Plant Physiology, 133, 1102–1110.

    CAS  Google Scholar 

  46. Coombs, J. T., Michelson, P. P., & Franco, C. M. M. (2004). Evaluation of endophytic actinobacteria as antagonists of Gaeumannomyces graminis var tritici in wheat. Biological Control, 29, 359–366.

    Google Scholar 

  47. Courbot, M., Diez, L., Ruotolo, R., Chalot, M., & Leroy, P. (2004). Cadmium-responsive thiols in the ectomycorrhizal fungus Paxillus involutus. Applied and Environmental Microbiology, 70, 7413–7417.

    CAS  Google Scholar 

  48. Courbot, M., Willems, G., Otte, P., Arvidsson, S., Roosens, N., Saumitou-Laprade, P., & Verbruggen, N. (2007). A major quantitative trait locus for cadmium tolerance in Arabidopsis halleri colocalizes with HMA4, a gene encoding a heavy metal ATPase. Plant Physiology, 144, 1–14.

    Google Scholar 

  49. Crowley, D. E., & Kraemer, S. M. (2007). Function of siderophores in the plant rhizosphere. In R. Pinton, Z. Varanini, & P. Nannipieri (Eds.), The rhizosphere: Biochemistry and organic substances at the soil-plant interface (pp. 73–109). New York: CRC Press.

    Google Scholar 

  50. Curie, C., Panaviene, Z., Loulergue, C., Dellaporta, S. L., Briat, J. F., & Walker, E. L. (2001). Maize yellow stripe1 encodes a membrane protein directly involved in Fe(III) uptake. Nature, 18, 346–349.

    Google Scholar 

  51. Cuypers, A., Vangronsveld, J., & Clijsters, H. (1999). The chemical behaviour of heavy metals plays a prominent role in the induction of oxidative stress. Free Radical Research, 31, 39–43.

    Google Scholar 

  52. Cuypers, A., Vangronsveld, J., & Clijsters, H. (2000). Biphasic effect of copper on the ascorbate-glutathione pathway in primary leaves of Phaseolus vulgaris seedlings during the early stages of metal assimilation. Physiologia Plantarum, 110, 512–517.

    CAS  Google Scholar 

  53. Cuypers, A., Vangronsveld, J., & Clijsters, H. (2001). The redox status of plant cells (AsA and GSH) is sensitive to zinc imposed oxidative stress in roots and primary leaves of Phaseolus vulgaris. Plant Physiology and Biochemistry, 39, 657–664.

    CAS  Google Scholar 

  54. Cuypers, A., Smeets, K., & Vangronsveld, J. (2009). Heavy metal stress in plants. In H. Hirt (Ed.), Plant stress biology: From genomics to systems biology (pp. 161–178). Weinheim: Wiley-VCH Verlag.

    Google Scholar 

  55. Cuypers, A., Plusquin, M., Remans, T., Jozefczak, M., Keunen, E., Gielen, H., Opdenakker, K., Ravindran Nair, A., Munters, E., Artois, T. J., Nawrot, T., Vangronsveld, J., & Smeets, K. (2010). Cadmium stress: An oxidative challenge. Biometals, 23, 927–940.

    CAS  Google Scholar 

  56. Cuypers, A., Smeets, K., Ruytinx, J., Opdenakker, K., Keunen, E., Remans, T., Horemans, N., Vanhoudt, N., Van Sanden, S., Van Belleghem, F., Guisez, Y., Colpaert, J., & Vangronsveld, J. (2011). The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168, 309–316.

    CAS  Google Scholar 

  57. Dell’Amico, E., Cavalca, L., & Andreoni, V. (2008). Improvement of Brassica napus growth under cadmium stress by cadmium resistant rhizobacteria. Soil Biology and Biochemistry, 40, 74–84.

    Google Scholar 

  58. Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., Hölzer, R., & Feller, U. (2004). Biochemical changes in barley plants after excessive supply of copper and manganese. Environmental and Experimental Botany, 52, 253–266.

    CAS  Google Scholar 

  59. Demirevska-Kepova, K., Simova-Stoilova, L., Stoyanova, Z., & Feller, U. (2006). Cadmium stress in barley: Growth, leaf pigment, and protein composition and detoxification of reactive oxygen species. Journal of Plant Nutrition, 29, 451–468.

    CAS  Google Scholar 

  60. Diels, L., Dong, Q., van der Lelie, D., Baeyens, W., & Mergeay, M. (1995). The czc operon of Alcaligenes eutrophus CH34: From resistance mechanism to removal of heavy metals. Journal of Industrial Microbiology, 14, 142–153.

    CAS  Google Scholar 

  61. Dietz, K. J., Baier, M., & Kramer, U. (1999). Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In M. N. V. Prasad & J. Hagemeyer (Eds.), Heavy metal stress in plants: From molecules to ecosystems (pp. 79–97). Berlin/Heidelberg: Springer.

    Google Scholar 

  62. Ding, Y. F., & Zhu, C. (2009). The role of microRNAs in copper and cadmium homeostasis. Biochemical and Biophysical Research Communications, 386, 6–10.

    CAS  Google Scholar 

  63. Diwan, H., Khan, I., Ahmad, A., & Iqbal, M. (2010). Induction of phytochelatins and antioxidant defence system in Brassica juncea and Vigna radiata in response to chromium treatments. Plant Growth Regulation, 61, 97–107.

    CAS  Google Scholar 

  64. Dixit, V., Pandey, V., & Shyam, R. (2002). Chromium ions inactivate electron transport and enhance superoxide generation in vivo in pea (Pisum sativum L. cv. Azad) root mitochondria. Plant, Cell & Environment, 25, 687–693.

    CAS  Google Scholar 

  65. Doncheva, S. (1997). Ultrastructural localization of Ag-NOR proteins in root meristem cells after copper treatment. Journal of Plant Physiology, 151, 242–245.

    CAS  Google Scholar 

  66. Durrett, T. P., Gassmann, W., & Rogers, E. E. (2007). The FRD3-mediated efflux of citrate into the root vasculature is necessary for efficient iron translocation. Plant Physiology, 144, 197–205.

    CAS  Google Scholar 

  67. Egerton-Warburton, L., & Griffin, B. (1995). Differential responses of Pisolithus tinctorius isolates to aluminium in vitro. Canadian Journal of Botany, 73, 1229–1233.

    CAS  Google Scholar 

  68. Fecht-Christoffers, M. M., Maier, P., & Horst, W. J. (2003). Apoplastic peroxidases and ascorbate are involved in manganese toxicity and tolerance of Vigna unguiculata. Physiologia Plantarum, 117, 237–244.

    CAS  Google Scholar 

  69. Feussner, I., & Wasternack, C. (2002). The lipoxygenase pathway. Annual Review of Plant Biology, 53, 275–297.

    CAS  Google Scholar 

  70. Flors, C., Fryer, M. J., Waring, J., Reeder, B., Bechtold, U., Mullineaux, P. M., Nonell, S., Wilson, M. T., & Baker, N. R. (2006). Imaging the production of singlet oxygen in vivo using a new fluorescent sensor, Singlet Oxygen Sensor Green®. Journal of Experimental Botany, 57, 1725–1734.

    CAS  Google Scholar 

  71. Foyer, C. H., & Noctor, G. (2005). Redox homeostasis and antioxidant signaling: A metabolic interface between stress perception and physiological responses. The Plant Cell, 17, 1866–1875.

    CAS  Google Scholar 

  72. Francis, I., Holsters, M., & Vereecke, D. (2010). The Gram-positive side of plant-microbe interactions. Environmental Microbiology, 12, 1–12.

    CAS  Google Scholar 

  73. Frey-Klett, P., Garbaye, J., & Tarkka, M. (2007). The mycorrhiza helper bacteria revisited. New Phytologist, 176, 22–36.

    CAS  Google Scholar 

  74. Gajewska, E., Skłodowska, M., Słaba, M., & Mazur, J. (2006). Effect of nickel on antioxidative enzyme activities, proline and chlorophyll contents in wheat shoots. Biologia Plantarum, 50, 653–659.

    CAS  Google Scholar 

  75. Gangwar, S., Singh, V. P., Prasad, S. M., & Maurya, J. N. (2010). Modulation of manganese toxicity in Pisum sativum L. seedlings by kinetin. Scientia Horticulturae, 126(4), 467–474. doi:10.1016/j.scienta.2010.08.013.

    CAS  Google Scholar 

  76. Geebelen, W., Vangronsveld, J., Adriano, D. C., Van Poucke, L. C., & Clijsters, H. (2002). Effects of Pb-EDTA and EDTA on oxidative stress reactions and mineral uptake in Phaseolus vulgaris. Physiologia Plantarum, 115, 377–384.

    CAS  Google Scholar 

  77. Glick, B. R. (2003). Phytoremediation: Synergestic use of plants and bacteria to clean up the environment. Biotechnology Advances, 21, 383–393.

    CAS  Google Scholar 

  78. Goncalves, S. C., Martins-Loucao, M. A., & Freitas, H. (2009). Evidence of adaptive tolerance to nickel in isolates of Cenococcum geophilum from serpentine soils. Mycorrhiza, 19, 221–230.

    CAS  Google Scholar 

  79. Gora, L., & Clijsters, H. (1989). Effect of copper and zinc on the ethylene metabolism in Phaseolus vulgaris L. In H. Clijsters (Ed.), Biochemical and physiological aspects of ethylene production in lower and higher plants (pp. 219–228). Dordrecht: Kluwer.

    Google Scholar 

  80. Guether, M., Balestrini, R., Hannah, M., He, J., Udvardi, M. K., & Bonfante, P. (2009). Genome-wide reprogramming of regulatory networks, transport, cell wall and membrane biogenesis during arbuscular mycorrhizal symbiosis in Lotus japonicus. New Phytologist, 182, 200–212.

    CAS  Google Scholar 

  81. Halliwell, B. (2006). Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiology, 141, 312–322.

    CAS  Google Scholar 

  82. Hanikenne, M., Talke, I. N., Haydon, M. J., Lanz, C., Nolte, A., Motte, P., Kroymann, J., Weigel, D., & Krämer, U. (2008). Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature, 453, 391–395.

    CAS  Google Scholar 

  83. Hartley, J., Cairney, J. W. G., & Meharg, A. A. (1997). Do ectomycorrhizal fungi exhibit adaptive tolerance to potentially toxic metals in the environment? Plant and Soil, 189, 303–319.

    CAS  Google Scholar 

  84. Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. New Phytologist, 174, 499–506.

    CAS  Google Scholar 

  85. Heidenreich, B., Mayer, K., Sandermann, H., & Ernst, D. (2001). Mercury-induced genes in Arabidopsis thaliana: Identification of induced genes upon long-term mercuric ion exposure. Plant, Cell & Environment, 24, 1227–1234.

    CAS  Google Scholar 

  86. Hoffland, E., Kuyper, T. W., Wallander, H., Plassard, C., Gorbushina, A. A., Haselwandter, K., Holmstrom, S., Landeweert, R., Lundstrom, U. S., Rosling, A., Sen, R., Smits, M. M., van Hees, P. A., & van Breemen, N. (2004). The role of fungi in weathering. Frontiers in Ecology and the Environment, 2, 258–264.

    Google Scholar 

  87. Horvath, G., Droppa, M., Oravecz, A., Raskin, V. I., & Marder, J. B. (1996). Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta, 199, 238–243.

    CAS  Google Scholar 

  88. Idris, R., Trivonova, R., Puschenreiter, M., Wenzel, W. W., & Sessitsch, A. (2004). Baterial communities associated with flowering plants of the Ni-hyperaccumulator Thlaspi goesingense. Applied and Environmental Microbiology, 70, 2667–2677.

    CAS  Google Scholar 

  89. Idris, R., Kuffner, M., Bodrossy, L., Puschenreiter, M., Moncht, S., Wenzel, W. W., & Sessitsch, A. (2006). Characterization of Ni-tolerant methylobacteria associated with the hyperaccumulating plant Thlaspi goesingense and description of Methylobacterium goesingense sp. nov. Systematic and Applied Microbiology, 29, 634–644.

    CAS  Google Scholar 

  90. Isayenkov, S. V., & Maathuis, F. J. (2008). The Arabidopsis thaliana aquaglyceroporin AtNIP7;1 is a pathway for arsenite uptake. FEBS Letters, 582, 1625–1628.

    CAS  Google Scholar 

  91. Ishimaru, Y., Suzuki, M., Tsukamoto, T., Suzuki, K., Nakazono, M., Kobayashi, T., Wada, Y., Watanabe, S., Matsuhashi, S., Takahashi, M., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Rice plants take up iron as an Fe3+ -phytosiderophore and as Fe2+. The Plant Journal, 45, 335–346.

    CAS  Google Scholar 

  92. Ishimaru, Y., Masuda, H., Bashir, K., Inoue, H., Tsukamoto, T., Takahashi, M., Nakanishi, H., Aoki, N., Hirose, T., Ohsugi, R., & Nishizawa, N. K. (2010). Rice metal-nicotianamine transporter, OsYSL2, is required for the long-distance transport of iron and manganese. The Plant Journal, 62, 379–390.

    CAS  Google Scholar 

  93. Jentschke, G., & Goldbold, D. L. (2000). Metal toxicity and ectomycorrhiza. Physiologia Plantarum, 109, 107–116.

    CAS  Google Scholar 

  94. Jha, P. N., & Kumar, A. (2007). Endophytic colonization Typha australis by a plant growth-promoting bacterium Klebsiella oxytoca GR-3. Journal of Applied Microbiology, 103, 1311–1320.

    CAS  Google Scholar 

  95. Jiang, C. Y., Sheng, X. F., Qian, M., & Wang, Q. Y. (2008). Isolation and characterization of a heavy metal-resistant Burkholderia sp. from heavy metal-contaminated paddy field soil and its potential in promoting plant growth and heavy metal accumulation in metal-polluted soil. Chemosphere, 72, 157–164.

    CAS  Google Scholar 

  96. Jourand, P., Ducousso, M., Loulergue-Majorel, C., Hannibal, L., Santoni, S., Prin, Y., & Lebrun, M. (2010). Ultramafic soils from New Caledonia structure Pisolithus albus in ecotype. FEMS Microbiology Ecology, 72, 238–249.

    CAS  Google Scholar 

  97. Kang, S. H., Cho, H. S., Cheong, H., Ryu, C. M., Kim, J. F., & Park, S. H. (2007). Two bacterial endophytes eliciting boot plant growth promotion and plant defense on pepper (Capsicum annum L.). Journal of Microbiology and Biotechnology, 17, 96–103.

    CAS  Google Scholar 

  98. Kanofsky, J. R., & Axelrod, B. (1986). Singlet oxygen production by soybean lipoxygenase isozymes. Journal of Biological Chemistry, 261, 1099–1104.

    CAS  Google Scholar 

  99. Kathun, S., Ali, M. B., Hahna, E. J., & Paek, K. Y. (2008). Copper toxicity in Withania somnifera: Growth and antioxidant enzymes responses of in vitro grown plants. Environmental and Experimental Botany, 64, 279–285.

    Google Scholar 

  100. Katiyar, V., & Goel, R. (2004). Siderophore-mediated plant growth promotion at low temperature by mutant of fluorescent pseudomonad. Plant Growth Regulation, 42, 239–244.

    CAS  Google Scholar 

  101. Kerkeb, L., Mukherjee, I., Chatterjee, I., Lahner, B., Salt, D. E., & Connolly, E. L. (2008). Iron-induced turnover of the Arabidopsis Iron-regulated Transporter1 metal transporter requires lysine residues. Plant Physiology, 146, 1964–1973.

    CAS  Google Scholar 

  102. Kim, K. Y., Jordan, D., & McDonald, G. A. (1998). Effect of phosphate-solubilizing bacteria and vesicular-arbuscular mycorrhizae on tomato growth and soil microbial activity. Biology and Fertility of Soils, 26, 79–87.

    CAS  Google Scholar 

  103. Kloepper, J. W., Ryu, C. M., & Zhang, S. (2004). Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology, 94, 1259–1266.

    CAS  Google Scholar 

  104. Koleva, L., Nikolova, A., Semerdjieva, I., & Vassilev, A. (2010). Anatomical-morphological and growth characteristics of Zn- and Cd-treated durum wheat plants. General and Applied Plant Physiology, 36, 8–11.

    CAS  Google Scholar 

  105. Kothari, S. K., Marschner, H., & Römheld, V. (1991). Contribution of the VA Mycorrhizal hyphae in acquisition of phosphorous and zinc by maize grown in a calcareous soil. Plant and Soil, 131, 177–185.

    CAS  Google Scholar 

  106. Kropat, J., Tottey, S., Birkenbihl, R. P., Depège, N., Huijser, P., & Merchant, S. (2005). A regulator of nutritional copper signaling in Chlamydomonas is an SBP domain protein that recognizes the GTAC core of copper response element. Proceedings of the National Academy of Sciences of the United States of America, 20, 18730–18735.

    Google Scholar 

  107. Krupa, Z., & Baszynski, T. (1995). Some aspects of heavy metals toxicity towards photosynthetic apparatus – direct and indirect effects on light and dark reactions: A review. Acta Physiolgiae Plantarum, 17, 177–190.

    CAS  Google Scholar 

  108. Krupa, Z., Oquist, G., & Huner, N. (1993). The effects of cadmium on photosynthesis of Phaseolus vulgaris – a fluorescence analysis. Physiologia Plantarum, 88, 626–630.

    CAS  Google Scholar 

  109. Krznaric, E., Verbruggen, N., Wevers, J. H. L., Carleer, R., Vangronsveld, J., & Colpaert, J. V. (2009). Cd-tolerant Suillus luteus: A fungal insurance for pines exposed to Cd. Environmental Pollution, 157, 1581–1588.

    CAS  Google Scholar 

  110. Krznaric, E., Wevers, J. H. L., Cloquet, C., Vangronsveld, J., Vanhaecke, F., & Colpaert, J. V. (2010). Zn pollution counteracts Cd toxicity in metal-tolerant ectomycorrhizal fungi and their host plant, Pinus sylvestris. Environmental Microbiology, 12, 2133–2141.

    CAS  Google Scholar 

  111. Kuffner, M., Puschenreiter, M., Wieshammer, G., Gorfer, M., & Sessitsch, A. (2008). Rhizosphere bacteria affect growth and metal uptake of heavy metal accumulating willows. Plant and Soil, 304, 35–44.

    CAS  Google Scholar 

  112. Kuffner, M., De Maria, S., Puschenreiter, M., Fallmann, K., Wieshammer, G., Gorfer, M., Strauss, J., Rivelli, A. R., & Sessitsch, A. (2010). Culturable bacteria from Zn- and Cd-accumulating Salix caprea with differential effects on plant growth and heavy metal availability. Journal of Applied Microbiology, 108, 1471–1484.

    CAS  Google Scholar 

  113. Kumar, P., Tewari, R. K., & Sharma, P. N. (2007). Excess nickel-induced changes in antioxidative processes in maize leaves. Journal of Plant Nutrition and Soil Science, 170, 796–802.

    CAS  Google Scholar 

  114. Küpper, H., Küpper, F., & Spiller, M. (1998). In situ detection of heavy metal substituted chlorophylls in water plants. Photosynthesis Research, 58, 123–133.

    Google Scholar 

  115. Lambers, H., Chapin, F. S., III, & Pons, T. L. (2006). Mineral nutrition. In H. Lambers, F. S. Chapin III, & T. L. Pons (Eds.), Plant physiological ecology (pp. 255–320). Berlin-Heidelberg: Springer.

    Google Scholar 

  116. Lamont, B. B. (2003). Structure, ecology, and physiology of root clusters – A review. Plant and Soil, 248, 1–19.

    CAS  Google Scholar 

  117. Leyval, C., Turnau, K., & Haselwandter, K. (1997). Interactions between heavy metals and mycorrhizal fungi in polluted soils: Physiological, ecological and applied aspects. Mycorrhiza, 7, 139–153.

    CAS  Google Scholar 

  118. Liavonchanka, A., & Feussner, I. (2006). Lipoxygenases: Occurrence, functions and catalysis. Journal of Plant Physiology, 163, 348–357.

    CAS  Google Scholar 

  119. Lidon, F., & Henriques, F. S. (1992). Changes in the contents of photosynthetic electron carriers, RNAse activity and membrane permeability. Photosynthetica, 26, 371–380.

    CAS  Google Scholar 

  120. Lidon, F., Ramalho, J. C., & Henriques, F. (1993). Copper inhibition of rice photosynthesis. Journal of Plant Physiology, 142, 12–17.

    CAS  Google Scholar 

  121. Liu, Q., Yang, J. L., He, L. S., Li, Y. Y., & Zheng, S. J. (2008). Effect of aluminum on cell wall, plasma membrane, antioxidants and root elongation in triticale. Biologia Plantarum, 52, 87–92.

    CAS  Google Scholar 

  122. Liu, T., Liu, S., Guan, H., Ma, L., Chen, Z., Gu, H., & Qu, L. J. (2009). Transcriptional profiling of Arabidopsis seedlings in response to heavy metal lead (Pb). Environmental and Experimental Botany, 67, 377–386.

    CAS  Google Scholar 

  123. Lodewyckx, C., Taghavi, S., Mergeay, M., Vangronsveld, J., Clijsters, H., & van der Lelie, D. (2001). The effect of recombinant heavy metal resistant endophytic bacteria in heavy metal uptake by their host plant. International Journal of Phytoremediation, 3, 173–187.

    CAS  Google Scholar 

  124. Lodewyckx, C., Mergeay, M., Vangronsveld, J., Clijsters, H., & van der Lelie, D. (2002). Isolation, characterization and identification of bacteria associated with the zinc hyperaccumulator Thlaspi caerulescens subsp. calaminaria. International Journal of Phytoremediation, 4, 101–115.

    CAS  Google Scholar 

  125. Ma, J. F., Yamaji, N., Mitani, N., Xu, X. Y., Su, Y. H., McGrath, S. P., & Zhao, F. J. (2008). Transporters of arsenite in rice and their role in arsenic accumulation in rice grain. Proceeding of the National Academy of Science of the United States of America, 105, 9931–9935.

    CAS  Google Scholar 

  126. Ma, Y., Rajkumar, M., & Freitas, H. (2009). Inoculation of plant growth promoting bacterium Achromobacter xylosoxidans strain Ax10 for the improvement of copper phytoextraction by Brassica juncea. Journal of Environmental Management, 90, 831–837.

    Google Scholar 

  127. Madhaiyan, M., Poonguzhali, S., & Sa, T. (2007). Metal tolerating methylotrophic bacteria reduces nickel and cadmium toxicity and promotes plant growth of tomato (Lycopersicon esculentum L.). Chemosphere, 69, 220–228.

    CAS  Google Scholar 

  128. Maheshwari, R., & Dubey, R. S. (2009). Nickel-induced oxidative stress and the role of antioxidant defence in rice seedlings. Plant Growth Regulation, 59, 37–49.

    CAS  Google Scholar 

  129. Maksymiec, W. (1997). Effects of copper on cellular processes in higher plants. Photosynthetica, 34, 321–342.

    CAS  Google Scholar 

  130. Maksymiec, W. (2007). Signaling responses in plants to heavy metal stress. Acta Physiolgiae Plantarum, 29, 177–187.

    CAS  Google Scholar 

  131. Maksymiec, W., Wojcik, M., & Krupa, Z. (2007). Variation in oxidative stress and photochemical activity in Arabidopsis thaliana leaves subjected to cadmium and excess copper in the presence or absence of jasmonate and ascorbate. Chemosphere, 66, 421–427.

    CAS  Google Scholar 

  132. Mano, H., & Morisaki, H. (2008). Endophytic bacteria in rice plant. Microbes and Environments, 23, 109–117.

    Google Scholar 

  133. Marchiol, L., Leita, L., Martin, M., Peterssotti, A., & Zerbi, G. (1996). Physiological responses of two soybean cultivars to cadmium. Journal of Environmental Quality, 25, 562–566.

    CAS  Google Scholar 

  134. Marschner, H. (1995). Mineral nutrition of higher plants. Boston: Academic.

    Google Scholar 

  135. Martin, F., Aerts, A., Ahrén, D., Brun, A., Danchin, E. G., Dychaussoy, F., Gibon, J., Kohler, A., et al. (2008). The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature, 452, 88–92.

    CAS  Google Scholar 

  136. Martin, F., Kohler, A., Murat, C., Balestrini, R., Coutinho, P. M., Jaillon, O., Montanini, B., Morin, E., et al. (2010). Perigord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature, 464, 1033–1038.

    CAS  Google Scholar 

  137. Martinez, L., Caballero-Mellado, J., Orozco, J., & Martinez-Romero, E. (2003). Diazotrophic bacteria associated with banana (Musa spp). Plant and Soil, 257, 35–47.

    CAS  Google Scholar 

  138. Martino, E., Perotto, S., Parsons, R., & Gadd, G. M. (2003). Solubilization of insoluble inorganic zinc compounds by ericoid mycorrhizal fungi derived from heavy metal polluted sites. Soil Biology and Biochemistry, 35, 133–141.

    CAS  Google Scholar 

  139. McCluskey, J., Herdmand, L., & Skene, K. R. (2004). Iron deficiency induces changes in metabolism of citrate in lateral roots and cluster roots of Lupinus albus. Physiologia Plantarum, 121, 586–594.

    CAS  Google Scholar 

  140. Meharg, A. A., & Cairney, J. W. G. (2000). Co-evolution of mycorrhizal symbionts and their hosts to metal-contaminated environments. Advances in Ecological Research, 30, 69–112.

    CAS  Google Scholar 

  141. Meharg, A. A., & Hartley-Whitaker, J. (2002). Arsenic uptake and metabolism in arsenic resistant and nonresistant plant species. New Phytologist, 154, 29–43.

    CAS  Google Scholar 

  142. Melnick, R. L., Zidack, N. K., Bailey, B. A., Maximova, X. N., Guiltinan, M., & Backman, P. A. (2008). Bacterial endophytes: Bacillus spp. from annual crops as potential biological control agents of black pod rot of cacao. Biological Control, 46, 46–56.

    Google Scholar 

  143. Mengoni, A., Pini, F., Huang, L. N., Shu, W. S., & Bazzicalupo, M. (2009). Plant-by-plant variations of bacterial communities associated with leaves of the nickel hyperaccumulator Assylum bertolonii Desv. Microbial Ecology, 58, 660–667.

    CAS  Google Scholar 

  144. Mengoni, A., Schat, H., & Vangronsveld, J. (2010). Plants as extreme environments? Ni-resistant bacteria and Ni-hyperaccumulators of serpentine flora. Plant and Soil, 331, 5–16.

    CAS  Google Scholar 

  145. Mertens, J., Vangronsveld, J., Van Poucke, M., & van der Straeten, D. (1999). Effect of copper and zinc on the ethylene production of Arabidopsis thaliana. In A. K. Kanellis, C. Chang, H. Klee, A. B. Bleecker, J. C. Pech, & D. Grierson (Eds.), Biology and biotechnology of the plant hormone ethylene II (pp. 333–338). Dordrecht: Kluwer Academic.

    Google Scholar 

  146. Milone, M. T., Sgherri, C., Clijsters, H., & Navari-Izzo, F. (2003). Antioxidative responses of wheat treated with realistic concentration of cadmium. Environmental and Experimental Botany, 50, 265–276.

    CAS  Google Scholar 

  147. Mishra, P., Mishra, S., Selvakumar, G., Kundu, S., & Shankar Gupta, H. (2009). Enhanced soybean (Glycine max L.) plant growth and nodulation by Bradyrhizobium japonicum-SB1 in presence of Bacillus thuringiensis-KR1. Acta Agriculturae Scandinavica, Section B – Soil & Plant, 59, 189–196.

    CAS  Google Scholar 

  148. Mittler, R., Vanderauwera, S., Gollery, M., & Van Breusegem, F. (2004). Reactive gene network of plants. Trends in Plant Science, 9, 490–498.

    CAS  Google Scholar 

  149. Moog, P. R., van der Kooij, T. A., Brüggemann, W., Schiefelbein, J. W., & Kuiper, P. J. (1995). Responses to iron deficiency in Arabidopsis thaliana: The turbo iron reductase does not depend on the formation of root hairs and transfer cells. Planta, 195, 505–513.

    CAS  Google Scholar 

  150. Morina, F., Jovanovicb, L., Mojovicc, M., Vidovica, M., Pankovicd, D., & Veljovic Jovanovica, S. (2010). Zinc-induced oxidative stress in Verbascum thapsus is caused by an accumulation of reactive oxygen species and quinhydrone in the cell wall. Physiologia Plantarum, 140, 209–224.

    CAS  Google Scholar 

  151. Moustakas, M., Lanaras, T., Symeonidis, L., & Karataglis, S. (1994). Growth and some photosynthetic characteristics on field grown Avena sativa under copper and lead stress. Photosynthetica, 30, 389–396.

    CAS  Google Scholar 

  152. Munkvold, L., Kjoller, R., Vestberg, M., Rosendahl, S., & Jakobsen, I. (2004). High functional diversity within species of arbuscular mycorrhizal fungi. New Phytologist, 164, 357–364.

    Google Scholar 

  153. Nagae, M., Nakata, M., & Takahashi, Y. (2008). Identification of negative cis-acting elements in response to copper in the chloroplastic iron superoxide dismutase gene of the moss Barbula unguiculata. Plant Physiology, 146, 1687–1696.

    CAS  Google Scholar 

  154. Nair, A., Juwarkar, A. A., & Singh, S. K. (2007). Production and characterization of siderophores and its application in arsenic removal from contaminated soil. Water, Air, and Soil Pollution, 180, 199–212.

    CAS  Google Scholar 

  155. Navari-Izzo, F., Cestone, B., Cavallini, A., Natali, L., Giordani, T., & Quartacci, M. F. (2006). Copper excess triggers phospholipase D activity in wheat roots. Phytochemistry, 67, 1232–1242.

    CAS  Google Scholar 

  156. Nouairi, I., Ben Ammar, W., Ben Youssef, N., Ben Miled, D. D., Ghorbal, M. H., & Zarrouk, M. (2009). Antioxidant defense system in leaves of Indian mustard (Brassica juncea) and rape (Brassica napus) under cadmium stress. Acta Physiologiae Plantarum, 31, 237–247.

    CAS  Google Scholar 

  157. Nurmiaho-Lassila, E. L., Timonen, S., Haahtela, K., & Sen, R. (1997). Bacterial colonization patterns of intact Pinus sylvestris mycorrhizospheres in dry pine forest soil: An electron microscopy study. Canadian Journal of Microbiology, 43, 1017–1035.

    CAS  Google Scholar 

  158. Ortega-Villasante, C., Hernández, L. E., Rellán-Álvarez, R., Del Campo, F. F., & Carpena-Ruiz, R. O. (2007). Rapid alteration of cellular redox homeostasis upon exposure to cadmium and mercury in alfalfa seedlings. New Phytologist, 176, 96–107.

    CAS  Google Scholar 

  159. Palmer, C. M., & Guerinot, M. L. (2009). Facing the challenges of Cu, Fe and Zn homeostasis in plants. Nature Chemical Biology, 5, 333–340.

    CAS  Google Scholar 

  160. Palmgren, M. G. (2001). Plant plasma membrane H+ -ATPases: Powerhouses for nutrient uptake. Annual Review of Plant Physiology and Plant Molecular Biology, 52, 817–845.

    CAS  Google Scholar 

  161. Palmgren, M. G., Clemens, S., Williams, L. E., Krämer, U., Borg, S., Schjørring, J. K., & Sanders, D. (2008). Zinc biofortification of cereals: Problems and solutions. Trends in Plant Science, 13, 464–473.

    CAS  Google Scholar 

  162. Panda, S. K., & Matsumoto, H. (2010). Changes in antioxidant gene expression and induction of oxidative stress in pea (Pisum sativum L.) under Al stress. Biometals, 23, 753–762.

    CAS  Google Scholar 

  163. Panda, S. K., Chaudhury, I., & Khan, M. H. (2003). Heavy metals induce lipid peroxidation and affect antioxidants in wheat leaves. Biologia Plantarum, 46, 289–294.

    CAS  Google Scholar 

  164. Panda, S. K., Singha, L. B., & Khan, M. H. (2003). Does aluminium phytotoxicity induce oxidative stress in greengram (Vigna radiata)? Bulgarian Journal of Plant Physiology, 29, 77–86.

    Google Scholar 

  165. Pandey, V., Dixit, V., & Shyam, R. (2005). Antioxidative responses in relation to growth of mustard (Brassica juncea cv. Pusa Jaikisan) plants exposed to hexavalent chromium. Chemosphere, 61, 40–47.

    CAS  Google Scholar 

  166. Peralta-Videa, J. R., Lopez, M. L., Narayan, M., Saupe, G., & Gardea-Torresdey, J. (2009). The biochemistry of environmental heavy metal uptake by plants: Implications for the food chain. International Journal of Biochemistry and Cell Biology, 41, 1665–1677.

    CAS  Google Scholar 

  167. Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A., & Forestier, C. (2002). Heavy metal toxicity: Cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32, 539–548.

    CAS  Google Scholar 

  168. Pilon, M., Abdel-Ghany, S. E., Cohu, C. M., Gogolin, K. A., & Ye, H. (2006). Copper cofactor delivery in plant cells. Current Opinion in Plant Biology, 9, 256–263.

    CAS  Google Scholar 

  169. Pilon, M., Cohu, C. M., Ravet, K., Abdel-Ghany, S. E., & Gaymard, F. (2009). Essential transition metal homeostasis in plants. Current Opinion in Plant Biology, 12, 347–357.

    CAS  Google Scholar 

  170. Prasad, N. (1995). Cadmium toxicity and tolerance in vascular plants. Environmental and Experimental Botany, 35, 535–545.

    Google Scholar 

  171. Puig, S., & Peñarrubia, L. (2009). Placing micronutrients in context: Transport and distribution in plants. Current Opinion in Plant Biology, 12, 299–306.

    CAS  Google Scholar 

  172. Puig, S., Andrés-Colás, N., García-Molina, A., & Peñarrubia, L. (2007). Copper and iron homeostasis in Arabidopsis: Responses to metal deficiencies, interactions and biotechnological applications. Plant, Cell & Environment, 30, 271–290.

    CAS  Google Scholar 

  173. Radić, S., Babić, M., Škobić, D., Roje, V., & Pevalek-Kozlina, B. (2010). Ecotoxicological effects of aluminum and zinc on growth and antioxidants in Lemna minor L. Ecotoxicology and Environmental Safety, 73, 336–342.

    Google Scholar 

  174. Rajkumar, M., Ae, N., Prasad, M. N. V., & Freitas, H. (2010). Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends in Biotechnology, 28, 142–149.

    CAS  Google Scholar 

  175. Reddy, A. M., Kumar, S. G., Jyothsnakumari, G., Thimmanaik, S., & Sudhakar, C. (2005). Lead induced changes in antioxidant metabolism of horsegram (Macrotyloma uniflorum (Lam.) Verdc.) and bengalgram (Cicer arietinum L.). Chemosphere, 60, 97–104.

    CAS  Google Scholar 

  176. Redon, P. O., Beguiristain, T., & Leyval, C. (2009). Differential effects of AM fungal isolates on Medicago truncatula growth and metal uptake in a multimetallic (Cd, Zn, Pb) contaminated agricultural soil. Mycorrhiza, 19, 187–195.

    CAS  Google Scholar 

  177. Rellán-Álvarez, R., Ortega-Villasante, C., Álvarez-Fernández, A., Del Campo, F. F., & Hernández, L. E. (2006). Stress responses of Zea mays to cadmium and mercury. Plant and Soil, 279, 41–50.

    Google Scholar 

  178. Remans, T., Opdenakker, K., Smeets, K., Mathysen, D., Vangronsveld, J., & Cuypers, A. (2010). Metal-specific and NADPH oxidase dependent changes in lipoxygenase and NADPH oxidase gene expression in Arabidopsis thaliana exposed to cadmium or excess copper. Functional Plant Biology, 37, 532–544.

    CAS  Google Scholar 

  179. Richards, K. D., Schott, E. J., Sharma, Y. K., Davis, K. R., & Gardner, R. C. (1998). Aluminum induces oxidative stress genes in Arabidopsis thaliana. Plant Physiology, 116, 409–418.

    CAS  Google Scholar 

  180. Robinson, N. J., Procter, C. M., Connolly, E. L., & Guerinot, M. L. (1999). A ferric-chelate reductase for iron uptake from soils. Nature, 397, 694–697.

    CAS  Google Scholar 

  181. Rodríguez, H., & Fraga, R. (1999). Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnology Advances, 17, 319–339.

    Google Scholar 

  182. Rodríguez-Serrano, M., Romero-Puertas, M. C., Zabalza, A., Corpas, F. J., Gómez, M., del Río, L. A., & Sandalio, L. M. (2006). Cadmium effect on oxidative metabolism of pea (Pisum sativum L.) roots. Imaging of reactive oxygen species and nitric oxide accumulation in vivo. Plant, Cell & Environment, 29, 1532–1544.

    Google Scholar 

  183. Rout, G. R., & Das, P. (2003). Effect of metal toxicity on plant growth and metabolism. I. Zinc. Agronomie, 23, 3–11.

    Google Scholar 

  184. Russo, M., Sgherri, C., Izzo, R., & Navari-Izzo, F. (2008). Brassica napus subjected to copper excess: Phospholipases C and D and glutathione system in signalling. Environmental and Experimental Botany, 62, 238–246.

    CAS  Google Scholar 

  185. Salt, D. E., Benhamou, N., Leszczyniecka, M., & Raskin, I. (1999). A possible role of rhizobacteria in water treatment by plant roots. International Journal of Phytoremediation, 1, 67–69.

    CAS  Google Scholar 

  186. Sancenón, V., Puig, S., Mateu-Andrés, I., Dorcey, E., Thiele, D. J., & Peñarrubia, L. (2004). The Arabidopsis copper transporter COPT1 functions in root elongation and pollen development. Journal of Biological Chemistry, 279, 15348–15355.

    Google Scholar 

  187. Saravanan, V. S., Madhaiyan, M., & Thangaraju, M. (2007). Solubilization of zinc compounds by the diazotrophic, plant growth promoting bacterium Gluconacetobacter diazotrophicus. Chemosphere, 66, 1794–1798.

    CAS  Google Scholar 

  188. Schmidt, W. (1999). Mechanisms and regulation of reduction-based iron uptake in plants. New Phytologist, 141, 1–26.

    CAS  Google Scholar 

  189. Schmidt, W. (2003). Iron homeostasis in plants: Sensing and signaling pathways. Journal of Plant Nutrition, 26, 2211–2230.

    CAS  Google Scholar 

  190. Schützendübel, A., & Polle, A. (2002). Plant responses to abiotic stresses: Heavy metal-induced oxidative stress and protection by mycorrhization. Journal of Experimental Botany, 53, 1351–1365.

    Google Scholar 

  191. Selosse, M. A., Baudoin, E., & Vandenkoornhuyse, P. (2004). Symbiotic microorganisms, a key for ecological success and protection of plants. Comptes Rendus Biologies, 327, 639–648.

    Google Scholar 

  192. Semane, B., Cuypers, A., Smeets, K., Van Belleghem, F., Horemans, N., Schat, H., & Vangronsveld, J. (2007). Cadmium responses in Arabidopsis thaliana: Glutathione metabolism and antioxidative defence system. Physiologia Plantarum, 129, 519–528.

    CAS  Google Scholar 

  193. Seregin, I. V., & Ivanov, V. B. (2001). Physiological aspects of cadmium and lead toxic effects on higher plants. Russian Journal of Plant Physiology, 48, 523–544.

    CAS  Google Scholar 

  194. Sessitsch, A., & Puschenreiter, M. (2008). Endophytes and rhizospere bacteria of plants growing in heavy-metal containing soils. In P. Dion & C. S. Nautiyal (Eds.), Microbiology of extreme soils (pp. 317–332). Berlin/Heidelberg: Springer.

    Google Scholar 

  195. Shane, M. W., & Lambers, H. (2005). Cluster roots: A curiosity in context. Plant and Soil, 274, 101–125.

    CAS  Google Scholar 

  196. Sharma, S. S., & Dietz, K.-J. (2009). The relationship between metal toxicity and cellular redox imbalance. Trends in Plant Science, 14, 43–50.

    CAS  Google Scholar 

  197. Sharma, A., & Johri, B. N. (2003). Growth promoting influence of siderophore-producing Pseudomonas strains GRP3A and PRS9 in maize (Zea mays L.) under iron limiting conditions. Microbiological Research, 158, 243–248.

    CAS  Google Scholar 

  198. Sharma, A., Johri, B. N., Sharma, A. K., & Glick, B. R. (2003). Plant growth promoting bacterium Pseudomonas sp, strain GFP(3) influences iron acquisition in mung bean (Vigna radiate L. Wilzeck). Soil Biology and Biochemistry, 35, 887–894.

    CAS  Google Scholar 

  199. Sheng, X. F., & Xia, J. J. (2006). Improvement of rape plant (Brassica napus) growth and cadmium uptake by cadmium resistant bacteria. Chemosphere, 64, 1036–1042.

    CAS  Google Scholar 

  200. Sheng, X.-F., Xia, J. J., Jiang, C. Y., He, L. Y., & Qian, M. (2008). Characterization of heavy metal-resistant endophytic bacteria from rape (Brassica napus) roots and their potential in promoting growth and lead accumulation of rape. Environmental Pollution, 156, 1164–1170.

    CAS  Google Scholar 

  201. Shi, Q. H., & Zhu, Z. J. (2008). Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany, 63, 317–326.

    CAS  Google Scholar 

  202. Shri, M., Kumar, S., Chakrabarty, D., Trivedi, P. K., Mallick, S., Misra, P., Shukla, D., Mishra, S., Srivastava, S., Tripathi, R. D., & Tuli, R. (2009). Effect of arsenic on growth, oxidative stress, and antioxidant system in rice seedlings. Ecotoxicology and Environmental Safety, 72, 1102–1110.

    CAS  Google Scholar 

  203. Siedlecka, A. (1995). Some aspects of interactions between heavy metals and plant mineral nutrients. Acta Societ Botanic Poloniae, 64, 265–272.

    CAS  Google Scholar 

  204. Siedlecka, A., Krupa, Z., Samuelsson, G., Öquist, G., & Gardestrom, P. (1997). Primary carbon metabolism in Phaseolus vulgaris plants under Cd/Fe interaction. Plant Physiology and Biochemistry, 35, 951–957.

    CAS  Google Scholar 

  205. Šimonovičová, M., Tamás, L., Huttová, J., & Mistrík, I. (2004). Effect of aluminium on oxidative stress related enzymes activities in barley roots. Biologia Plantarum, 48, 261–266.

    Google Scholar 

  206. Singh, H. P., Batish, D. R., Kohli, R. K., & Arora, K. (2007). Arsenic-induced root growth inhibition in mung bean (Phaseolus aureus Roxb.) is due to oxidative stress resulting from enhanced lipid peroxidation. Plant Growth Regulation, 53, 65–73.

    CAS  Google Scholar 

  207. Singh, S., Singh, S., Ramachandran, V., & Eapen, S. (2010). Copper tolerance and response of antioxidative enzymes in axenically grown Brassica juncea (L.) plants. Ecotoxicology and Environmental Safety, 73, 1975–1981.

    CAS  Google Scholar 

  208. Skórzyńska-Polit, E., Pawlikowska-Pawlęga, B., Szczuka, E., Drążkiewicz, M., & Krupa, Z. (2006). The activity and localization of lipoxygenases in Arabidopsis thaliana under cadmium and coppers stresses. Plant Growth Regulation, 48, 29–39.

    Google Scholar 

  209. Smeets, K., Ruytinx, J., Semane, B., Van Belleghem, F., Remans, T., Van Sanden, S., Vangronsveld, J., & Cuypers, A. (2008). Cadmium-induced transcriptional and enzymatic alterations related to oxidative stress. Environmental and Experimental Botany, 63, 1–8.

    CAS  Google Scholar 

  210. Smeets, K., Opdenakker, K., Remans, T., Van Sanden, S., Van Belleghem, F., Semane, B., Horemans, N., Guisez, Y., Vangronsveld, J., & Cuypers, A. (2009). Oxidative stress related responses at transcriptional and enzymatic level after exposure to Cd or Cu and in a multipollution context. Journal of Plant Physiology, 166, 1982–1992.

    CAS  Google Scholar 

  211. Smith, S. E., & Read, D. J. (Eds.). (2008). Mycorrhizal symbiosis. London: Academic.

    Google Scholar 

  212. Sobrino-Plata, J., Ortega-Villasante, C., Flores-Cáceres, M. L., Escobar, C., Del Campo, F. F., & Hernández, L. E. (2009). Differential alterations of antioxidant defenses as bioindicators of mercury and cadmium toxicity in alfalfa. Chemosphere, 77, 946–954.

    CAS  Google Scholar 

  213. Stobart, A., Griffiths, W., Ameen-Bukhari, I., & Sherwood, R. (1985). The effect of Cd2+ on the biosynthesis of chlorophyll in leaves of barley. Physiologia Plantarum, 63, 293–298.

    CAS  Google Scholar 

  214. Stoeva, N., Berova, M., & Zlatev, Z. (2005). Effect of arsenic on some physiological parameters in bean plants. Biologia Plantarum, 49, 293–296.

    CAS  Google Scholar 

  215. Stoyanova, Z., Simova-Stoilova, L., Demirevska-Kepova, K., & Stoilova, E. (2002). Effect of Cu and Mn toxicity on growth parameters and photosynthetic pigments of young barley plants. Comptes Rendus de l’Académie Bulgare des Sciences, 55, 83–88.

    CAS  Google Scholar 

  216. Sun, L. N., Zhang, Y. F., He, L. Y., Chen, Z. J., Wang, Q. Y., Qian, M., & Sheng, S. F. (2010). Genetic diversity and characterization of heavy metal-resistant-endophytic bacteria from two copper-tolerant plant species on copper mine wasteland. Bioresource Technology, 101, 501–509.

    CAS  Google Scholar 

  217. Suzuki, M., Takahashi, M., Tsukamoto, T., Watanabe, S., Matsuhashi, S., Yazaki, J., Kishimoto, N., Kikuchi, S., Nakanishi, H., Mori, S., & Nishizawa, N. K. (2006). Biosynthesis and secretion of mugineic acid family phytosiderophores in zinc-deficient barley. The Plant Journal, 48, 85–97.

    CAS  Google Scholar 

  218. Taghavi, S., Garafola, C., Monchy, S., Newman, L., Hoffman, A., Weyens, N., Barac, T., Vangronsveld, J., & van der Lelie, D. (2009). Genome survey and characterization of endophytic bacteria exhibiting a beneficial effect on growth and development of poplar. Applied and Environmental Microbiology, 75, 748–757.

    CAS  Google Scholar 

  219. Tamás, L., Dudíková, J., Dǔrcěková, K., Huttová, J., Mistrík, I., & Zelinová, V. (2008). The impact of heavy metals on the activity of some enzymes along the barley root. Environmental and Experimental Botany, 62, 86–91.

    Google Scholar 

  220. Tanimoto, E. (2005). Regulation of root growth by plant hormones – Roles for auxin and gibberellin. Critical Reviews in Plant Sciences, 24, 249–265.

    CAS  Google Scholar 

  221. Tensteddt, P., Peisker, D., Böttcher, C., Tranpczynska, A., & Clemens, S. (2009). Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc. Plant Physiology, 149, 938–948.

    Google Scholar 

  222. Top, E., Van Rollegem, P., van der Lelie, D., Mergeay, M., & Verstraete, W. (1992). Gene transfers and environment. In M. J. Gauthier (Ed.), The importance of retromobilization to gene dissemination (pp. 127–134). Berlin/Heidelberg: Springer.

    Google Scholar 

  223. Torres, M. A. (2010). ROS in biotic interactions. Physiologia Plantarum, 138, 414–429.

    CAS  Google Scholar 

  224. Tripathi, B. N., Bhatt, I., & Dietz, K. J. (2009). Peroxiredoxins: A less studied component of hydrogen peroxide detoxification in photosynthetic organisms. Protoplasma, 235, 3–15.

    CAS  Google Scholar 

  225. Van Belleghem, F. (2007). Cadmium responses in Arabidopsis thaliana: A study focusing on cubcellular localization, effects on cellular ultrastructure and photosynthesis in relation to oxidative stress. Dissertation, Hasselt University.

    Google Scholar 

  226. van der Lelie, D., Taghavi, S., Monchy, S., Schwender, J., Miller, L., Ferrieri, R., Rogers, A., Wu, X., Zhu, W., Weyens, N., Vangronsveld, J., & Newman, L. (2009). Poplar and its bacterial endophytes: Coexistence and harmony. Critical Reviews in Plant Sciences, 28, 346–358.

    Google Scholar 

  227. Vangronsveld, J., & Clijsters, H. (1992). A biological test system for the evaluation of metal phytotoxicity and immobilisation by additives in metal contaminated soils. In E. Merian & W. Haedi (Eds.), Metal compounds in environment and life (Special supplement to chemical speciation and bioavailability, Vol. 4, pp. 117–125). Wilmington: Science Reviews Inc.

    Google Scholar 

  228. Vangronsveld, J., & Clijsters, H. (1994). Toxic effects of metals. In M. E. Farago (Ed.), Plants and the chemical elements. Biochemistry, uptake, tolerance and toxicity (pp. 150–177). Weinheim: VCH Publishers.

    Google Scholar 

  229. Vassilev, A., & Lidon, F. C. (2004). Cd-induced membrane damages and changes in soluble protein and free amino acid contents in young barley plants. Biologia Vegetal Agro Industrial, 1, 243–251.

    Google Scholar 

  230. Vassilev, A., & Yordanov, I. (1997). Reductive analysis of factors limiting growth of Cd-treated plants: A review. Bulgarian Journal of Plant Physiology, 23, 114–133.

    CAS  Google Scholar 

  231. Vassilev, A., Yordanov, I., Chakalova, E., & Kerin, V. (1995). Effect of cadmium stress on growth and photosynthesis of young barley (H. vulgare L.) plants. 2. Structural and functional changes in photosynthetic apparatus. Bulgarian Journal of Plant Physiology, 21, 12–21.

    CAS  Google Scholar 

  232. Vassilev, A., Yordanov, I., & Tsonev, T. (1998). Physiological response of barley plants (Hordeum vulgare) to cadmium contamination in soil during ontogenesis. Environmental Pollution, 103, 287–293.

    CAS  Google Scholar 

  233. Vassilev, A., Berova, M., & Zlatev, Z. (1998). Influence of Cd2+ on growth, chlorophyll content, and water relations in young barley plants. Biologia Plantarum, 41, 601–606.

    CAS  Google Scholar 

  234. Vassilev, A., Lidon, F. C., Matos, M. D., Ramalho, J. C., & Yordanov, I. (2002). Photosynthetic performance and some nutrients content in Cd and Cu-treated barley (Hordeum vulgare L.) plants. Journal of Plant Nutrition, 25, 2343–2360.

    CAS  Google Scholar 

  235. Vassilev, A., Lidon, F., Scotti, P., Ramalho, J. C., & da Graca, M. (2003). Cu-induced changes in chloroplast lipids and photosystem 2 activity in barley plants. Bulgarian Journal of Plant Physiology, 29, 33–43.

    Google Scholar 

  236. Vassilev, A., Lidon, F. C., Ramalho, J. C., Matos, M. D., & da Graca, M. (2003). Effects of excess Cu on growth and photosynthesis of barley plants. Implication with a screening test for Cu tolerance. Journal of Central European Agriculture, 4, 225–236.

    Google Scholar 

  237. Vassilev, A., Lidon, F. C., Matos, M. D., Ramalho, J. C., & Bareiro, M. G. (2004). Shoot cadmium accumulation and photosynthetic performance of barley at high Cd treatments. Journal of Plant Nutrition, 27, 773–793.

    Google Scholar 

  238. Vassilev, A., Lidon, F. C., Scotti, P., da Graca, M., & Yordanov, I. (2004). Cadmium-induced changes in chloroplast lipids and photosystem activities of barley plants. Biologia Plantarum, 48, 153–156.

    CAS  Google Scholar 

  239. Vassilev, A., Perez-Sanz, A., Semane, B., Carleer, R., & Vangronsveld, J. (2005). Cadmium accumulation and tolerance of two Salix viminalis genotypes hydroponically grown in presence of cadmium. Journal of Plant Nutrition, 28, 2159–2177.

    CAS  Google Scholar 

  240. Vassilev, A., Perez-Sanz, A., Cuypers, A., & Vangronsveld, J. (2007). Tolerance of two hydroponically grown Salix genotypes to excess Zn. Journal of Plant Nutrition, 30, 1–12.

    Google Scholar 

  241. Verbruggen, N., Hermans, C., & Schat, H. (2009). Molecular mechanisms of metal hyperaccumulation in plants. New Phytologist, 181, 759–776.

    CAS  Google Scholar 

  242. Verma, S., & Dubey, R. S. (2003). Lead toxicity induces lipid peroxidation and alters the activities of antioxidant enzymes in growing rice plants. Plant Science, 164, 645–655.

    CAS  Google Scholar 

  243. Verma, S. C., Ladha, J. K., & Tripathi, A. K. (2001). Evaluation of plant growth promoting and colonization ability of endophytic diazotrophs from deep water rice. Journal of Biotechnology, 91, 127–141.

    CAS  Google Scholar 

  244. Vert, G., Grotz, N., Dédaldéchamp, F., Gaymard, F., Guerinot, M. L., Briat, J. F., & Curie, C. (2002). IRT1, an Arabidopsis transporter essential for iron uptake from the soil and for plant growth. The Plant Cell, 14, 1223–1233.

    CAS  Google Scholar 

  245. Wang, F. Y., Lin, X. G., & Yin, R. (2007). Role of microbial inoculation and chitosan in phytoextraction of Cu, Zn, Pb and Cd by Elsholtzia splendens–A field case. Environmental Pollution, 174, 248–255.

    Google Scholar 

  246. Wang, S. T., He, X. J., & An, R. D. (2010). Responses of growth and antioxidant metabolism to nickel toxicity in Luffa cylindrica seedlings. Journal of Animal & Plant Sciences, 7, 810–821.

    Google Scholar 

  247. Wang, L. N., Yang, L. M., Yang, F. J., Li, X. G., Song, Y. P., Wang, X. F., & Hu, X. Y. (2010). Involvements of H2O2 and metallothionein in NO-mediated tomato tolerance to copper toxicity. Journal of Plant Physiology, 167, 1298–1306.

    CAS  Google Scholar 

  248. Wasternack, C. (2007). Jasmonates: An update on biosynthesis, signal transduction and action in plant stress response, growth and development. Annals of Botany, 100, 681–697.

    CAS  Google Scholar 

  249. Weckx, J. E. J., & Clijsters, H. (1996). Oxidative damage and defense mechanisms in primary leaves of Phaseolus vulgaris as a result of root assimilation of toxic amounts of copper. Physiologia Plantarum, 96, 506–512.

    CAS  Google Scholar 

  250. Weckx, J. E. J., Vangronsveld, J., & Clijsters, H. (1993). Heavy metal induction of ethylene production and stress enzymes. I. Kinetics of the responses. In J. C. Pech, A. Latché, & C. Balagué (Eds.), Cellular and molecular aspects of the plant hormone ethylene (pp. 238–239). Dordrecht: Kluwer Academic.

    Google Scholar 

  251. Weyens, N., van der Lelie, D., Taghavi, S., & Vangronsveld, J. (2009). Phytoremediation: Plant-endophyte partnership take the challenge. Current Opinion in Biotechnology, 20, 248–254.

    CAS  Google Scholar 

  252. Weyens, N., van der Lelie, D., Taghavi, S., Newman, L., & Vangronsveld, J. (2009). Exploiting plant–microbe partnerships for improving biomass production and remediation. Trends in Biotechnology, 27, 591–598.

    CAS  Google Scholar 

  253. Willems, G., Dräger, D. B., Courbot, M., Godé, C., Verbruggen, N., & Saumitou-Laprade, P. (2007). The genetic basis of zinc tolerance in the metallophyte Arabidopsis halleri ssp. halleri (Brassicaceae): An analysis of quantitative trait loci. Genetics, 176, 659–674.

    CAS  Google Scholar 

  254. Yamasaki, H., Hayashi, M., Fukazawa, M., Kobayashi, Y., & Shikanaic, T. (2009). Squamosa promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. The Plant Cell, 21, 347–361.

    CAS  Google Scholar 

  255. Yang, J., Kloepper, J., & Ryu, C. M. (2009). Rhizosphere bacteria help plants tolerate abiotic stress. Trends in Plant Science, 14, 1–4.

    CAS  Google Scholar 

  256. Yruela, I. (2009). Copper in plants: Acquisition, transport and interactions. Functional Plant Biology, 36, 409–430.

    CAS  Google Scholar 

  257. Zhang, Z. C., Chen, B. X., & Qiu, B. S. (2010). Phytochelatin synthesis plays a similar role in shoots of the cadmium hyperaccumulator Sedum alfredii as in non-resistant plants. Plant, Cell & Environment, 33, 1248–1255.

    CAS  Google Scholar 

  258. Zhou, Z. S., Want, S. J., & Yang, Z. M. (2008). Biological detection and analysis of mercury toxicity to alfalfa (Medicago sativa) plants. Chemosphere, 70, 1500–1509.

    CAS  Google Scholar 

  259. Zhuang, X., Chen, J., Shim, H., & Bai, Z. (2007). New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International, 33, 406–413.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaco Vangronsveld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cuypers, A., Remans, T., Weyens, N., Colpaert, J., Vassilev, A., Vangronsveld, J. (2013). Soil-Plant Relationships of Heavy Metals and Metalloids. In: Alloway, B. (eds) Heavy Metals in Soils. Environmental Pollution, vol 22. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4470-7_6

Download citation

Publish with us

Policies and ethics