Skip to main content

Dielectric Relaxation of Water in Complex Systems

  • Conference paper
  • First Online:
Recent Advances in Broadband Dielectric Spectroscopy

Abstract

Whenever water interacts with another dipolar or charged entity, a broadening of the dielectric relaxation peak occurs. This broadening can often be described by the phenomenological Cole-Cole (CC) spectral function. A new approach (Puzenko AA, Ben Ishai P, and Feldman Y, Phys Rev Lett 105:037601, 2010) based on the fractal nature of the time set of the interaction of the relaxing water dipoles with its encompassing matrix has been recently presented showing a fundamental connection between the relaxation time, τ, the broadening parameter, α, and the Kirkwood-Fröhlich correlation function B. Parameters B, τ and α where chosen as the coordinates of a new 3D space. The evolution of the relaxation process due to the variation of external macroscopic parameters (temperature, pressure etc.) represents the trajectory in 3D space. This trajectory demonstrates the connection between the kinetic and structural properties of the water in complex system. It is also shown how the model describes the state of water in two porous silica glasses and in two different types of aqueous solutions: ionic, and non-ionic. The complex dielectric spectra of a series of solutions of sodium chloride and potassium chloride in water have been measured and have been carefully analyzed along with previously measured spectra for aqueous solutions of D-glucose and D-fructose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arkhipov VI (2002) Hierarchy of dielectric relaxation times in water. J Non-Cryst Solids 305:127–135

    Article  ADS  Google Scholar 

  2. Barthel J, Bachhuber K, Buchner R, Hetzenauer H (1990) Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols. Chem Phys Lett 165(4):369–373

    Article  ADS  Google Scholar 

  3. Boettcher CF, Bordewijk P (1992) Theory of electric polarisation, 2nd edn. Elsevier Science B.V., Amsterdam

    Google Scholar 

  4. Brovchenko I, Geiger A, Oleinikova A (2004) Clustering of water molecules in aqueous solutions: effect of water–solute interaction. Phys Chem Chem Phys 6(8):1982–1987

    Article  Google Scholar 

  5. Buchner R, Hefter GT, May PM (1999) Dielectric relaxation of aqueous NaCl solutions. J Phys Chem A 103(1):1–9

    Article  Google Scholar 

  6. Caffarena ER, Grigera JR (1999) Hydration of glucose in the rubbery and glassy states studied by molecular dynamics simulation. Carbohydr Res 315(1):63–69

    Article  Google Scholar 

  7. Coffey WT, Kalmykov Yu P, Titov SV (2002) Anomalous dielectric relaxation in the context of the Debye model of noninertial rotational diffusion. J Chem Phys 116(15):6422–6426

    Article  ADS  Google Scholar 

  8. Coffey WT, Kalmykov Yu P, Titov SV (2006) Fractals, diffusion, and relaxation in complex disordered systems. In: Kalmykov YP, Coffey WT, Rice SA (eds) Advances in chemical physics, vol 133B. Wiley, New York, pp 285–439

    Google Scholar 

  9. Coffey WT, Kalmykov YuP, Waldron JT (2004) The Langevin equation with application in physics, chemistry and electrical engineering, 2nd edn, World scientific series in contemporary chemical physics. World Scientific Publishing Co., Singapore, 14

    Google Scholar 

  10. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics: I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  ADS  Google Scholar 

  11. Debye P (1929) Polar molecules. Chemical Catalog, New York

    MATH  Google Scholar 

  12. Eisenberg D, Kauzmann W (1969) The structure and properties of water. The Clarendon Press, Oxford, pp 137–149

    Google Scholar 

  13. Feldman Y, Puzenko A, Ryabov Ya (2006) Dielectric relaxation phenomena in complex materials. In: Kalmykov YP, Coffey WT, Rice SA (eds) Advances in chemical physics, vol 133A. Wiley, New York, pp 1–125

    Google Scholar 

  14. Fröhlich H (1958) Theory of dielectrics, 2nd edn. Clarendon, Oxford.

    Google Scholar 

  15. Fuchs K, Kaatze U (2001) Molecular dynamics of carbohydrate aqueous solutions. Dielectric relaxation as a function of glucose and fructose concentration. J Phys Chem B 105:2036–2042

    Article  Google Scholar 

  16. Gulich R, Köhler M, Lunkenheimer P, Loidl A (2009) Dielectric spectroscopy on aqueous electrolytic solutions. Rad Environ Biophys 48:107–114

    Article  Google Scholar 

  17. Gutina A, Antropova T, Rysiakiewicz-Pasek E, Virnik K, Feldman Yu (2003) Dielectric relaxation in porous glasses. Microporous Mesoporous Mater 58(3):237–254

    Article  Google Scholar 

  18. Hasted JB (1973) Aqueous dielectrics. Chapman and Hall, London

    Google Scholar 

  19. Hilfer R (1995) Foundations of fractional dynamics. Fractals 3(3):549–556

    Article  MathSciNet  MATH  Google Scholar 

  20. Hilfer R (2000) Fractional time evolution. In: Hilfer R (ed) Applications of fractional calculus in physics. World Scientific, Singapore, pp 87–130

    Chapter  Google Scholar 

  21. Hilfer R (2002) Experimental evidence for fractional time evolution in glass forming materials. Chem Phys 284:399–408

    Article  ADS  Google Scholar 

  22. Kaatze U (2010) Techniques for measuring the microwave dielectric properties of materials. Metrologia 47:S91–S113

    Article  ADS  Google Scholar 

  23. Kaatze U (1987) Dielectric spectrum of a 0.5 M aqueous NaC1 solution. J Phys Chem 91:3111–3113

    Article  Google Scholar 

  24. Kaatze U, Behrends R, Pottel R (2002) Hydrogen network fluctuations and dielectric spectrometry of liquids. J Non-Cryst Solids 305(1–3):19–28

    Article  ADS  Google Scholar 

  25. Kaatze U, Feldman Yu (2006) Broadband dielectric spectrometry of liquids and biosystems. Meas Sci Technol 17(2):R17–R35

    Article  ADS  Google Scholar 

  26. Kirkwood JG (1939) The dielectric polarization of polar liquids. J Chem Phys 7(10):911–920

    Article  ADS  Google Scholar 

  27. Kremer F, Schönhals A (2003) Broadband dielectric spectroscopy. Springer, Berlin, Heidelberg

    Google Scholar 

  28. Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Yu (2011) Dielectric spectra broadening as the signature of dipole-matrix interaction; Part I. Water in non-ionic solutions. J Chem Phys 136(11):114502

    Article  ADS  Google Scholar 

  29. Levy E, Puzenko A, Kaatze U, Ben Ishai P, Feldman Yu (2011) Dielectric spectra broadening as the signature of dipole-matrix interaction; Part II. Water in ionic solutions. J Chem Phys 136(11):114503

    Article  ADS  Google Scholar 

  30. Loginova DV, Lileev AS, Lyaschenko AK (2002) Dielectric properties of aqueous potassium chloride solutions as a function of temperature. Russ J Inorg Chem 47:1426–1433

    Google Scholar 

  31. Metzler R, Klafter J (2000) The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys Rep 339(1):1–77

    Article  MathSciNet  MATH  ADS  Google Scholar 

  32. Miyazaki T, Mogami G, Wazawa T, Kodama T, Suzuki M (2008) Measurement of the dielectric relaxation property of water-ion loose complex in aqueous solutions of salt at low concentrations. J Phys Chem A 112:10801–10806

    Article  Google Scholar 

  33. Nörtemann K, Hilland J, Kaatze U (1997) Dielectric properties of aqueous NaCl solutions at microwave frequencies. J Phys Chem A 101:6864–6869

    Article  Google Scholar 

  34. Partay L, Jedlovszky PJ (2005) Line of percolation in supercritical water. J Chem Phys 123:024502–024505

    Article  ADS  Google Scholar 

  35. Peyman A, Gabriel C, Grant EH (2007) Complex permittivity of sodium chloride solutions at microwave frequencies. Bioelectromagnetics 28:264–274

    Article  Google Scholar 

  36. Puzenko A, Ben Ishai P, Feldman Y (2010) Cole-Cole broadening in dielectric relaxation and strange kinetics. Phys Rev Lett 105:037601–037604

    Article  ADS  Google Scholar 

  37. Sciortino F, Geiger A, Stanley HE (1992) Network defect and molecular mobility in liquid water. J Chem Phys 96:3857–3865

    Article  ADS  Google Scholar 

  38. Suzuki T (2008) The hydration of glucose: the local configurations in sugar-water hydrogen bonds. Phys Chem Chem Phys 10(1):96–105

    Article  Google Scholar 

  39. Tombari E, Ferrari C, Salvetti G, Johari GP (2009) Dynamic and apparent specific heats during transformation of water in partly filled nanopores during slow cooling to 110 K and heating. Thermochim Acta 492:37–44

    Article  Google Scholar 

  40. Wei YZ, Chiang P, Sridhar S (1992) Ion size effects on the dynamic and static dielectric properties of aqueous alkali solutions. J Chem Phys 96(6):4569–4573

    Article  ADS  Google Scholar 

  41. Chen T, Hefter G, Buchner R (2003) Dielectric spectroscopy of aqueous solutions of KCl and CsCl. J Phys Chem A 107:4025–4031

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Feldman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Feldman, Y., Puzenko, A.A., Ishai, P.B., Levy, E. (2013). Dielectric Relaxation of Water in Complex Systems. In: Kalmykov, Y. (eds) Recent Advances in Broadband Dielectric Spectroscopy. NATO Science for Peace and Security Series B: Physics and Biophysics. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5012-8_1

Download citation

Publish with us

Policies and ethics