Skip to main content

Myotubularin Phosphoinositide Phosphatases in Human Diseases

  • Chapter
  • First Online:
Phosphoinositides and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

The level and turnover of phosphoinositides (PIs) are tightly controlled by a large set of PI-specific enzymes (PI kinases and phosphatases). Mammalian PI phosphatases are conserved through evolution and among this large family the dual-specificity phosphatase (PTP/DSP) are metal-independent enzymes displaying the amino acid signature Cys-X5-Arg-Thr/Ser (CX5RT/S) in their active site. Such catalytic site characterizes the myotubularin 3-phosphatases that dephosphorylate PtdIns3P and PtdIns(3,5)P 2 and produce PtdIns5P. Substrates of myotubularins have been implicated in endocytosis and membrane trafficking while PtdIns5P may have a role in signal transduction. As a paradox, 6 of the 14 members of the myotubularin family lack enzymatic activity and are considered as dead phosphatases. Several myotubularins have been genetically linked to human diseases: MTM1 is mutated in the congenital myopathy X-linked centronuclear or myotubular myopathy (XLCNM) and MTMR14 (JUMPY) has been linked to an autosomal form of such disease, while MTMR2 and MTMR13 are mutated in Charcot-Marie-Tooth (CMT) neuropathies. Furthermore, recent evidences from genetic association studies revealed that several other myotubularins could be associated to chronic disorders such as cancer and obesity, highlighting their importance for human health. Here, we discuss cellular and physiological roles of myotubularins and their implication in human diseases, and we present potential pathological mechanisms affecting specific tissues in myotubularin-associated diseases.

Authors: Leonela Amoasii, Karim Hnia are equally contributed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AAV:

Adeno-associated-virus

BIN1:

Bridging integrator 1 gene coding for amphiphysin 2

CC:

Coiled-coil

CMT:

Charcot-Marie-Tooth neuropathies

CMTX:

X-linked inherited CMT

CNM:

Centronuclear myopathy

Dlg1:

Disks large 1

DI-CMT:

Dominant inherited CMT

DRM:

Desmin related myopathies

DRCM:

Desmin related cardiomyopathies

PTP/DSP:

Protein Tyrosine Phosphatase/Dual-specificity phosphatase

DNM2:

Dynamin 2

EC:

Excitation–contraction

EGF:

Epidermal growth factor

GEFS+ :

Generalized epilepsy with febrile seizures plus

ING2:

Inhibitor of growth 2

KO:

Knockout

MTM1:

Myotubularin

MTMR:

Myotubularin-related

NCV:

Nerve conduction velocity

NF-L:

Neurofilament light chain protein

Pi3K68D:

PI 3-kinase class II

PIs:

Phosphoinositides

PtdIns:

Phosphatidylinositol

PHD:

Plant homeodomain

PH-GRAM:

Pleckstrin homology, glucosyltransferases, rab-like GTPase activators and myotubularins

RID:

Rac-induced recruitment domain

RYR1:

Ryanodine receptor

SAP97:

Synapse associated 97

SID:

Set-interacting domain

XLCNM:

X-linked recessive form of centronuclear myopathy

References

  • Alonso A, Sasin J, Bottini N, Friedberg I, Friedberg I, Osterman A, Godzik A, Hunter T, Dixon JE, Mustelin T (2004) Protein tyrosine phosphatases in the human genome. Cell 117:699–711

    PubMed  CAS  Google Scholar 

  • Al-Qusairi L, Weiss N, Toussaint A, Berbey C, Messaddeq N, Kretz C, Sanoudou D, Beggs AH, Allard B, Mandel JL, Laporte J, Jacquemond V, Buj-Bello A (2009) T-tubule disorganization and defective excitation-contraction coupling in muscle fibers lacking myotubularin lipid phosphatase. Proc Natl Acad Sci U S A 106:18763–18768

    PubMed  CAS  Google Scholar 

  • Azzedine H, Bolino A, Taieb T, Birouk N, Di Duca M, Bouhouche A, Benamou S, Mrabet A, Hammadouche T, Chkili T, Gouider R, Ravazzolo R, Brice A, Laporte J, LeGuern E (2003) Mutations in MTMR13, a new pseudophosphatase homologue of MTMR2 and Sbf1, in two families with an autosomal recessive demyelinating form of Charcot-Marie-Tooth disease associated with early-onset glaucoma. Am J Hum Genet 72:1141–1153

    PubMed  CAS  Google Scholar 

  • Baulac S, Gourfinkel-An I, Couarch P, Depienne C, Kaminska A, Dulac O, Baulac M, LeGuern E, Nabbout R (2008) A novel locus for generalized epilepsy with febrile seizures plus in French families. Arch Neurol 65:943–951

    PubMed  Google Scholar 

  • Begley MJ, Taylor GS, Kim SA, Veine DM, Dixon JE, Stuckey JA (2003) Crystal structure of a phosphoinositide phosphatase, MTMR2: insights into myotubular myopathy and Charcot-Marie-Tooth syndrome. Mol Cell 12:1391–1402

    PubMed  CAS  Google Scholar 

  • Berger P, Schaffitzel C, Berger I, Ban N, Suter U (2003) Membrane association of myotubularin-related protein 2 is mediated by a pleckstrin homology-GRAM domain and a coiled-coil dimerization module. Proc Natl Acad Sci U S A 100:12177–12182

    PubMed  CAS  Google Scholar 

  • Berger P, Niemann A, Suter U (2006a) Schwann cells and the pathogenesis of inherited motor and sensory neuropathies (Charcot-Marie-Tooth disease). Glia 54:243–257

    PubMed  Google Scholar 

  • Berger P, Berger I, Schaffitzel C, Tersar K, Volkmer B, Suter U (2006b) Multi-level regulation of myotubularin-related protein-2 phosphatase activity by myotubularin-related protein-13/set-binding factor-2. Hum Mol Genet 15:569–579

    PubMed  CAS  Google Scholar 

  • Bitoun M, Maugenre S, Jeannet PY, Lacene E, Ferrer X, Laforet P, Martin JJ, Laporte J, Lochmuller H, Beggs AH, Fardeau M, Eymard B, Romero NB, Guicheney P (2005) Mutations in dynamin 2 cause dominant centronuclear myopathy. Nat Genet 37:1207–1209

    PubMed  CAS  Google Scholar 

  • Bitoun M, Bevilacqua JA, Prudhon B, Maugenre S, Taratuto AL, Monges S, Lubieniecki F, Cances C, Uro-Coste E, Mayer M, Fardeau M, Romero NB, Guicheney P (2007) Dynamin 2 mutations cause sporadic centronuclear myopathy with neonatal onset. Ann Neurold 62:666–670

    CAS  Google Scholar 

  • Bitoun M, Durieux AC, Prudhon B, Bevilacqua JA, Herledan A, Sakanyan V, Urtizberea A, Cartier L, Romero NB, Guicheney P (2009) Dynamin 2 mutations associated with human diseases impair clathrin-mediated receptor endocytosis. Hum Mutat 30:1419–1427

    PubMed  CAS  Google Scholar 

  • Blondeau F, Laporte J, Bodin S, Superti-Furga G, Payrastre B, Mandel JL (2000) Myotubularin, a phosphatase deficient in myotubular myopathy, acts on phosphatidylinositol 3-kinase and phosphatidylinositol 3-phosphate pathway. Hum Mol Genet 9:2223–2229

    PubMed  CAS  Google Scholar 

  • Bolino A, Muglia M, Conforti FL, LeGuern E, Salih MA, Georgiou DM, Christodoulou K, Hausmanowa-Petrusewicz I, Mandich P, Schenone A, Gambardella A, Bono F, Quattrone A, Devoto M, Monaco AP (2000) Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2. Nat Genet 25:17–19

    PubMed  CAS  Google Scholar 

  • Bolino A, Bolis A, Previtali SC, Dina G, Bussini S, Dati G, Amadio S, Del Carro U, Mruk DD, Feltri ML, Cheng CY, Quattrini A, Wrabetz L (2004) Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J Cell Biol 167:711–721

    PubMed  CAS  Google Scholar 

  • Bolis A, Coviello S, Bussini S, Dina G, Pardini C, Previtali SC, Malaguti M, Morana P, Del Carro U, Feltri ML, Quattrini A, Wrabetz L, Bolino A (2005) Loss of Mtmr2 phosphatase in Schwann cells but not in motor neurons causes Charcot-Marie-Tooth type 4B1 neuropathy with myelin outfoldings. J Neurosci 25:8567–8577

    PubMed  CAS  Google Scholar 

  • Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A, Chishti AH, Hanada T, Quattrini A, Previtali SC, Biffi A, Bolino A (2009) Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J Neurosci 29:8858–8870

    PubMed  CAS  Google Scholar 

  • Bonneick S, Boentert M, Berger P, Atanasoski S, Mantei N, Wessig C, Toyka KV, Young P, Suter U (2005) An animal model for Charcot-Marie-Tooth disease type 4B1. Hum Mol Genet 14:3685–3695

    PubMed  CAS  Google Scholar 

  • Buj-Bello A, Laugel V, Messaddeq N, Zahreddine H, Laporte J, Pellissier JF, Mandel JL (2002) The lipid phosphatase myotubularin is essential for skeletal muscle maintenance but not for myogenesis in mice. Proc Natl Acad Sci U S A 99:15060–15065

    PubMed  CAS  Google Scholar 

  • Buj-Bello A, Fougerousse F, Schwab Y, Messaddeq N, Spehner D, Pierson CR, Durand M, Kretz C, Danos O, Douar AM, Beggs AH, Schultz P, Montus M, Denefle P, Mandel JL (2008) AAV-mediated intramuscular delivery of myotubularin corrects the myotubular myopathy phenotype in targeted murine muscle and suggests a function in plasma membrane homeostasis. Hum Mol Genet 17:2132–2143

    PubMed  CAS  Google Scholar 

  • Caldwell KK, Lips DL, Bansal VS, Majerus PW (1991) Isolation and characterization of two 3-phosphatases that hydrolyze both phosphatidylinositol 3-phosphate and inositol 1,3-bisphosphate. J Biol Chem 266:18378–18386

    PubMed  CAS  Google Scholar 

  • Cao C, Laporte J, Backer JM, Wandinger-Ness A, Stein MP (2007) Myotubularin lipid phosphatase binds the hVPS15/hVPS34 lipid kinase complex on endosomes. Traffic 8:1052–1067

    PubMed  CAS  Google Scholar 

  • Cao C, Backer JM, Laporte J, Bedrick EJ, Wandinger-Ness A (2008) Sequential actions of myotubularin lipid phosphatases regulate endosomal PI(3)P and growth factor receptor trafficking. Mol Biol Cell 19:3334–3346

    PubMed  CAS  Google Scholar 

  • Chaussade C, Pirola L, Bonnafous S, Blondeau F, Brenz-Verca S, Tronchère H, Portis F, Rusconi S, Payrastre B, Laporte J, Van Obberghen E (2003) Expression of myotubularin by a novel adenoviral vector demonstrates its function as a PtdIns(3)P phosphatase in muscle cell lines. Involvement of PtdIns(3)P in insulin-stimulated glucose transport. Mol Endocrinol 17:2448–2460

    PubMed  CAS  Google Scholar 

  • Choudhury P, Srivastava S, Li Z, Ko K, Albaqumi M, Narayan K, Coetzee WA, Lemmon MA, Skolnik EY (2006) Specificity of the myotubularin family of phosphatidylinositol-3-phosphatase is determined by the PH/GRAM domain. J Biol Chem 281:31762–31769

    PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    PubMed  CAS  Google Scholar 

  • Claeys KG, Maisonobe T, Bohm J, Laporte J, Hezode M, Romero NB, Brochier G, Bitoun M, Carlier RY, Stojkovic T (2010) Phenotype of a patient with recessive centronuclear myopathy and a novel BIN1 mutation. Neurology 74:519–521

    PubMed  CAS  Google Scholar 

  • Clarke JH, Letcher AJ, D'Santos CS, Halstead JR, Irvine RF, Divecha N (2001) Inositol lipids are regulated during cell cycle progression in the nuclei of murine erythroleukaemia cells. Biochem J 357:905–910

    Google Scholar 

  • Coronas S, Ramel D, Pendaries C, Gaits-Iacovoni F, Tronchere H, Payrastre B (2007) PtdIns5P: a little phosphoinositide with big functions? Biochem Soc Symp 74:117–128

    Google Scholar 

  • Dang H, Li Z, Skolnik EY, Fares H (2004) Disease-related myotubularins function in endocytic traffic in caenorhabditis elegans. Mol Biol Cell 15:189–196

    PubMed  CAS  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657

    PubMed  Google Scholar 

  • Doerks T, Strauss M, Brendel M, Bork P (2000) GRAM, a novel domain in glucosyltransferases, myotubularins and other putative membrane-associated proteins. Trends Biochem Sci 25:483–485

    PubMed  CAS  Google Scholar 

  • Dorchies OM, Laporte J, Wagner S, Hindelang C, Warter JM, Mandel JL, Poindron P (2001) Normal innervation and differentiation of X-linked myotubular myopathy muscle cells in a nerve-muscle coculture system. Neuromuscul Disord 11:736–746

    PubMed  CAS  Google Scholar 

  • Dowling JJ, Vreede AP, Low SE, Gibbs EM, Kuwada JY, Bonnemann CG, Feldman EL (2009) Loss of myotubularin function results in T-tubule disorganization in zebrafish and human myotubular myopathy. PLoS Genet 5:e1000372

    PubMed  Google Scholar 

  • Dowling JJ, Low SE, Busta AS, Feldman EL (2010) Zebrafish MTMR14 is required for excitation-contraction coupling, developmental motor function and the regulation of autophagy. Hum Mol Genet 19:2668–2681

    PubMed  CAS  Google Scholar 

  • Dubourg O, Azzedine H, Verny C, Durosier G, Birouk N, Gouider R, Salih M, Bouhouche A, Thiam A, Grid D, Mayer M, Ruberg M, Tazir M, Brice A, LeGuern E (2006) Autosomal-recessive forms of demyelinating Charcot-Marie-Tooth disease. NeuroMol Med 8:75–86

    CAS  Google Scholar 

  • Fauman EB, Saper MA (1996) Structure and function of the protein tyrosine phosphatases. Trends Biochem Sci 21:413–417

    Google Scholar 

  • Fidzianska A, Warlo I, Goebel HH (1994) Neonatal centronuclear myopathy with N-CAM decorated myotubes. Neuropediatrics 25:158–161

    PubMed  CAS  Google Scholar 

  • Franklin NE, Taylor GS, Vacratsis PO (2011) Endosomal targeting of the phosphoinositide 3-phosphatase MTMR2 is regulated by an N-terminal phosphorylation site. J Biol Chem 286:15841–15853

    PubMed  CAS  Google Scholar 

  • Gambardella A, Muglia M, Quattrone A (1997) Hereditary demyelinating neuropathy of infancy: a genetically complex syndrome. Brain: J Neurol 120(Pt 11):2113–2115

    Google Scholar 

  • Gary JD, Sato TK, Stefan CJ, Bonangelino CJ, Weisman LS, Emr SD (2002) Regulation of Fab1 phosphatidylinositol 3-phosphate 5-kinase pathway by Vac7 protein and Fig4, a polyphosphoinositide phosphatase family member. Mol Biol Cell 13:1238–1251

    PubMed  CAS  Google Scholar 

  • Gillooly DJ, Morrow IC, Lindsay M, Gould R, Bryant NJ, Gaullier JM, Parton RG, Stenmark H (2000) Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 19:4577–4588

    PubMed  CAS  Google Scholar 

  • Gozani O, Karuman P, Jones DR, Ivanov D, Cha J, Lugovskoy AA, Baird CL, Zhu H, Field SJ, Lessnick SL, Villasenor J, Mehrotra B, Chen J, Rao VR, Brugge JS, Ferguson CG, Payrastre B, Myszka DG, Cantley LC, Wagner G, Divecha N, Prestwich GD, Yuan J (2003) The PHD finger of the chromatin-associated protein ING2 functions as a nuclear phosphoinositide receptor. Cell 114:99–111

    PubMed  CAS  Google Scholar 

  • Gozani O, Field SJ, Ferguson CG, Mahlke C, Cantley LC, Prestwich GD, Yuan J (2005) Modification of protein sub-nuclear localization by synthetic phosphoinositides: evidence for nuclear phosphoinositide signaling mechanisms. Adv Enzyme Reg. 45:171–185

    CAS  Google Scholar 

  • Grainger DL, Tavelis C, Ryan AJ, Hinchliffe KA (2011) Involvement of phosphatidylinositol 5-phosphate in insulin-stimulated glucose uptake in the L6 myotube model of skeletal muscle. Pflugers Arch 462:723–732

    PubMed  CAS  Google Scholar 

  • Guan KL, Broyles SS, Dixon JE (1991) A Tyr/Ser protein phosphatase encoded by vaccinia virus. Nature 350:359–362

    Google Scholar 

  • Herman GE, Finegold M, Zhao W, de Gouyon B, Metzenberg A (1999) Medical complications in long-term survivors with X-linked myotubular myopathy. J Pediatr 134:206–214

    PubMed  CAS  Google Scholar 

  • Herrmann H, Strelkov SV, Burkhard P, Aebi U (2009) Intermediate filaments: primary determinants of cell architecture and plasticity. J Clin Invest 119:1772–1783

    PubMed  CAS  Google Scholar 

  • Hnia K, Kretz C, Amoasii L, Boehm J, Liu X, Messaddeq N, Qu C, Laporte J, (2011a) Primary T-tubule and autophagy defects in the phosphoinositide phosphatase jumpy/MTMR14 knockout mice muscle. Adv Enzyme Regul (in press)

    Google Scholar 

  • Hnia K, Tronchere H, Tomczak KK, Amoasii L, Schultz P, Beggs AH, Payrastre B, Mandel JL, Laporte J (2011b) Myotubularin controls desmin intermediate filament architecture and mitochondrial dynamics in human and mouse skeletal muscle. J Clin Invest 121:70–85

    PubMed  CAS  Google Scholar 

  • Hotta K, Kitamoto T, Kitamoto A, Mizusawa S, Matsuo T, Nakata Y, Kamohara S, Miyatake N, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Yoneda M, Nakajima A, Funahashi T, Miyazaki S, Tokunaga K, Masuzaki H, Ueno T, Hamaguchi K, Tanaka K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Sakata T, Matsuzawa Y, Nakao K, Sekine A (2011) Association of variations in the FTO, SCG3 and MTMR9 genes with metabolic syndrome in a Japanese population. J Hum Genet 56:647–651

    PubMed  CAS  Google Scholar 

  • Hu Z, Wu C, Shi Y, Guo H, Zhao X, Yin Z, Yang L, Dai J, Hu L, Tan W, Li Z, Deng Q, Wang J, Wu W, Jin G, Jiang Y, Yu D, Zhou G, Chen H, Guan P, Chen Y, Shu Y, Xu L, Liu X, Liu L, Xu P, Han B, Bai C, Zhao Y, Zhang H, Yan Y, Ma H, Chen J, Chu M, Lu F, Zhang Z, Chen F, Wang X, Jin L, Lu J, Zhou B, Lu D, Wu T, Lin D, Shen H (2011) A genome-wide association study identifies two new lung cancer susceptibility loci at 13q12.12 and 22q12.2 in Han Chinese. Nat Genet 43:792–796

    PubMed  CAS  Google Scholar 

  • Itoh T, Takenawa T (2002) Phosphoinositide-binding domains: Functional units for temporal and spatial regulation of intracellular signalling. Cell Signal 14:733–743

    PubMed  CAS  Google Scholar 

  • Jungbluth H, Wallgren-Pettersson C, Laporte J (2008) Centronuclear (myotubular) myopathy. Orphanet J Rare Dis 3:26

    PubMed  Google Scholar 

  • Kim SA, Vacratsis PO, Firestein R, Cleary ML, Dixon JE (2003) Regulation of myotubularin-related (MTMR)2 phosphatidylinositol phosphatase by MTMR5, a catalytically inactive phosphatase. Proc Natl Acad Sci U S A 100:4492–4497

    PubMed  CAS  Google Scholar 

  • Laporte J, Hu LJ, Kretz C, Mandel JL, Kioschis P, Coy JF, Klauck SM, Poustka A, Dahl N (1996) A gene mutated in X-linked myotubular myopathy defines a new putative tyrosine phosphatase family conserved in yeast. Nat Genet 13:175–182

    PubMed  CAS  Google Scholar 

  • Laporte J, Blondeau F, Buj-Bello A, Tentler D, Kretz C, Dahl N, Mandel JL (1998) Characterization of the myotubularin dual specificity phosphatase gene family from yeast to human. Hum Mol Genet 7:1703–1712

    PubMed  CAS  Google Scholar 

  • Laporte J, Biancalana V, Tanner SM, Kress W, Schneider V, Wallgren-Pettersson C, Herger F, Buj-Bello A, Blondeau F, Liechti-Gallati S, Mandel JL (2000) MTM1 mutations in X-linked myotubular myopathy. Hum Mutat 15:393–409

    PubMed  CAS  Google Scholar 

  • Laporte J, Blondeau F, Buj-Bello A, Mandel JL (2001) The myotubularin family: from genetic disease to phosphoinositide metabolism. Trends Genet 17:221–228

    PubMed  CAS  Google Scholar 

  • Laporte J, Blondeau F, Gansmuller A, Lutz Y, Vonesch JL, Mandel JL (2002) The PtdIns3P phosphatase myotubularin is a cytoplasmic protein that also localizes to Rac1-inducible plasma membrane ruffles. J Cell Sci 115:3105–3117

    PubMed  CAS  Google Scholar 

  • Lecompte O, Poch O, Laporte J (2008) PtdIns5P regulation through evolution: roles in membrane trafficking? Trends Biochem Sci 33:453–460

    PubMed  CAS  Google Scholar 

  • Lee HW, Kim Y, Han K, Kim H, Kim E (2010) The phosphoinositide 3-phosphatase MTMR2 interacts with PSD-95 and maintains excitatory synapses by modulating endosomal traffic. J Neurosci 30:5508–5518

    PubMed  CAS  Google Scholar 

  • Liaw D, Marsh DJ, Li J, Dahia PL, Wang SI, Zheng Z, Bose S, Call KM, Tsou HC, Peacocke M, Eng C, Parsons R (1997) Germline mutations of the PTEN gene in Cowden disease, an inherited breast and thyroid cancer syndrome. Nat Genet 16:64–67

    Google Scholar 

  • Liem RK, Messing A (2009) Dysfunctions of neuronal and glial intermediate filaments in disease. J Clin Investig 119:1814–1824

    PubMed  CAS  Google Scholar 

  • Liu T, Ghosal G, Yuan J, Chen J, Huang J (2010) FAN1 acts with FANCI-FANCD2 to promote DNA interstrand cross-link repair. Science 329:693–696

    PubMed  CAS  Google Scholar 

  • Lorenzo O, Urbe S, Clague MJ (2005) Analysis of phosphoinositide binding domain properties within the myotubularin-related protein MTMR3. J Cell Sci 118:2005–2012

    PubMed  CAS  Google Scholar 

  • Lucci MA, Orlandi R, Triulzi T, Tagliabue E, Balsari A, Villa-Moruzzi E (2010) Expression profile of tyrosine phosphatases in HER2 breast cancer cells and tumors. Cellular Oncology: Official J Int Soc Cell Oncol 32:361–372

    CAS  Google Scholar 

  • Maehama T, Dixon JE (1998) The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 273:13375–13378

    PubMed  CAS  Google Scholar 

  • Martin TF (1998) Phosphoinositide lipids as signaling molecules: common themes for signal transduction, cytoskeletal regulation, and membrane trafficking. Annu Rev Cell Dev Biol 14:231–264

    PubMed  CAS  Google Scholar 

  • Michell RH, Heath VL, Lemmon MA, Dove SK (2006) Phosphatidylinositol 3,5-bisphosphate: metabolism and cellular functions. Trends Biochem Sci 31:52–63

    PubMed  CAS  Google Scholar 

  • Misra AK, Menon NK, Mishra SK (1992) Abnormal distribution of desmin and vimentin in myofibers in adult onset myotubular myopathy. Muscle Nerve 15:1246–1252

    PubMed  CAS  Google Scholar 

  • Mochizuki Y, Majerus PW (2003) Characterization of myotubularin-related protein 7 and its binding partner, myotubularin-related protein 9. Proc Natl Acad Sci U S A 100:9768–9773

    PubMed  CAS  Google Scholar 

  • Morris JB, Hinchliffe KA, Ciruela A, Letcher AJ, Irvine RF (2000) Thrombin stimulation of platelets causes an increase in phosphatidylinositol 5-phosphate revealed by mass assay. FEBS Lett 475:57–60

    PubMed  CAS  Google Scholar 

  • Murray JT, Panaretou C, Stenmark H, Miaczynska M, Backer JM (2002) Role of Rab5 in the recruitment of hVps34/p150 to the early endosome. Traffic 3:416–427

    PubMed  CAS  Google Scholar 

  • Nandurkar HH, Caldwell KK, Whisstock JC, Layton MJ, Gaudet EA, Norris FA, Majerus PW, Mitchell CA (2001) Characterization of an adapter subunit to a phosphatidylinositol (3)P 3-phosphatase: identification of a myotubularin-related protein lacking catalytic activity. Proc Natl Acad Sci U S A 98:9499–9504

    PubMed  CAS  Google Scholar 

  • Nandurkar HH, Layton M, Laporte J, Selan C, Corcoran L, Caldwell KK, Mochizuka Y, Majerus PW, Mitchell CA (2003) Identification of myotubularin as the lipid phosphatase catalytic subunit associated with the 3-phosphatase adapter protein, 3-PAP. Proc Natl Acad Sci U S A 100:8660–8665

    PubMed  CAS  Google Scholar 

  • Nelen MR, van Staveren WC, Peeters EA, Hassel MB, Gorlin RJ, Hamm H, Lindboe CF, Fryns JP, Sijmons RH, Woods DG, Mariman EC, Padberg GW, Kremer H (1997) Germline mutations in the PTEN/MMAC1 gene in patients with Cowden disease. Hum Mol Genet 6:1383–1387

    Google Scholar 

  • Nicot AS, Toussaint A, Tosch V, Kretz C, Wallgren-Pettersson C, Iwarsson E, Kingston H, Garnier JM, Biancalana V, Oldfors A, Mandel JL, Laporte J (2007) Mutations in amphiphysin 2 (BIN1) disrupt interaction with dynamin 2 and cause autosomal recessive centronuclear myopathy. Nat Genet 39:1134–1139

    PubMed  CAS  Google Scholar 

  • Noguchi S, Fujita M, Murayama K, Kurokawa R, Nishino I (2005) Gene expression analyses in X-linked myotubular myopathy. Neurology 65:732–737

    PubMed  CAS  Google Scholar 

  • Norris FA, Atkins RC, Majerus PW (1997) The cDNA cloning and characterization of inositol polyphosphate 4-phosphatase type II. Evidence for conserved alternative splicing in the 4-phosphatase family. J Biol Chem 272:23859–23864

    PubMed  CAS  Google Scholar 

  • Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212

    PubMed  CAS  Google Scholar 

  • Odorizzi G, Babst M, Emr SD (1998) Fab1p PtdIns(3)P 5-kinase function essential for protein sorting in the multivesicular body. Cell 95:847–858

    PubMed  CAS  Google Scholar 

  • Odorizzi G, Babst M, Emr SD (2000) Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 25:229–235

    PubMed  CAS  Google Scholar 

  • Patzko A, Shy ME (2011) Update on Charcot-Marie-Tooth disease. Curr Neurol Neurosci Rep 11:78–88

    PubMed  CAS  Google Scholar 

  • Payrastre B (2004) Phosphoinositides: lipid kinases and phosphatases. Methods Mol Biol 273:201–212

    PubMed  CAS  Google Scholar 

  • Pizarro-Cerda J, Cossart P (2004) Subversion of phosphoinositide metabolism by intracellular bacterial pathogens. Nat Cell Biol 6:1026–1033

    PubMed  CAS  Google Scholar 

  • Previtali SC, Zerega B, Sherman DL, Brophy PJ, Dina G, King RHM, Salih MM, Feltri L, Quattrini A, Ravazzolo R, Wrabetz L, Monaco AP, Bolino A (2003) Myotubularin-related 2 protein phosphatase and neurofilament light chain protein, both mutated in CMT neuropathies, interact in peripheral nerve. Hum Mol Genet 12:1713–1723

    PubMed  CAS  Google Scholar 

  • Ramel D, Lagarrigue F, Pons V, Mounier J, Dupuis-Coronas S, Chicanne G, Sansonetti PJ, Gaits-Iacovoni F, Tronchere H, Payrastre B (2011) Shigella flexneri infection generates the lipid PI5P to alter endocytosis and prevent termination of EGFR signaling. Sci Signal 4:ra61

    Google Scholar 

  • Ribeiro I, Yuan L, Tanentzapf G, Dowling JJ, Kiger A (2011) Phosphoinositide regulation of integrin trafficking required for muscle attachment and maintenance. PLoS Genet 7:e1001295

    PubMed  CAS  Google Scholar 

  • Ringel SP, Wilson WB, Barden MT (1979) Extraocular muscle biopsy in chronic progressive external ophthalmoplegia. Ann Neurol 6:326–339

    PubMed  CAS  Google Scholar 

  • Robinson FL, Dixon JE (2005) The phosphoinositide-3-phosphatase MTMR2 associates with MTMR13, a membrane-associated pseudophosphatase also mutated in type 4B Charcot-Marie-Tooth disease. J Biol Chem 280:31699–31707

    PubMed  CAS  Google Scholar 

  • Robinson FL, Dixon JE (2006) Myotubularin phosphatases: policing 3-phosphoinositides. Trends Cell Biol 16:403–412

    PubMed  CAS  Google Scholar 

  • Robinson FL, Niesman IR, Beiswenger KK, Dixon JE (2008) Loss of the inactive myotubularin-related phosphatase Mtmr13 leads to a Charcot-Marie-Tooth 4B2-like peripheral neuropathy in mice. Proc Natl Acad Sci U S A 105:4916–4921

    PubMed  CAS  Google Scholar 

  • Romero NB (2010) Centronuclear myopathies: a widening concept. Neuromuscul Disord 20:223–228

    PubMed  Google Scholar 

  • Sbrissa D, Ikonomov O, Shisheva A (2001) Selective insulin-induced activation of class I(A) phosphoinositide 3-kinase in PIKfyve immune complexes from 3T3-L1 adipocytes. Mol Cell Endocrinol 181:35–46

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Deeb R, Shisheva A (2002) Phosphatidylinositol 5-phosphate biosynthesis is linked to PIKfyve and is involved in osmotic response pathway in mammalian cells. J Biol Chem 277:47276–47284

    PubMed  CAS  Google Scholar 

  • Schaletzky J, Dove SK, Short B, Lorenzo O, Clague MJ, Barr FA (2003) Phosphatidylinositol-5-phosphate activation and conserved substrate specificity of the myotubularin phosphatidylinositol 3-phosphatases. Curr Biol 13:504–509

    PubMed  CAS  Google Scholar 

  • Senderek J, Bergmann C, Weber S, Ketelsen UP, Schorle H, Rudnik-Schoneborn S, Buttner R, Buchheim E, Zerres K (2003) Mutation of the SBF2 gene, encoding a novel member of the myotubularin family, in Charcot-Marie-Tooth neuropathy type 4B2/11p15. Hum Mol Genet 12:349–356

    PubMed  CAS  Google Scholar 

  • Shen J, Yu WM, Brotto M, Scherman JA, Guo C, Stoddard C, Nosek TM, Valdivia HH, Qu CK (2009) Deficiency of MIP/MTMR14 phosphatase induces a muscle disorder by disrupting Ca(2 +) homeostasis. Nat Cell Biol 11:769–776

    PubMed  CAS  Google Scholar 

  • Simonsen A, Lippe R, Christoforidis S, Gaullier JM, Brech A, Callaghan J, Toh BH, Murphy C, Zerial M, Stenmark H (1998) EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:494–498

    PubMed  CAS  Google Scholar 

  • Song SY, Kang MR, Yoo NJ, Lee SH (2010) Mutational analysis of mononucleotide repeats in dual specificity tyrosine phosphatase genes in gastric and colon carcinomas with microsatellite instability. APMIS: Acta Pathologica, Microbiologica, et Immunologica Scandinavica 118:389–393

    PubMed  CAS  Google Scholar 

  • Stiles B, Wang Y, Stahl A, Bassilian S, Lee WP, Kim YJ, Sherwin R, Devaskar S, Lesche R, Magnuson MA, Wu H (2004) Liver-specific deletion of negative regulator PTEN results in fatty liver and insulin hypersensitivity. Proc Natl Acad Sci USA 101:2082–2087

    Google Scholar 

  • Suzuki N, Tsumoto K, Hajicek N, Daigo K, Tokita R, Minami S, Kodama T, Hamakubo T, Kozasa T (2009) Activation of leukemia-associated RhoGEF by Galpha13 with significant conformational rearrangements in the interface. J Biol Chem 284:5000–5009

    Google Scholar 

  • Szaro BG, Strong MJ (2010) Post-transcriptional control of neurofilaments: New roles in development, regeneration and neurodegenerative disease. Trends Neurosci 33:27–37

    PubMed  CAS  Google Scholar 

  • Taguchi-Atarashi N, Hamasaki M, Matsunaga K, Omori H, Ktistakis NT, Yoshimori T, Noda T (2010) Modulation of local PtdIns3P levels by the PI phosphatase MTMR3 regulates constitutive autophagy. Traffic 11:468–478

    PubMed  CAS  Google Scholar 

  • Taylor GS, Maehama T, Dixon JE (2000a) Inaugural article: myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Natl Acad Sci U S A 97:8910–8915

    PubMed  CAS  Google Scholar 

  • Taylor GS, Maehama T, Dixon JE (2000b) Myotubularin, a protein tyrosine phosphatase mutated in myotubular myopathy, dephosphorylates the lipid second messenger, phosphatidylinositol 3-phosphate. Proc Nat Acad Sci U S A 97:8910–8915

    CAS  Google Scholar 

  • Tersar K, Boentert M, Berger P, Bonneick S, Wessig C, Toyka KV, Young P, Suter U (2007) Mtmr13/Sbf2-deficient mice: an animal model for CMT4B2. Hum Mol Genet 16:2991–3001

    PubMed  CAS  Google Scholar 

  • Tosch V, Rohde HM, Tronchere H, Zanoteli E, Monroy N, Kretz C, Dondaine N, Payrastre B, Mandel JL, Laporte J (2006) A novel PtdIns3P and PtdIns(3,5)P2 phosphatase with an inactivating variant in centronuclear myopathy. Hum Mol Genet 15:3098–3106

    PubMed  CAS  Google Scholar 

  • Toussaint A, Cowling BS, Hnia K, Mohr M, Oldfors A, Schwab Y, Yis U, Maisonobe T, Stojkovic T, Wallgren-Pettersson C, Laugel V, Echaniz-Laguna A, Mandel JL, Nishino I, Laporte J (2011) Defects in amphiphysin 2 (BIN1) and triads in several forms of centronuclear myopathies. Acta Neuropathol 121:253–266

    PubMed  Google Scholar 

  • Tronchere H, Laporte J, Pendaries C, Chaussade C, Liaubet L, Pirola L, Mandel J-L, Payrastre B (2004) Production of phosphatidylinositol 5-phosphate by the phosphoinositide 3-phosphatase myotubularin in mammalian cells. J Biol Chem 279:7304–7312

    PubMed  CAS  Google Scholar 

  • Tsujita K, Itoh T, Ijuin T, Yamamoto A, Shisheva A, Laporte J, Takenawa T (2004) Myotubularin regulates the function of late endosome through the GRAM domain-PtdIns(3,5)P2 interaction. J Biol Chem 279:13817–13824

    PubMed  CAS  Google Scholar 

  • Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, Galyov EE, Wilson M, Majerus PW (2005) The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A 102:18854–18859

    PubMed  CAS  Google Scholar 

  • Vaccari I, Dina G, Tronchere H, Kaufman E, Chicanne G, Cerri F, Wrabetz L, Payrastre B, Quattrini A, Weisman LS, Meisler MH, Bolino A (2011) Genetic interaction between MTMR2 and FIG4 phospholipid phosphatases involved in Charcot-Marie-Tooth neuropathies. PLoS Genet 7:e1002319

    PubMed  CAS  Google Scholar 

  • Van der Ven PF, Jap PH, Barth PG, Sengers RC, Ramaekers FC, Stadhouders AM (1995a) Abnormal expression of intermediate filament proteins in X-linked myotubular myopathy is not reproduced in vitro. Neuromuscul Disord 5:267–275

    PubMed  Google Scholar 

  • Van der Ven PF, Jap PH, ter Laak HJ, Nonaka I, Barth PG, Sengers RC, Stadhouders AM, Ramaekers FC (1995b) Immunophenotyping of congenital myopathies: disorganization of sarcomeric, cytoskeletal and extracellular matrix proteins. J Neurol Sci 129:199–213

    PubMed  Google Scholar 

  • Velichkova M, Juan J, Kadandale P, Jean S, Ribeiro I, Raman V, Stefan C, Kiger AA (2010) Drosophila Mtm and class II PI3 K coregulate a PI(3)P pool with cortical and endolysosomal functions. J Cell Biol 190:407–425

    PubMed  CAS  Google Scholar 

  • Vergne I, Roberts E, Elmaoued RA, Tosch V, Delgado MA, Proikas-Cezanne T, Laporte J, Deretic V (2009) Control of autophagy initiation by phosphoinositide 3-phosphatase jumpy. EMBO J 28:2244–2258

    PubMed  CAS  Google Scholar 

  • Wang Y, Li Q, Xu J, Liu Q, Wang W, Lin Y, Ma F, Chen T, Li S, Shen Y (2004) Mutation analysis of five candidate genes in Chinese patients with hypospadias. Eur J Hum Genet 12:706–712

    PubMed  CAS  Google Scholar 

  • Yamaguchi S, Homma K, Natori S (1999) A novel egg-derived tyrosine phosphatase, EDTP, that participates in the embryogenesis of Sarcophaga peregrina (flesh fly). Eur J Biochem 259:946–953

    PubMed  CAS  Google Scholar 

  • Yanagiya T, Tanabe A, Iida A, Saito S, Sekine A, Takahashi A, Tsunoda T, Kamohara S, Nakata Y, Kotani K, Komatsu R, Itoh N, Mineo I, Wada J, Masuzaki H, Yoneda M, Nakajima A, Miyazaki S, Tokunaga K, Kawamoto M, Funahashi T, Hamaguchi K, Tanaka K, Yamada K, Hanafusa T, Oikawa S, Yoshimatsu H, Nakao K, Sakata T, Matsuzawa Y, Kamatani N, Nakamura Y, Hotta K (2007) Association of single-nucleotide polymorphisms in MTMR9 gene with obesity. Hum Mol Genet 16:3017–3026

    PubMed  CAS  Google Scholar 

  • Yoshimura S, Gerondopoulos A, Linford A, Rigden DJ, Barr FA (2010) Family-wide characterization of the DENN domain Rab GDP-GTP exchange factors. J Cell Biol 191:367–381

    PubMed  CAS  Google Scholar 

  • Yu S, Manson J, White S, Bourne A, Waddy H, Davis M, Haan E (2003) X-linked myotubular myopathy in a family with three adult survivors. Clin Genet 64:148–152

    PubMed  CAS  Google Scholar 

  • Zappia M, Colao R, Montesanti R, Rizzo M, Aguglia U, Gambardella A, Oliveri RL, Quattrone A (1997) Long-duration response to levodopa influences the pharmacodynamics of short-duration response in Parkinson’s disease. Ann Neurol 42:245–248

    PubMed  CAS  Google Scholar 

  • Zhang X, Loijens JC, Boronenkov IV, Parker GJ, Norris FA, Chen J, Thum O, Prestwich GD, Majerus PW, Anderson RA (1997) Phosphatidylinositol-4-phosphate 5-kinase isozymes catalyze the synthesis of 3-phosphate-containing phosphatidylinositol signaling molecules. J Biol Chem 272:17756–17761

    PubMed  CAS  Google Scholar 

  • Zhao R, Qi Y, Chen J, Zhao ZJ (2001) FYVE-DSP2, a FYVE domain-containing dual specificity protein phosphatase that dephosphorylates phosphotidylinositol 3-phosphate. Exp Cell Res 265:329–338

    PubMed  CAS  Google Scholar 

  • Zou J, Chang SC, Marjanovic J, Majerus PW (2009) MTMR9 increases MTMR6 enzyme activity, stability, and role in apoptosis. J Biol Chem 284:2064–2071

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jocelyn Laporte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Amoasii, L., Hnia, K., Laporte, J. (2012). Myotubularin Phosphoinositide Phosphatases in Human Diseases. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_10

Download citation

Publish with us

Policies and ethics