Skip to main content

Adoptive Immunotherapy of Malignant Effusions

  • Chapter
  • First Online:
Malignant Effusions

Abstract

Malignant pleural effusions, ascites and pericarditis often appear in patients with advanced cancer of various types and significantly exacerbate patients’ performance status and prevent from further conventional treatment. Adoptive immunotherapy of malignant effusions has been used for about two decades. It includes adoptive transfer of activated lymphocytes generated ex vivo in the presence of IL-2 (LAKs) or other stimulating agents. The basis for the beneficial effect of the LAKs is highly functional natural killer cells, which are the major active subpopulation in the generated cell culture. Effectiveness of treatment of malignant pleural effusion, ascites and pericarditis by intra-cavitary infusion of IL-2 and autologous or allogenic LAKs can achieve 70–90%, the immunotherapy approach shows good tolerance and low rate of side effects. It could be suggested as a stage of combined and (or) complex treatment of advanced cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Allan SE, Crome SQ, Crellin NK et al (2007) Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 19:345–354

    Article  PubMed  CAS  Google Scholar 

  2. Antonov AK, Titov KS, Belousov AV, Kiselevsky MV (2011) Treatment of malignant pericardites. Vest Sluzhby Krovi 2:27–29

    Google Scholar 

  3. Antony PA, Restifo NP (2005) CD4  +  CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother 28:120–128

    Article  PubMed  CAS  Google Scholar 

  4. Bindon C, Czerniecki M, Ruell P et al (1983) Clearance rates and systemic effects of intravenously administered interleukin 2 (IL-2) containing preparations in human subjects. Br J Cancer 47:123–133

    Article  PubMed  CAS  Google Scholar 

  5. Blanchard DK, Kavanagh JJ, Sinkovics JG (1988) Infiltration of interleukin-2-inducible killer cells in ascitic fluid and pleural effusions of advanced cancer patients. Cancer Res 48:6321–6327

    PubMed  CAS  Google Scholar 

  6. Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Activation, coactivation, and costimulation of resting human natural killer cells. Immunol Rev 214:73–91

    Article  PubMed  CAS  Google Scholar 

  7. Cesana GC, DeRaffele G, Cohen S et al (2006) Characterization of CD4  +  CD25+ regulatory T cells in patients treated with high-dose interleukin-2 for metastatic melanoma or renal cell carcinoma. J Clin Oncol 24:1169–1177

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y-Q, Shi H-Z, Qin X-J et al (2005) CD4  +  CD25+ regulatory T lymphocytes in malignant pleural effusion. Am J Respir Crit Care Med 172:1434–1439

    Article  PubMed  Google Scholar 

  9. Chen A, Liu S, Park D et al (2007) Depleting intratumoral CD4  +  CD25+ regulatory T cells via FasL protein transfer enhances the therapeutic efficacy of adoptive T cell transfer. Cancer Res 67:1291–1298

    Article  PubMed  CAS  Google Scholar 

  10. Chikileva IO, Shubina IZ, Baronzio G, Kiselevsky MV (2010) Is it necessary to deplete the lymphokine activated killers’ populations of CD4  +  CD25+ lymphocytes? Regulatory Foxp3-positive T cells within lymphokine activated killers. Biomed Pharmacother 64:379–385

    Article  PubMed  CAS  Google Scholar 

  11. Di Ianni M, Del Papa B, Cecchini D et al (2009) Immunomagnetic isolation of CD4  +  CD25  +  FoxP3+ natural T regulatory lymphocytes for clinical applications. Clin Exp Immunol 56:246–253

    Article  Google Scholar 

  12. Dillman RO, Duma CM, Schiltz PM et al (2004) Intracavitary placement of autologous lymphokine-activated killer (LAK) cells after resection of recurrent glioblastoma. J Immunother 27:398–404

    Article  PubMed  Google Scholar 

  13. Eggermont AM, Punt CJ, Slingerland R et al (1995) Intrapleural administration of interleukin 2 in pleural mesothelioma: a phase I-II study. Br J Cancer 72:1283–1288

    Article  PubMed  Google Scholar 

  14. Freedman RS, Lenzi R, Kudelka AP et al (1998) Intraperitoneal immunotherapy of peritoneal carcinomatosis. Cytokines Cell Mol Ther 4:121–140

    PubMed  CAS  Google Scholar 

  15. Freedman RS, Kudelka AP, Kavanagh JJ et al (2000) Clinical and biological effects of intraperitoneal injections of recombinant interferon-γ and recombinant interleukin 2 with or without tumor-infiltrating lymphocytes in patients with ovarian or peritoneal carcinomaю. Clin Cancer Res 6:2268–2278

    PubMed  CAS  Google Scholar 

  16. Grayson G, Ladisch S (1992) Immunosuppression by human gangliosides. II. Carbohydrate structure and inhibition of human NK activity. Cell Immunol 1:18–29

    Article  Google Scholar 

  17. Hoffmann P, Boeld TJ, Eder R et al (2006) Isolation of CD4  +  CD25+ regulatory T cells for clinical trials. Arch Immunol Ther Exp 54:33–43

    Article  Google Scholar 

  18. Ishikawa T, Ikawa T, Eura M et al (1989) Adoptive immunotherapy for head and neck cancer with killer cells induced by stimulation with autologous or allogeneic tumour cells and recombinant interleukin-2. Acta Otolaryngol 6:346–351

    Article  Google Scholar 

  19. Ikehara M, Oshita F, Suzuki R et al (2004) Phase II study of OK-432 intrapleural administration followed by systemic cisplatin and gemcitabine for non-small cell lung cancer with pleuritis carcinomatosa. J Exp Ther Oncol 4:79–83

    PubMed  CAS  Google Scholar 

  20. Kamada M, Sakamoto Y, Furumoto H et al (1989) Treatment of malignant ascites with allogeneic and autologous lymphokine-activated killer cells. Gynecol Oncol 34:34–37

    Article  PubMed  CAS  Google Scholar 

  21. Kataoka M, Morishita R, Hiramatsu J et al (1995) OK-432 induces production of neutrophil chemotactic factors in malignant pleural effusion. Intern Med 34:352–356

    Article  PubMed  CAS  Google Scholar 

  22. Kiselevsky MV (2003) Adoptive immunotherapy in malignant tumors. Vestn Ross Akad Med Nauk 1:40–44

    Google Scholar 

  23. Kobayashi N, Hiraoka N, Yamagami W et al (2007) FOXP3+ regulatory T cells affect the development and progression of hepatocarcinogenesis. Clin Cancer Res 13:902–911

    Article  PubMed  CAS  Google Scholar 

  24. Lanier LL (2005) NK cell recognition. Annu Rev Immunol 23:225–274

    Article  PubMed  CAS  Google Scholar 

  25. Liu X, Li D, Zhang C, Ba D (1993) Treatment of 121 patients with malignant effusion due to advanced lung cancer by intrapleural transfer of autologous or allogeneic LAK cells combined with rIL-2. Chin Med Sci J 8:186–189

    PubMed  CAS  Google Scholar 

  26. Loddenkemper C, Schernus M, Noutsias M et al (2006) In situ analysis of FOXP3+ regulatory T cells in human colorectal cancer. J Transl Med 13:52

    Article  Google Scholar 

  27. Lucivero G, Pierucci G, Bonomo L (1988) Lymphocyte subsets in peripheral blood and pleural fluid. Eur Respir J 1:337–340

    PubMed  CAS  Google Scholar 

  28. Luh KT, Yang PC, Kuo SH et al (1992) Comparison of OK-432 and mitomycin C pleurodesis for malignant pleural effusion caused by lung cancer. A randomized trial. Cancer 69:674–679

    Article  PubMed  CAS  Google Scholar 

  29. Mao G, Gao Z, Wang Q (1995) Intrapleural administration of LAK cells combined with rIL2 in the treatment of advanced lung cancer with malignant pleural effusion. Zhonghua Jie He He Hu Xi Za Zhi 18:83–84

    PubMed  CAS  Google Scholar 

  30. Margolin KA, Rayner AA, Hawkins MJ et al (1989) Interleukin-2 and lymphokine-activated killer cell therapy of solid tumors: analysis of toxicity and management guidelines. J Clin Oncol 4:486–498

    Google Scholar 

  31. Masotti A, Fumagalli L, Morandini GC (1997) Intrapleural administration of recombinant interleukin-2 in non-small cell lung cancer with neoplastic pleural effusion. Monaldi Arch Chest Dis 52:225–228

    PubMed  CAS  Google Scholar 

  32. Mattijssen V, De-Mulder PH, Schornagel JH et al (1991) Clinical and immunopathological results of a phase II study of perilymphatically injected recombinant interleukin-2 in locally far advanced, nonpretreated head and neck squamous-cell carcinoma. J Immunother 1:63–68

    Article  Google Scholar 

  33. Miyanaga A, Gemma A (2011) Pleuritis carcinomatosa. Gan To Kagaku Ryoho 38:524–527

    PubMed  Google Scholar 

  34. Negrier S, Philip T, Stoter G et al (1989) Interleukin-2 with or without LAK cells in metastatic renal cell carcinoma: a report of a European multicentre study. Eur J Cancer Clin Oncol 25:21–28

    Google Scholar 

  35. Okawaki M, Yamaguchi Y, Okita R et al (2008) Dose-finding study of anti-CD25 antibody for targeting regulatory T cells in locoregional immunotherapy of malignant effusion. Hiroshima J Med Sci 57:37–46

    PubMed  CAS  Google Scholar 

  36. Pegram HJ, Andrews DM, Smyth MJ et al (2011) Activating and inhibitory receptors of natural killer cells. Immunol Cell Biol 89:216–224

    Article  PubMed  Google Scholar 

  37. Petrausch U, Jensen SM, Twitty C et al (2009) Disruption of TGF-beta signaling prevents the generation of tumor-sensitized regulatory T cells and facilitates therapeutic antitumor immunity. J Immunol 183:3682–3689

    Article  PubMed  CAS  Google Scholar 

  38. Rayner AA, Grimm EA, Lotze MT et al (1985) Lymphokine-activated killer (LAK) cell phenomenon. IV. Lysis by LAK cell clones of fresh human tumor cells from autologous and multiple allogeneic tumors. J Natl Cancer Inst 75:67–75

    PubMed  CAS  Google Scholar 

  39. Rosenberg SA, Lotze MT, Muul LM (1987) A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316:889–897

    Article  PubMed  CAS  Google Scholar 

  40. Rosenberg SA, Lotze MT, Yang JC et al (1993) Prospective randomized trial of high-dose interleukin-2 alone or in conjunction with lymphokine-activated killer cells for the treatment of patients with advanced cancer. J Natl Cancer Inst 85:622–632

    Article  PubMed  CAS  Google Scholar 

  41. Ruggeri L, Capanni M, Urbani E et al (2002) Effectiveness of donor natural killer cell alloreactivity in mismatched hematopoietic transplants. Science 295:2097–2100

    Article  PubMed  CAS  Google Scholar 

  42. Ruggeri L, Mancusi A, Capanni M et al (2005) Exploitation of alloreactive NK cells in adoptive immunotherapy of cancer. Curr Opin Immunol 17:211–217

    Article  PubMed  CAS  Google Scholar 

  43. Sakaguchi S (2004) Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol 22:531–562

    Article  PubMed  CAS  Google Scholar 

  44. Shubina IZh, Bliumenberg AG, Volkov SM et al (2007) Adoptive immunotherapy of malignancies. Vestn Ross Akad Med Nauk 11:9–15

    PubMed  Google Scholar 

  45. Shubina IZh, Titov KS, Demidov LV, Kiselevsky MV (2009) Intrapleural IL-2 immunotherapy of patients with malignant effusion. Eur J Cancer 7:519

    Google Scholar 

  46. Titov KS, Kiselevsky MV, Demidov LV et al (2009) Use of recombinant interleukin-2 for intrapleural therapy of tumor-associated pleurisy. Bull Exp Biol Med 148:794–796

    Article  PubMed  CAS  Google Scholar 

  47. Titov KS, Kiselevskii MV, Demidov LV (2010) Intrapleural immunotherapy patients with malignant effusions. Ross Oncol J 4:20–24

    Google Scholar 

  48. Toda A, Piccirillo CA (2006) Development and function of naturally occurring CD4  +  CD25+ regulatory T cells. J Leukoc Biol 80:458–470

    Article  PubMed  CAS  Google Scholar 

  49. Toh U, Fujii T, Seki N et al (2006) Characterization of IL-2-activated TILs and their use in intrapericardial immunotherapy in malignant pericardial effusion. Cancer Immunol Immunother 55:1219–1227

    Article  PubMed  CAS  Google Scholar 

  50. Uchida A, Klein E (1985) Activation of human blood lymphocytes and monocytes by the streptococcal preparation OK432: enhanced generation of soluble cytotoxic factors. Immunol Lett 10:177–181

    Article  PubMed  CAS  Google Scholar 

  51. Van Herpen CM, De Mulder PH (2000) Locoregional immunotherapy in cancer patients: review of clinical studies. Ann Oncol 11:1229–1239

    Article  PubMed  Google Scholar 

  52. Whiteside TL, Herberman RB (1994) Role of human natural killer cells in health and disease. Clin Diagn Lab Immunol 1:125–133

    PubMed  CAS  Google Scholar 

  53. Yamaguchi Y, Satoh Y, Miyahara E et al (1995) Locoregional immunotherapy of malignant ascites by intraperitoneal administration of OK-432 plus IL-2 in gastric cancer patients. Anticancer Res 15:2201–2206

    PubMed  CAS  Google Scholar 

  54. Yamaguchi Y, Ohshita A, Kawabuchi Y et al (2003) Adoptive immunotherapy of cancer using activated autologous lymphocytes–current status and new strategies. Hum Cell 16:183–189

    Article  PubMed  Google Scholar 

  55. Yamaguchi Y, Ohshita A, Kawabuchi Y (2004) Locoregional immunotherapy of malignant ascites from gastric cancer using DTH-oriented doses of the streptococcal preparation OK-432: treatment of Th1 dysfunction in the ascites microenvironment. Int J Oncol 24:959–966

    PubMed  CAS  Google Scholar 

  56. Yasumoto K, Mivazaki K, Nagashima A et al (1987) Induction of lymphokine-activated killer cells by intrapleural instillations of recombinant interleukin-2 in patients with malignant pleurisy due to lung cancer. Cancer Res 47:2184–2187

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Zh Shubina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Shubina, I.Z., Titov, K.S., Chikileva, I.O., Demidov, L.V., Kiselevsky, M.V. (2012). Adoptive Immunotherapy of Malignant Effusions. In: Kiselevsky, M. (eds) Malignant Effusions. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4783-8_6

Download citation

Publish with us

Policies and ethics