Skip to main content

The Sun as Power Source for Spaceflight

  • Chapter
  • First Online:
Fast Solar Sailing

Part of the book series: Space Technology Library ((SPTL,volume 30))

  • 1608 Accesses

Abstract

In the post-IKAROS/JAXA scenario of space sailing, the main aim of this chapter is to show that one could utilize the radiant energy from the Sun as a very special external-to-spacecraft source of thrust. The chapter begins with a summary of radiometric quantities, and then points out the immense contribution of space-era to the solar physics, especially through the high-precision records of the total and spectral solar irradiances. The time series of such quantities will be important in designing fast solar-sail trajectories. In particular, are highlighted the several principles for realizing a highly versatile in-space propulsion through the utilization of some properties of the solar irradiance. The time fluctuations of the total solar irradiance are emphasized; their influence on sailcraft trajectories will be analyzed in the last chapter of the book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the language of geometric algebra, dA is a bivector.

  2. 2.

    In the framework of this book, such assumption is always satisfied.

  3. 3.

    This one should not be confused with the coefficients related to particle diffusion in gas or plasma.

  4. 4.

    This is the radiant power emitted by a star.

  5. 5.

    In this and subsequent chapters, we use the custom term “magnetic field” for actually indicating the magnetic induction field or magnetic flux density, which is denoted by B and measured in Tesla, or Wb/m2, in the SI.

  6. 6.

    The French name standing for beach, because a plage resembles light-colored “sand” against the darker background.

  7. 7.

    TSI represents the actual energy rate at the top of the Earth’s atmosphere. Even SSI is notably important because, among various things, its large fluctuations in the UV band cause variations in the physical/chemical properties of the upper atmosphere.

References

  1. Abbot, C. G. (1911), The Sun. New York: Appleton and Company. Read online at http://www.archive.org/stream/thesunab00abbouoft#page/n7/mode/2up.

    Google Scholar 

  2. Abbot, C. G. (1966), Solar variation, a weather element. Proceedings of the National Academy of Sciences of the United States of America, 56(6).

    Google Scholar 

  3. ASTM International (2006), Standard Solar Constant and Zero Air Mass Solar Spectral Irradiance Tables, E490, 16 pages, PA 19428-2959, USA.

    Google Scholar 

  4. Bennet, J. M., Mattsson, L. (1999), Introduction to Surface Roughness and Scattering (2nd edn.). New York: Optical Society of America.

    Google Scholar 

  5. Berrilli, F., Del Moro, D., Viticchiè (2008), Magnetic field distribution in the quiet Sun: a simplified model approach. Astronomy and Astrophysics manuscript No. 9683aph, August 4th.

    Google Scholar 

  6. Calisesi, Y., Bonnet, R.-M., Gray, L., Langen, J., Lockwood, M. (Eds.) (2007), Solar Variability and Planetary Climates. Berlin: Springer. ISBN 978-0-387-48339-9.

    Google Scholar 

  7. Charbonneau, P. (2007), Flux transport dynamos. Scholarpedia, 2(9), 3440.

    Article  Google Scholar 

  8. Charbonneau, P. (2005), Dynamo models of the solar cycle. Living Reviews in Solar Physics.

    Google Scholar 

  9. Dikpati, M. (2005), Large scale organization in the solar dynamo and its observational signature. Astronomical Society of the Pacific, 346, 61–76.

    Google Scholar 

  10. Dikpati, M., De Toma, G., Gilman, P. A. (2006), Predicting the strength of solar cycle 24 using a flux-transport dynamo-based tool. Geophysical Research Letters, 33, L05102.

    Article  Google Scholar 

  11. Domingo, V., Ermolli, I., Fox, P., Fröhlich, C., Haberreiter, M., Krivova, N., Kopp, G., Schmutz, W., Solanki, S. K., Spruit, H. C., Unruh, Y., Vögler, A. (2009), Solar surface magnetism and irradiance on time scales from days to the 11-year cycle. Space Science Reviews, 145, 337–380. doi:10.1007/s11214-009-9562-1.

    Article  Google Scholar 

  12. Foster, S. S. (2004), Reconstruction of solar irradiance variations for use in studies of global climate change. Ph.D. dissertation at University of Southampton, School of Physics and Astronomy. ftp://ftp.pmodwrc.ch/pub/Claus/Publications/.

  13. Fox, M. (2007), Oxford Master Series in Physics: Quantum Optics, an Introduction. Oxford: Oxford University Press. ISBN 978-0-19-856673-1.

    Google Scholar 

  14. Fröhlich, C. (2004), Solar energy flux variations. In Solar Irradiance Variability, Geophysical Monograph: Vol. 141. Solar Variability and Its Effect on Climate (pp. 97–110). Washington: American Geophysical Union.

    Chapter  Google Scholar 

  15. Fröhlich, C., Lean, J. (2004), Solar radiative output and its variability: evidence and mechanisms. The Astronomy and Astrophysics Review, 12, 273–320. doi:10.1007/s00159-004-0024-1.

    Article  Google Scholar 

  16. Fröhlich, C. (2006). Solar Irradiance Variability Since 1978, Space Science Review. Dordrecht: Kluwer Academic.

    Google Scholar 

  17. Garwin, R. L. (1958), Solar sailing: a practical method of propulsion within the solar system. Jet Propulsion, 28, 188–190.

    Article  Google Scholar 

  18. Golub, L., Pasachoff, J. M. (2002), Nearest Star: The Surprising Science of Our Sun, Harvard: Harvard University Press. ISBN 0-674-01006-X.

    Google Scholar 

  19. Hathaway, D. H., Wilson, R. M. (2006), Geophysical Research Letters, 33, L18101.

    Article  Google Scholar 

  20. Hoyt, D. V., Kenneth, H. Schatten (1997), The Role of the Sun in Climate Change. Oxford: Oxford University Press.

    Google Scholar 

  21. Krivova, N. A., Balmaceda, L., Solanki, S. K. (2007), Reconstruction of total solar irradiance since 1700 from the surface magnetic flux. Astronomy & Astrophysics, 467, 335–346.

    Article  Google Scholar 

  22. Krivova, N. A., Solanki, S. K., Floyd, L. (2006), Reconstruction of solar UV irradiance in cycle 23. Astronomy & Astrophysics, 452, 631–639.

    Article  Google Scholar 

  23. Krivova, N. A., Solanki, S. K. (2005), Modelling of irradiance variations through atmosphere models. Memorie Della Societa Astronomica Italiana, 76, 834–841.

    Google Scholar 

  24. Lockwood, M. (2002), An evaluation of the correlation between open solar flux and total solar irradiance. Astronomy & Astrophysics, 382, 678–687.

    Article  Google Scholar 

  25. Mekaoui, S., Dewitte, S. (2008), Total solar irradiance and modelling during cycle 23, Solar Physics, 247, 203–216. doi:10.1007/s11207-007-9070-y.

    Article  Google Scholar 

  26. NASA/MSFC Solar Group (2008), http://solarscience.msfc.nasa.gov/papers.shtml (a set of downloadable PDF-format papers), http://solarscience.msfc.nasa.gov/presentations.shtml (a set of downloadable .avi and .ppt-format presentations).

  27. NASA, Solar Dynamics Observatory (SDO), http://sdo.gsfc.nasa.gov/.

  28. NASA, Solar Heliosperic Observatory (SOHO), http://sohowww.nascom.nasa.gov/.

  29. Space Weather Prediction Center, http://www.swpc.noaa.gov/index.html.

  30. Solanki, S. K., Krivova, N. A., Wenzler, T. (2004), Irradiance models. Advances in Space Research, 35, 376–383.

    Article  Google Scholar 

  31. Solanki, S. K., Krivova, N. A. (2005), Solar variability of possible relevance for planetary climates. Space Science Reviews, 125, 25–37.

    Article  Google Scholar 

  32. Wei-Hock, Soon W., Yaskell, S. H. (2003), The Maunder Minimum and the Variable Sun-Earth Connection. Singapore: World Scientific. ISBN 981-238-275-5.

    Google Scholar 

  33. Parr, A. (2005), Experimental Methods in the Physical Sciences: Vol. 41. Optical Radiometry. New York: Academic Press.

    Book  Google Scholar 

  34. Rozelot, J. P. (Ed.) (2006), Lecture Notes in Physics: Vol. 699. Solar and Heliospheric Origins of Space Weather. Berlin: Springer. ISBN 3-540-33758-X, ISSN 0075-8450.

    Google Scholar 

  35. Rozelot, J. P., Neiner, C. (Ed.) (2008), Lecture Notes in Physics: Vol. 765. The Rotation of Sun and Stars. Berlin: Springer. ISBN 3-540-878300

    Google Scholar 

  36. Schatzman, E., Praderie, F. (1990), The Stars. Berlin: Springer. Translator King, A. R. ISBN 3-540-54196-9.

    Google Scholar 

  37. Wolfe, W. L. (1998), SPIE Tutorial Texts in Optical Engineering: Vol. 29. Introduction to Radiometry.

    Book  Google Scholar 

  38. Tobiska, W. K., et al. (2000–2008), http://www.SpaceWx.com, many downloadable papers.

  39. Solar Irradiance Platform (professional grade) (2009), Space Environment Technologies, version 2.35, http://www.SpaceWx.com.

  40. Wenzler, T., Solanki, S. K., Krivova, N. A., Fröhlich, C. (2006), Reconstruction of solar irradiance variations in cycles 21–23 based on surface magnetic fields. Astronomy & Astrophysics, 460, 583–595.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Vulpetti, G. (2013). The Sun as Power Source for Spaceflight. In: Fast Solar Sailing. Space Technology Library, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4777-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-4777-7_2

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-4776-0

  • Online ISBN: 978-94-007-4777-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics