Skip to main content

Inositol Polyphosphate Phosphatases in Human Disease

  • Chapter
  • First Online:
Phosphoinositides and Disease

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 362))

Abstract

Phosphoinositide signalling molecules interact with a plethora of effector proteins to regulate cell proliferation and survival, vesicular trafficking, metabolism, actin dynamics and many other cellular functions. The generation of specific phosphoinositide species is achieved by the activity of phosphoinositide kinases and phosphatases, which phosphorylate and dephosphorylate, respectively, the inositol headgroup of phosphoinositide molecules. The phosphoinositide phosphatases can be classified as 3-, 4- and 5-phosphatases based on their specificity for dephosphorylating phosphates from specific positions on the inositol head group. The SAC phosphatases show less specificity for the position of the phosphate on the inositol ring. The phosphoinositide phosphatases regulate PI3K/Akt signalling, insulin signalling, endocytosis, vesicle trafficking, cell migration, proliferation and apoptosis. Mouse knockout models of several of the phosphoinositide phosphatases have revealed significant physiological roles for these enzymes, including the regulation of embryonic development, fertility, neurological function, the immune system and insulin sensitivity. Importantly, several phosphoinositide phosphatases have been directly associated with a range of human diseases. Genetic mutations in the 5-phosphatase INPP5E are causative of the ciliopathy syndromes Joubert and MORM, and mutations in the 5-phosphatase OCRL result in Lowe’s syndrome and Dent 2 disease. Additionally, polymorphisms in the 5-phosphatase SHIP2 confer diabetes susceptibility in specific populations, whereas reduced protein expression of SHIP1 is reported in several human leukaemias. The 4-phosphatase, INPP4B, has recently been identified as a tumour suppressor in human breast and prostate cancer. Mutations in one SAC phosphatase, SAC3/FIG4, results in the degenerative neuropathy, Charcot-Marie-Tooth disease. Indeed, an understanding of the precise functions of phosphoinositide phosphatases is not only important in the context of normal human physiology, but to reveal the mechanisms by which these enzyme families are implicated in an increasing repertoire of human diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAM:

A disintegrin and a metalloprotease

ALL:

Acute lymphoblastic leukaemia

AML:

Acute myeloid leukaemia

AP:

Adaptor protein

APPL1:

Adaptor protein containing Pleckstrin homology domain, PTB domain and Leucine Zipper motif 1

AR:

Androgen receptor

ARF-GAP:

ADP-ribosylation factor GTPase activating protein

ARF-GEF:

ADP-ribosylation factor Guanine nucleotide-exchange factor

ASH:

Abnormal spindle-like microcephaly-associated protein/spindle pole body/hydrin

ASPM:

Abnormal spindle-like microcephaly-associated protein

ATLL:

Adult T cell leukaemia/lymphoma

AVP:

Arginine vasopressin

BAFF:

B cell activating factor belonging to the TNF family

BCR:

B cell receptor

BMM:

Bone marrow macrophage

BMMC:

Bone marrow mast cell

Btk:

Bruton’s tyrosine kinase

C. elegans :

Caenorhabditis elegans

C/EBPβ:

CCAAT enhancer-binding protein β

CAP:

Cbl interacting protein

CD2AP:

CD2-associated protein

Cdk5:

Cyclin-dependent kinase 5

CD-MPR:

Cation-dependent mannose-6-phosphate receptor

CI-MPR:

Cation-independent mannose-6-phosphate receptor

CK5/6:

Cytokeratin 5/6

CLL:

Chronic lymphocytic leukaemia

CML:

Chronic myeloid leukaemia

CMT:

Charcot-Marie-Tooth

CRMP2:

Collapsin response mediator protein 2

DAP12:

DNAX-activating protein of 12 kD

DC:

Dendritic cell

DS:

Down’s syndrome

EGFR:

Epidermal growth factor receptor

Epo:

Erythropoietin

ER:

Endoplasmic reticulum

ER:

Oestrogen receptor

ER :

Oestrogen receptor negative

ER+ :

Oestrogen receptor positive

ERGIC:

Endoplasmic reticulum-to-Golgi intermediate compartment

F. tularensis :

Francisella tularensis

F-MuLV:

Friend murine leukaemia virus

FYVE:

Fab1, YOTB, Vac1, EEA1

G6Pase:

Glucose-6-phosphatase

GAP:

GTPase activating protein

G-CSF:

Granulocyte colony-stimulating factor

GIPC:

GAIP-interacting protein C terminus

GK:

Goto Kakizaki

GSK3β:

Glycogen synthase kinase-3 β

HDAC2:

Histone deacetylase 2

HER-2:

v-erb-b2 erythroblastic leukaemia viral oncogene homologue 2

IGF-1:

Insulin-like growth factor

INPP4A:

Inositol polyphosphate 4-phosphatase type I

INPP4B:

Inositol polyphosphate 4-phosphatase type II

INPP5A:

Inositol polyphosphate 5-phosphatase type I

INPP5B:

Inositol polyphosphate 5-phosphatase type II

INPP5E:

Inositol polyphosphate 5-phosphatase type IV

Ins(1,2,3,4,5)P5 :

Inositol 1,2,3,4,5-pentakisphosphate

Ins(1,3,4)P3 :

Inositol 1,3,4-trisphosphate

Ins(1,3,4,5)P4 :

Inositol 1,3,4,5-tetrakisphosphate

Ins(1,4)P2 :

Inositol 1,4-bisphosphate

Ins(1,4,5)P3 :

Inositol 1,4,5-trisphosphate

Ins(1,4,5,6)P4 :

Inositol 1,4,5,6-tetrakisphosphate

Ins(3,4)P2 :

Inositol 3,4-bisphosphate

IRS:

Insulin receptor substrate

ITIM:

Immunoreceptor tyrosine-based inhibitory motif

LAT:

Linker for activation of T cells

M-CSF:

Monocyte colony-stimulating factor

MDS:

Miller–Dieker syndrome

MEFs:

Mouse embryonic fibroblasts

miR-155:

MicroRNA-155

MNB/DYRK1A:

Dual-specific tyrosine phosphorylation-regulated kinase 1A

NCA:

Na+/Ca2+ antiporter

NCoR:

Nuclear corepressor

NF-κB:

Nuclear factor-κB

NPF:

Asparagine-proline-phenylalanine

NTAL:

Non-T cell activation linker

OCRL:

Oculocerebrorenal syndrome of Lowe

PAS:

(PIKfyve–ArPIKfyve–Sac3)

PBMs:

Peripheral blood monocytes

PDGF:

Platelet-derived growth factor

PDK1:

Phosphoinositide-dependent kinase-1

PEPCK:

Phosphoenolpyruvate carboxykinase

PGN:

Peptidoglycan

PH:

Pleckstrin homology

PI:

Phosphoinositide

PI(3)P:

Phosphatidylinositol 3-phosphate

PI(3,4)P2 :

Phosphatidylinositol 3,4-bisphosphate

PI(3,4,5)P3 :

Phosphatidylinositol 3,4,5-trisphosphate

PI(3,5)P2 :

Phosphatidylinositol 3,5-bisphosphate

PI(4)P:

Phosphatidylinositol 4-phosphate

PI(4,5)P2 :

Phosphatidylinositol 4,5-bisphosphate

PI(5)P:

Phosphatidylinositol 5-phosphate

PI3K:

Phosphatidylinositol 3-kinase

PIPP:

Proline-rich inositol polyphosphate 5-phosphatase

PLCγ:

Phospholipase C γ

PLD:

Phospholipase D

PR:

Progesterone receptor

PTB:

Phosphotyrosine binding

PTEN:

Phosphatase and tensin homolog

RANKL:

Receptor activator of nuclear factor-κB ligand

Rho-GEFs:

Rho-Guanine nucleotide exchange factors

S. flexneri :

Shigella flexneri

SAC:

Supressor of actin

SCC:

Squamous cell carcinoma

SCF:

Stem cell factor

SCIPs:

SAC domain-containing inositol phosphatases

SCVs:

Salmonella containing vacuoles

SF:

Steel-factor

SHIP:

SH2-containing inositol phosphatase

SKIP:

Skeletal muscle and kidney inositol phosphatase

SNP:

Single nucleotide polymorphism

SODD/BAG4:

Silencer of death domain

SPD2:

Spindle pole body 2

SYNJ1:

Synaptojanin 1

SYNJ2:

Synaptojanin 2

T-ALL:

T cell acute lymphoblastic leukaemia

TGFβ:

Transforming growth factor β

TGN:

Trans-Golgi network

Tir:

Translocated intimin receptor

TIRFM:

Total internal reflection fluorescent microscopy

TLR-2:

Toll-like receptor-2

TMEM55A:

Transmembrane protein 55A

TMEM55B:

Transmembrane protein 55A

TREM2:

Triggering receptor expressed on myeloid cells-2

UTR:

Untranslated region

References

  • Adayev T, Chen-Hwang M-C, Murakami N, Wang R, Hwang Y-W (2006) MNB/DYRK1A phosphorylation regulates the interactions of synaptojanin 1 with endocytic accessory proteins. Biochem Biophys Res Commun 351:1060–1065

    PubMed  CAS  Google Scholar 

  • Addis M, Loi M, Lepiani C, Cau M, Melis MA (2004) OCRL mutation analysis in Italian patients with Lowe syndrome. Hum Mutat 23:524–525

    PubMed  Google Scholar 

  • Addis M, Meloni C, Congiu R, Santaniello S, Emma F, Zuffardi O, Ciccone R, Cao A, Melis MA, Cau M (2007) A novel interstitial deletion in Xq25, identified by array-CGH in a patient with Lowe syndrome. Eur J Med Genet 50:79–84

    PubMed  Google Scholar 

  • Agoulnik IU, Hodgson MC, Bowden WA, Ittmann MM (2011) INPP4B: the new kid on the PI3K block. Oncotarget 2:321–328

    PubMed  Google Scholar 

  • Agrawal A, Sinha A, Ahmad T, Aich J, Singh P, Sharma A, Ghosh B (2009) Maladaptation of critical cellular functions in asthma: bioinformatic analysis. Physiol Genomics 40:1–7

    PubMed  CAS  Google Scholar 

  • Ai J, Maturu A, Johnson W, Wang Y, Marsh CB, Tridandapani S (2006) The inositol phosphatase SHIP-2 down-regulates FcγR-mediated phagocytosis in murine macrophages independently of SHIP-1. Blood 107:813–820

    PubMed  CAS  Google Scholar 

  • Allaoui A, Menard R, Sansonetti PJ, Parsot C (1993) Characterization of the Shigella flexneri ipgD and ipgF genes, which are located in the proximal part of the mxi locus. Infect Immun 61:1707–1714

    PubMed  CAS  Google Scholar 

  • Antignano F, Ibaraki M, Kim C, Ruschmann J, Zhang A, Helgason CD, Krystal G (2010) SHIP is required for dendritic cell maturation. J Immunol 184:2805–2813

    PubMed  CAS  Google Scholar 

  • Aoki K, Nakamura T, Inoue T, Meyer T, Matsuda M (2007) An essential role for the SHIP2-dependent negative feedback loop in neuritogenesis of nerve growth factor-stimulated PC12 cells. J Cell Biol 177:817–827

    PubMed  CAS  Google Scholar 

  • Arai Y, Ijuin T, Takenawa T, Becker LE, Takashima S (2002) Excessive expression of synaptojanin in brains with down syndrome. Brain Dev 24:67–72

    PubMed  Google Scholar 

  • Astle MV, Ooms LM, Cole AR, Binge LC, Dyson JM, Layton MJ, Petratos S, Sutherland C, Mitchell CA (2011) Identification of a proline-rich inositol polyphosphate 5-phosphatase (PIPP): collapsin response mediator protein 2 (CRMP2) complex that regulates neurite elongation. J Biol Chem 286(26):23407–23418

    Google Scholar 

  • Attree O, Olivos IM, Okabe I, Bailey LC, Nelson DL, Lewis RA, McLnnes RR, Nussbaum RL (1992) The Lowe’s oculocerebrorenal syndrome gene encodes a protein highly homologous to inositol polyphosphate-5-phosphatase. Nature 358:239–242

    PubMed  CAS  Google Scholar 

  • Backers K, Blero D, Paternotte N, Zhang J, Erneux C (2003) The termination of PI3K signalling by SHIP1 and SHIP2 inositol 5-phosphatases. Adv Enzyme Regul 43:15–28

    PubMed  CAS  Google Scholar 

  • Bae Y-K, Kim E, L’Hernault SW, Barr MM (2009) The CIL-1 PI 5-phosphatase localizes TRP polycystins to cilia and activates sperm in C. elegans. Curr Biol 19:1599–1607

    PubMed  CAS  Google Scholar 

  • Bai L, Rohrschneider LR (2010) s-SHIP promoter expression marks activated stem cells in developing mouse mammary tissue. Genes Dev 24:1882–1892

    PubMed  CAS  Google Scholar 

  • Baltimore D, Boldin MP, O’Connell RM, Rao DS, Taganov KD (2008) MicroRNAs: new regulators of immune cell development and function. Nat Immunol 9:839–845

    PubMed  CAS  Google Scholar 

  • Bansal VS, Caldwell KK, Majerus PW (1990) The isolation and characterization of inositol polyphosphate 4-phosphatase. J Biol Chem 265:1806–1811

    PubMed  CAS  Google Scholar 

  • Bansal VS, Inhorn RC, Majerus PW (1987) The metabolism of inositol 1,3,4-trisphosphate to inositol 1,3-bisphosphate. J Biol Chem 262:9444–9447

    PubMed  CAS  Google Scholar 

  • Barnache S, Le Scolan E, Kosmider O, Denis N, Moreau-Gachelin F (2006) Phosphatidylinositol 4-phosphatase type II is an erythropoietin-responsive gene. Oncogene 25:1420–1423

    PubMed  CAS  Google Scholar 

  • Batty IH, van der kaay J, Gray A, Telfer JF, Dixon MJ, Downes CP (2007) The control of phosphatidylinositol 3,4-bisphosphate concentrations by activation of the Src homology two domain containing inositol polyphosphate 5-phosphatase 2, SHIP2. Biochem J 407:255–266

    Google Scholar 

  • Ben El Kadhi K, Roubinet C, Solinet S, Emery G, Carréno S (2011) The inositol 5-phosphatase dOCRL controls PI(4,5)P2 homeostasis and is necessary for cytokinesis. Curr Biol 21:1074–1079

    PubMed  CAS  Google Scholar 

  • Benetkiewicz M, Wang Y, Schaner M, Wang P, Mantripragada KK, Buckley PG, Kristensen G, Børresen-Dale A-L, Dumanski JP (2005) High-resolution gene copy number and expression profiling of human chromosome 22 in ovarian carcinomas. Genes Chromosom Cancer 42:228–237

    PubMed  CAS  Google Scholar 

  • Bertelli DF, Araujo EP, Cesquini M, Stoppa GR, Gasparotto-Contessotto M, Toyama MH, Felix JVC, Carvalheira JB, Michelini LC, Chiavegatto S, Boschero AC, Saad MJA, Lopes-Cendes I, Velloso LA (2006) Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits inositide trisphosphate accumulation in hypothalamus and regulates food intake and body weight. Endocrinology 147:5385–5399

    PubMed  CAS  Google Scholar 

  • Bielas SL, Silhavy JL, Brancati F, Kisseleva MV, AL-Gazali L, Sztriha L, Bayoumi RA, Zaki MS, Abdel-Aleem A, Rosti RO, Kayserili H, Swistun D, Scott LC, Bertini E, Boltshauser E, Fazzi E, Travaglini L, Field SJ, Gayral S, Jacoby M, Schurmans S, Dallapiccola B, Majerus PW, Valente EM, Gleeson JG (2009) Mutations in INPP5E, encoding inositol polyphosphate-5-phosphatase E, link phosphatidyl inositol signaling to the ciliopathies. Nat Genet 41:1032–1036

    PubMed  CAS  Google Scholar 

  • Bisgaard A-M, Kirchhoff M, Nielsen JE, Brandt C, Hove H, Jepsen B, Jensen T, Ullmann R, Skovby F (2007) Transmitted cytogenetic abnormalities in patients with mental retardation: pathogenic or normal variants? Eur J Med Genet 50:243–255

    PubMed  Google Scholar 

  • Bishop JL, Sly LM, Krystal G, Finlay BB (2008) The inositol phosphatase SHIP controls Salmonella enterica serovar Typhimurium infection in vivo. Infect Immun 76:2913–2922

    PubMed  CAS  Google Scholar 

  • Blagoveshchenskaya A, Cheong FY, Rohde HM, Glover G, Knödler A, Nicolson T, Boehmelt G, Mayinger P (2008) Integration of Golgi trafficking and growth factor signaling by the lipid phosphatase SAC1. J Cell Biol 180:803–812

    PubMed  CAS  Google Scholar 

  • Blero D, De Smedt F, Pesesse X, Paternotte N, Moreau C, Payrastre B, Erneux C (2001) The SH2 domain containing inositol 5-phosphatase SHIP2 controls phosphatidylinositol 3,4,5-trisphosphate levels in CHO-IR cells stimulated by insulin. Biochem Biophys Res Commun 282:839–843

    PubMed  CAS  Google Scholar 

  • Bohdanowicz M, Cosío G, Backer JM, Grinstein S (2010) Class I and class III phosphoinositide 3-kinases are required for actin polymerization that propels phagosomes. J Cell Biol 191:999–1012

    PubMed  CAS  Google Scholar 

  • Bökenkamp A, Böckenhauer D, Cheong HI, Hoppe B, Tasic V, Unwin R, Ludwig M (2009) Dent-2 disease: a mild variant of Lowe syndrome. J Pediatr 155:94–99

    PubMed  Google Scholar 

  • Bothwell SP, Chan E, Bernardini IM, Kuo Y-M, Gahl WA, Nussbaum RL (2011) Mouse model for Lowe syndrome/dent disease two renal tubulopathy. J Am Soc Nephrol 22:443–448

    PubMed  CAS  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342

    PubMed  CAS  Google Scholar 

  • Brauweiler A, Merrell K, Gauld SB, Cambier JC (2007) Cutting edge: acute and chronic exposure of immature B cells to antigen leads to impaired homing and SHIP1-dependent reduction in stromal cell-derived factor-1 responsiveness. J Immunol 178:3353–3357

    PubMed  CAS  Google Scholar 

  • Brauweiler A, Tamir I, Dal Porto J, Benschop RJ, Helgason CD, Humphries RK, Freed JH, Cambier JC (2000) Differential regulation of B cell development, activation, and death by the Src homology 2 domain-containing 5’ inositol phosphatase (ship). J Exp Med 191:1545–1554

    PubMed  CAS  Google Scholar 

  • Bruno DL, Anderlid B-M, Lindstrand A, van Ravenswaaij-Arts C, Ganesamoorthy D, Lundin J, Martin CL, Douglas J, Nowak C, Adam MP, Kooy RF, Van der Aa N, Reyniers E, Vandeweyer G, Stolte-Dijkstra I, Dijkhuizen T, Yeung A, Delatycki M, Borgström B, Thelin L, Cardoso C, van Bon B, Pfundt R, de Vries BBA, Wallin A, Amor DJ, James PA, Slater HR, Schoumans J (2010) Further molecular and clinical delineation of co-locating 17p13.3 microdeletions and microduplications that show distinctive phenotypes. J Med Genet 47:299–311

    Google Scholar 

  • Buettner R, Ottinger I, Gerhardt-Salbert C, Wrede CE, Scholmerich J, Bollheimer LC (2007) Antisense oligonucleotides against the lipid phosphatase SHIP2 improve muscle insulin sensitivity in a dietary rat model of the metabolic syndrome. Am J Physiol Endocrionol Metab 292:E1871–E1878

    CAS  Google Scholar 

  • Campbell JK, Gurung R, Romero S, Speed CJ, Andrews RK, Berndt MC, Mitchell CA (1997) Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14–3-3ζ. Biochemistry 36:15363–15370

    PubMed  CAS  Google Scholar 

  • Cardoso C, Leventer RJ, Ward HL, Toyo-oka K, Chung J, Gross A, Martin CL, Allanson J, Pilz DT, Olney AH, Mutchinick OM, Hirotsune S, Wynshaw-Boris A, Dobyns WB, Ledbetter DH (2003) Refinement of a 400-kb critical region allows genotypic differentiation between isolated lissencephaly, Miller–Dieker syndrome, and other phenotypes secondary to deletions of 17p13.3. Am J Hum Genet 72:918–930

    PubMed  CAS  Google Scholar 

  • Cekic C, Casella CR, Sag D, Antignano F, Kolb J, Suttles J, Hughes MR, Krystal G, Mitchell TC (2011) MyD88-dependent SHIP1 regulates proinflammatory signaling pathways in dendritic cells after monophosphoryl lipid A stimulation of TLR4. J Immunol 186:3858–3865

    PubMed  CAS  Google Scholar 

  • Chalhoub N, Baker SJ (2009) PTEN and the PI3-kinase pathway in cancer. Annu Rev Pathol 4:127–150

    PubMed  CAS  Google Scholar 

  • Chang-Ileto B, Frere SG, Chan RB, Voronov SV, Roux AL, Di Paolo G (2011) Synaptojanin 1-mediated PI(4,5)P2 hydrolysis is modulated by membrane curvature and facilitates membrane fission. Dev Cell 20:206–218

    PubMed  CAS  Google Scholar 

  • Chang KT, Min K-T (2009) Upregulation of three Drosophila homologs of human chromosome 21 genes alters synaptic function: implications for down syndrome. Proc Natl Acad Sci U S A 106:17117–17122

    PubMed  CAS  Google Scholar 

  • Cheang MCU, Voduc D, Bajdik C, Leung S, McKinney S, Chia SK, Perou CM, Nielsen TO (2008) Basal-like breast cancer defined by five biomarkers has superior prognostic value than triple-negative phenotype. Clin Cancer Res 14:1368–1376

    PubMed  CAS  Google Scholar 

  • Cheon MS, Kim SH, Ovod V, Kopitar Jerala N, Morgan JI, Hatefi Y, Ijuin T, Takenawa T, Lubec G (2003) Protein levels of genes encoded on chromosome 21 in fetal down syndrome brain: challenging the gene dosage effect hypothesis (Part III). Amino Acids 24:127–134

    PubMed  CAS  Google Scholar 

  • Cheong FY, Sharma V, Blagoveshchenskaya A, Oorschot VMJ, Brankatschk B, Klumperman J, Freeze HH, Mayinger P (2010) Spatial regulation of Golgi phosphatidylinositol-4-phosphate is required for enzyme localization and glycosylation fidelity. Traffic 11:1180–1190

    PubMed  CAS  Google Scholar 

  • Chi Y, Zhou B, Wang WQ, Chung SK, Kwon YU, Ahn YH, Chang YT, Tsujishita Y, Hurley JH, Zhang ZY (2004) Comparative mechanistic and substrate specificity study of inositol polyphosphate 5-phosphatase Schizosaccharomyces pombe synaptojanin and SHIP2. J Biol Chem 279:44987–44995

    PubMed  CAS  Google Scholar 

  • Choudhury R, Diao A, Zhang F, Eisenberg E, Saint-Pol A, Williams C, Konstantakopoulos A, Lucocq J, Johannes L, Rabouille C, Greene LE, Lowe M (2005) Lowe syndrome protein OCRL1 interacts with clathrin and regulates protein trafficking between endosomes and the trans-Golgi network. Mol Biol Cell 16:3467–3479

    PubMed  CAS  Google Scholar 

  • Choudhury R, Noakes CJ, McKenzie E, Kox C, Lowe M (2009) Differential clathrin binding and subcellular localization of OCRL1 splice isoforms. J Biol Chem 284:9965–9973

    PubMed  CAS  Google Scholar 

  • Chow CY, Zhang Y, Dowling JJ, Jin N, Adamska M, Shiga K, Szigeti K, Shy ME, Li J, Zhang X, Lupski JR, Weisman LS, Meisler MH (2007) Mutation of FIG4 causes neurodegeneration in the pale tremor mouse and patients with CMT4J. Nature 448:68–72

    PubMed  CAS  Google Scholar 

  • Chow KU, Nowak D, Kim S-Z, Schneider B, Komor M, Boehrer S, Mitrou PS, Hoelzer D, Weidmann E, Hofmann W-K (2006) In vivo drug-response in patients with leukemic non-Hodgkin’s lymphomas is associated with in vitro chemosensitivity and gene expression profiling. Pharmacol Res 53:49–61

    PubMed  CAS  Google Scholar 

  • Chuang YY, Tran NL, Rusk N, Nakada M, Berens ME, Symons M (2004) Role of synaptojanin 2 in Glioma cell migration and invasion. Cancer Res 64:8271–8275

    PubMed  CAS  Google Scholar 

  • Clement S, Krause U, Desmedt F, Tanti JF, Behrends J, Pesesse X, Sasaki T, Penninger J, Doherty M, Malaisse W, Dumont JE, Le Marchand-Brustel Y, Erneux C, Hue L, Schurmans S (2001) The lipid phosphatase SHIP2 controls insulin sensitivity. Nature 409:92–97

    PubMed  CAS  Google Scholar 

  • Clerc PL, Ryter A, Mounier J, Sansonetti PJ (1987) Plasmid-mediated early killing of eucaryotic cells by Shigella flexneri as studied by infection of J774 macrophages. Infect Immun 55:521–527

    PubMed  CAS  Google Scholar 

  • Cleves AE, Novick PJ, Bankaitis VA (1989) Mutations in the SAC1 gene suppress defects in yeast Golgi and yeast actin function. J Cell Biol 109:2939–2950

    PubMed  CAS  Google Scholar 

  • Collazo MM, Wood D, Paraiso KHT, Lund E, Engelman RW, Le C-T, Stauch D, Kotsch K, Kerr WG (2009) SHIP limits immunoregulatory capacity in the T-cell compartment. Blood 113:2934–2944

    PubMed  CAS  Google Scholar 

  • Cooper KG, Winfree S, Malik-Kale P, Jolly C, Ireland R, Knodler LA, Steele-Mortimer O (2011) Activation of Akt by the bacterial inositol phosphatase, SopB, is Wortmannin insensitive. PLoS ONE 6:e22260

    PubMed  CAS  Google Scholar 

  • Cormand B, Avela K, Pihko H, Santavuori P, Talim B, Topaloglu H, de la Chapelle A, Lehesjoki A-E (1999) Assignment of the muscle–eye–brain disease gene to 1p32–p34 by linkage analysis and homozygosity mapping. Am J Hum Genet 64:126–135

    PubMed  CAS  Google Scholar 

  • Costinean S, Sandhu SK, Pedersen IM, Tili E, Trotta R, Perrotti D, Ciarlariello D, Neviani P, Harb J, Kauffman LR, Shidham A, Croce CM (2009) Src homology 2 domain-containing inositol-5-phosphatase and CCAAT enhancer-binding protein beta are targeted by miR-155 in B cells of Emicro-MiR-155 transgenic mice. Blood 114:1374–1382

    PubMed  CAS  Google Scholar 

  • Cox D, Dale BM, Kashiwada M, Helgason CD, Greenberg S (2001) A regulatory role for Src homology 2 domain-containing inositol 5’-phosphatase (SHIP) in phagocytosis mediated by Fcγ receptors and complement receptor 3 (αMβ2;CD11b/CD18). J Exp Med 193:61–71

    PubMed  CAS  Google Scholar 

  • Cremer TJ, Ravneberg DH, Clay CD, Piper-Hunter MG, Marsh CB, Elton TS, Gunn JS, Amer A, Kanneganti TD, Schlesinger LS, Butchar JP, Tridandapani S (2009) MiR-155 induction by F. novicida but not the virulent F. tularensis results in SHIP down-regulation and enhanced pro-inflammatory cytokine response. PLoS ONE 4:e8508

    PubMed  Google Scholar 

  • Cremona O, Di Paolo G, Wenk MR, Lüthi A, Kim WT, Takei K, Daniell L, Nemoto Y, Shears SB, Flavell RA, McCormick DA, De Camilli P (1999) Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 99:179–188

    PubMed  CAS  Google Scholar 

  • Crowley JE, Stadanlick JE, Cambier JC, Cancro MP (2009) FcγRIIβ signals inhibit BLyS signaling and BCR-mediated BLyS receptor up-regulation. Blood 113:1464–1473

    PubMed  CAS  Google Scholar 

  • Cui S, Guerriero CJ, Szalinski CM, Kinlough CL, Hughey RP, Weisz OA (2010) OCRL1 function in renal epithelial membrane traffic. Am J Physiol Ren Physiol 298:F335–F345

    CAS  Google Scholar 

  • D’Angelo A, Franco B (2009) The dynamic cilium in human diseases. PathoGenetics 2:3

    PubMed  Google Scholar 

  • Dambournet D, Machicoane M, Chesneau L, Sachse M, Rocancourt M, El Marjou A, Formstecher E, Salomon R, Goud B, Echard A (2011) Rab35 GTPase and OCRL phosphatase remodel lipids and F-actin for successful cytokinesis. Nat Cell Biol 13:981–988

    PubMed  CAS  Google Scholar 

  • De Heuvel E, Bell AW, Ramjaun AR, Wong K, Sossin WS, McPherson PS (1997) Identification of the major synaptojanin-binding proteins in brain. J Biol Chem 272:8710–8716

    PubMed  Google Scholar 

  • De Smedt F, Verjans B, Mailleux P, Erneux C (1994) Cloning and expression of human brain type I inositol 1,4,5-trisphosphate 5-phosphatase. High levels of mRNA in cerebellar Purkinje cells. FEBS Lett 347:69–72

    PubMed  Google Scholar 

  • Deng X, Feng C, Wang EH, Zhu YQ, Cui C, Zong ZH, Li GS, Liu C, Meng J, Yu BZ (2011) Influence of proline-rich inositol polyphosphate 5-phosphatase, on early development of fertilized mouse eggs, via inhibition of phosphorylation of Akt. Cell Prolif 44:156–165

    PubMed  CAS  Google Scholar 

  • Denley A, Gymnopoulos M, Kang S, Mitchell C, Vogt PK (2009) Requirement of phosphatidylinositol(3,4,5)trisphosphate in phosphatidylinositol 3-kinase-induced oncogenic transformation. Mol Cancer Res 7:1132–1138

    PubMed  CAS  Google Scholar 

  • Dobyns WB, Curry CJR, Hoyme HE, Turlington L, Ledbetter DH (1991) Clinical and molecular diagnosis of Miller–Dieker syndrome. Cell Press, Cambridge

    Google Scholar 

  • Dong S, Corre B, Foulon E, Dufour E, Veillette A, Acuto O, Michel F (2006) T cell receptor for antigen induces linker for activation of T cell-dependent activation of a negative signaling complex involving Dok-2, SHIP-1, and Grb-2. J Exp Med 203:2509–2518

    PubMed  CAS  Google Scholar 

  • Dressman MA, Olivos-Glander IM, Nussbaum RL, Suchy SF (2000) Ocrl1, a PtdIns(4,5)P2 5-phosphatase, is localized to the trans-Golgi network of fibroblasts and epithelial cells. J Histochem Cytochem 48:179–189

    PubMed  CAS  Google Scholar 

  • Duex JE, Nau JJ, Kauffman EJ, Weisman LS (2006a) Phosphoinositide 5-phosphatase Fig4p is required for both acute rise and subsequent fall in stress-induced phosphatidylinositol 3,5-bisphosphate levels. Eukaryot Cell 5:723–731

    PubMed  CAS  Google Scholar 

  • Duex JE, Tang F, Weisman LS (2006b) The Vac14p-Fig4p complex acts independently of Vac7p and couples PI(3,5)P2 synthesis and turnover. J Cell Biol 172:693–704

    PubMed  CAS  Google Scholar 

  • Dyson JM, Kong AM, Wiradjaja F, Astle MV, Gurung R, Mitchell CA (2005) The SH2 domain containing inositol polyphosphate 5-phosphatase-2: SHIP2. Int J Biochem Cell Biol 37:2260–2265

    PubMed  CAS  Google Scholar 

  • Dyson JM, O’Malley CJ, Becanovic J, Munday AD, Berndt MC, Coghill ID, Nandurkar HH, Ooms LM, Mitchell CA (2001) The SH2-containing inositol polyphosphate 5-phosphatase, SHIP-2, binds filamin and regulates submembraneous actin. J Cell Biol 155:1065–1079

    PubMed  CAS  Google Scholar 

  • Edelmann J, Klein-Hitpass L, Carpinteiro A, Führer A, Sellmann L, Stilgenbauer S, Dührsen U, Dürig J (2008) Bone marrow fibroblasts induce expression of PI3K/NF-κB pathway genes and a pro-angiogenic phenotype in CLL cells. Leuk Res 32:1565–1572

    PubMed  CAS  Google Scholar 

  • Edmunds C, Parry RV, Burgess SJ, Reaves B, Ward SG (1999) CD28 stimulates tyrosine phosphorylation, cellular redistribution and catalytic activity of the inositol lipid 5-phosphatase SHIP. Eur J Immunol 29:3507–3515

    PubMed  CAS  Google Scholar 

  • Edwards CJ, Feldman JL, Beech J, Shields KM, Stover JA, Trepicchio WL, Larsen G, Foxwell BMJ, Brennan FM, Feldmann M, Pittman DD (2007) Molecular profile of peripheral blood mononuclear cells from patients with rheumatoid arthritis. Mol Med 13:19

    Google Scholar 

  • Ellsworth RE, Ellsworth DL, Neatrour DM, Deyarmin B, Lubert SM, Sarachine MJ, Brown P, Hooke JA, Shriver CD (2005) Allelic imbalance in primary breast carcinomas and metastatic tumors of the axillary lymph nodes. Mol Cancer Res 3:71–77

    PubMed  CAS  Google Scholar 

  • WS Elong Edimo, Derua R, Janssens V, Nakamura T, Vanderwinden JM, Waelkens E, Erneux C (2011) Evidence of SHIP2 Ser132 phosphorylation, its nuclear localization and stability. Biochem J 439:391–401

    Google Scholar 

  • Englefield P, Foulkes WD, Campbell IG (1994) Loss of heterozygosity on chromosome 22 in ovarian carcinoma is distal to and is not accompanied by mutations in NF2 at 22q12. Br J Cancer 70:905–907

    PubMed  CAS  Google Scholar 

  • Erdman S, Lin L, Malczynski M, Snyder M (1998) Pheromone-regulated genes required for yeast mating differentiation. J Cell Biol 140:461–483

    PubMed  CAS  Google Scholar 

  • Erdmann KS, Mao Y, McCrea HJ, Zoncu R, Lee S, Paradise S, Modregger J, Biemesderfer D, Toomre D, De Camilli P (2007) A role of the Lowe syndrome protein OCRL in early steps of the endocytic pathway. Dev Cell 13:377–390

    PubMed  CAS  Google Scholar 

  • Erkeland SJ, Valkhof M, Heijmans-Antonissen C, van Hoven-Beijen A, Delwel R, Hermans MHA, Touw IP (2004) Large-scale identification of disease genes involved in acute myeloid leukemia. J Virol 78:1971–1980

    PubMed  CAS  Google Scholar 

  • Faucherre A, Desbois P, Nagano F, Satre V, Lunardi J, Gacon G, Dorseuil O (2005) Lowe syndrome protein Ocrl1 is translocated to membrane ruffles upon Rac GTPase activation: a new perspective on Lowe syndrome pathophysiology. Hum Mol Genet 14:1441–1448

    PubMed  CAS  Google Scholar 

  • Faucherre A, Desbois P, Satre V, Lunardi J, Dorseuil O, Gacon G (2003) Lowe syndrome protein OCRL1 interacts with Rac GTPase in the trans-Golgi network. Hum Mol Genet 12:2449–2456

    PubMed  CAS  Google Scholar 

  • Fedele CG, Ooms LM, Ho M, Vieusseux J, O’Toole SA, Millar EK, Lopez-Knowles E, Sriratana A, Gurung R, Baglietto L, Giles GG, Bailey CG, Rasko JEJ, Shields BJ, Price JT, Majerus PW, Sutherland RL, Tiganis T, McLean CA, Mitchell CA (2010) Inositol polyphosphate 4-phosphatase II regulates PI3K/Akt signaling and is lost in human basal-like breast cancers. Proc Natl Acad Sci U S A 107:22231–22236

    PubMed  CAS  Google Scholar 

  • Ferguson CJ, Lenk GM, Meisler MH (2009) Defective autophagy in neurons and astrocytes from mice deficient in PI(3,5)P2. Hum Mol Genet 18:4868–4878

    PubMed  CAS  Google Scholar 

  • Ferron M, Boudiffa M, Arsenault M, Rached M, Pata M, Giroux S, Elfassihi L, Kisseleva M, Majerus Philip W, Rousseau F, Vacher J (2011) Inositol polyphosphate 4-phosphatase B as a regulator of bone mass in mice and humans. Cell Metab 14:466–477

    PubMed  CAS  Google Scholar 

  • Ferron M, Vacher J (2006) Characterization of the murine Inpp 4b gene and identification of a novel isoform. Gene 376:152–161

    PubMed  CAS  Google Scholar 

  • Foti M, Audhya A, Emr SD (2001) Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 12:2396–2411

    PubMed  CAS  Google Scholar 

  • Freeburn RW, Wright KL, Burgess SJ, Astoul E, Cantrell DA, Ward SG (2002) Evidence that SHIP-1 contributes to phosphatidylinositol 3,4,5-trisphosphate metabolism in T lymphocytes and can regulate novel phosphoinositide 3-kinase effectors. J Immunol 169:5441–5450

    PubMed  CAS  Google Scholar 

  • Fukuda R, Hayashi A, Utsunomiya A, Nukada Y, Fukui R, Itoh K, Tezuka K, Ohashi K, Mizuno K, Sakamoto M, Hamanoue M, Tsuji T (2005) Alteration of phosphatidylinositol 3-kinase cascade in the multilobulated nuclear formation of adult T cell leukemia/lymphoma (ATLL). Proc Natl Acad Sci U S A 102:15213–15218

    PubMed  CAS  Google Scholar 

  • Fukuda RI, Tsuchiya K, Suzuki K, Itoh K, Fujita J, Utsunomiya A, Tsuji T (2009) Human T-cell leukemia virus type I tax down-regulates the expression of phosphatidylinositol 3,4,5-trisphosphate inositol phosphatases via the NF-kappaB pathway. J Biol Chem 284:2680–2689

    PubMed  CAS  Google Scholar 

  • Fukui K, Wada T, Kagawa S, Nagira K, Ikubo M, Ishihara H, Kobayashi M, Sasaoka T (2005) Impact of the liver-specific expression of SHIP2 (SH2-containing inositol 5’-phosphatase 2) on insulin signaling and glucose metabolism in mice. Diabetes 54:1958–1967

    PubMed  CAS  Google Scholar 

  • Fults D, Pedone C (1993) Deletion mapping of the long arm of chromosome 10 in glioblastoma multiforme. Genes Chromosom Cancer 7:173–177

    PubMed  CAS  Google Scholar 

  • Galli SJ, Tsai M (2010) Mast cells in allergy and infection: versatile effector and regulatory cells in innate and adaptive immunity. Eur J Immunol 40:1843–1851

    PubMed  CAS  Google Scholar 

  • Gevaert O, Smet FD, Timmerman D, Moreau Y, Moor BD (2006) Predicting the prognosis of breast cancer by integrating clinical and microarray data with Bayesian networks. Bioinformatics 22:e184–e190

    PubMed  CAS  Google Scholar 

  • Gewinner C, Wang ZC, Richardson A, Teruya-Feldstein J, Etemadmoghadam D, Bowtell D, Barretina J, Lin WM, Rameh L, Salmena L, Pandolfi PP, Cantley LC (2009) Evidence that inositol polyphosphate 4-phosphatase type II is a tumor suppressor that inhibits PI3K signaling. Cancer Cell 16:115–125

    PubMed  CAS  Google Scholar 

  • Ghansah T, Paraiso KH, Highfill S, Desponts C, May S, McIntosh JK, Wang JW, Ninos J, Brayer J, Cheng F, Sotomayor E, Kerr WG (2004) Expansion of myeloid suppressor cells in SHIP-deficient mice represses allogeneic T cell responses. J Immunol 173:7324–7330

    PubMed  CAS  Google Scholar 

  • Giuriato S, Payrastre B, Drayer AL, Plantavid M, Woscholski R, Parker P, Erneux C, Chap H (1997) Tyrosine phosphorylation and relocation of SHIP are integrin-mediated in thrombin-stimulated human blood platelets. J Biol Chem 272:26857–26863

    PubMed  CAS  Google Scholar 

  • Giuriato S, Pesesse X, Bodin S, Sasaki T, Viala C, Marion E, Penninger J, Schurmans S, Erneux C, Payrastre B (2003) SH2-containing inositol 5-phosphatases 1 and 2 in blood platelets: their interactions and roles in the control of phosphatidylinositol 3,4,5-trisphosphate levels. Biochem J 376:199–207

    PubMed  CAS  Google Scholar 

  • Gratacap M-P, Séverin S, Chicanne G, Plantavid M, Payrastre B (2008) Different roles of SHIP1 according to the cell context: the example of blood platelets. Adv Enzyme Regul 48:240–252

    PubMed  CAS  Google Scholar 

  • Grempler R, Zibrova D, Schoelch C, van Marle A, Rippmann JF, Redemann N (2007) Normalization of prandial blood glucose and improvement of glucose tolerance by liver-specific inhibition of SH2 domain containing inositol phosphatase 2 (SHIP2) in diabetic KKAy mice: SHIP2 inhibition causes insulin-mimetic effects on glycogen metabolism, gluconeogenesis, and glycolysis. Diabetes 56:2235–2241

    PubMed  CAS  Google Scholar 

  • Gruvberger S, Ringnér M, Chen Y, Panavally S, Saal LH, Borg Å, Fernö M, Peterson C, Meltzer PS (2001) Estrogen receptor status in breast cancer is associated with remarkably distinct gene expression patterns. Cancer Res 61:5979–5984

    PubMed  CAS  Google Scholar 

  • Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S (2002) Antigen presentation and T cell stimulation by dendritic cells. Annu Rev Immunol 20:621–667

    PubMed  CAS  Google Scholar 

  • Guittard G, Mortier E, Tronchère H, Firaguay G, Gérard A, Zimmermann P, Payrastre B, Nunès JA (2010) Evidence for a positive role of PtdIns5P in T-cell signal transduction pathways. FEBS Lett 584:2455–2460

    PubMed  CAS  Google Scholar 

  • Guo S, Stolz LE, Lemrow SM, York JD (1999) SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 274:12990–12995

    PubMed  CAS  Google Scholar 

  • Guoling Z, Huijuan Y, Kaili X (1997) Loss of heterozygosity on chromosome 17p13.3 in ovarian cancer and cervical cancer. Chin J Oncol 19:401–403

    Google Scholar 

  • Gupta A, Dey CS (2009) PTEN and SHIP2 regulates PI3K/Akt pathway through focal adhesion kinase. Mol Cell Endocrinol 309:55–62

    PubMed  CAS  Google Scholar 

  • Gurung R, Tan A, Ooms LM, McGrath MJ, Huysmans RD, Munday AD, Prescott M, Whisstock JC, Mitchell CA (2003) Identification of a novel domain in two mammalian inositol-polyphosphate 5-phosphatases that mediates membrane ruffle localization: the inositol 5-phosphatase SKIP localizes to the endoplasmic reticulum and translocates to membrane ruffles following epidermal growth factor stimulation. J Biol Chem 278:11376–11385

    PubMed  CAS  Google Scholar 

  • Habib T, Hejna JA, Moses RE, Decker SJ (1998) Growth factors and insulin stimulate tyrosine phosphorylation of the 51C/SHIP2 protein. J Biol Chem 273:18605–18609

    PubMed  CAS  Google Scholar 

  • Haddon DJ, Antignano F, Hughes MR, Blanchet M-R, Zbytnuik L, Krystal G, McNagny KM (2009) SHIP1 is a repressor of mast cell hyperplasia, cytokine production, and allergic inflammation in vivo. J Immunol 183:228–236

    PubMed  CAS  Google Scholar 

  • Haffner C, Takei K, Chen H, Ringstad N, Hudson A, Butler MH, Salcini AE, Di Fiore PP, De Camilli P (1997) Synaptojanin 1: localization on coated endocytic intermediates in nerve terminals and interaction of its 170 kDa isoform with Eps15. FEBS Lett 419:175–180

    PubMed  CAS  Google Scholar 

  • Hamilton MJ, Ho VW, Kuroda E, Ruschmann J, Antignano F, Lam V, Krystal G (2010) Role of SHIP in cancer. Exp Hematol 39(1):2–13

    Google Scholar 

  • Hampshire DJ, Ayub M, Springell K, Roberts E, Jafri H, Rashid Y, Bond J, Riley JH, Woods CG (2006) MORM syndrome (mental retardation, truncal obesity, retinal dystrophy and micropenis), a new autosomal recessive disorder, links to 9q34. Eur J Hum Genet 14:543–548

    PubMed  CAS  Google Scholar 

  • Harris TW, Hartwieg E, Horvitz HR, Jorgensen EM (2000) Mutations in synaptojanin disrupt synaptic vesicle recycling. J Cell Biol 150:589–600

    PubMed  CAS  Google Scholar 

  • Hartikainen JM, Tuhkanen H, Kataja V, Eskelinen M, Uusitupa M, Kosma V-M, Mannermaa A (2006) Refinement of the 22q12–q13 breast cancer-associated region: evidence of TMPRSS6 as a candidate gene in an Eastern Finnish population. Clin Cancer Res 12:1454–1462

    PubMed  CAS  Google Scholar 

  • Haucke V (2003) Where proteins and lipids meet: membrane trafficking on the move. Dev Cell 4:153–157

    PubMed  CAS  Google Scholar 

  • Hejna JA, Saito H, Merkens LS, Tittle TV, Jakobs PM, Whitney MA, Grompe M, Friedberg AS, Moses RE (1995) Cloning and characterization of a human cDNA (INPPL1) sharing homology with inositol polyphosphate phosphatases. Genomics 29:285–287

    PubMed  CAS  Google Scholar 

  • Helgason CD, Damen JE, Rosten P, Grewal R, Sorensen P, Chappel SM, Borowski A, Jirik F, Krystal G, Humphries RK (1998) Targeted disruption of SHIP leads to hemopoietic perturbations, lung pathology, and a shortened life span. Genes Dev 12:1610–1620

    PubMed  CAS  Google Scholar 

  • Helgason CD, Kalberer CP, Damen JE, Chappel SM, Pineault N, Krystal G, Humphries RK (2000) A dual role for Src homology 2 domain-containing inositol-5-phosphatase (Ship) in immunity. J Exp Med 191:781–794

    PubMed  CAS  Google Scholar 

  • Hellsten E, Bernard DJ, Owens JW, Eckhaus M, Suchy SF, Nussbaum RL (2002) Sertoli cell vacuolization and abnormal germ cell adhesion in mice deficient in an inositol polyphosphate 5-phosphatase. Biol Reprod 66:1522–1530

    PubMed  CAS  Google Scholar 

  • Hellsten E, Evans JP, Bernard DJ, Jänne PA, Nussbaum RL (2001) Disrupted sperm function and fertilin β processing in mice deficient in the inositol polyphosphate 5-phosphatase Inpp 5b. Dev Biol 240:641–653

    PubMed  CAS  Google Scholar 

  • Hernandez LD, Hueffer K, Wenk MR, Galán JE (2004) Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–1807

    PubMed  CAS  Google Scholar 

  • Hitomi K, Tahara-Hanaoka S, Someya S, Fujiki A, Tada H, Sugiyama T, Shibayama S, Shibuya K, Shibuya A (2010) An immunoglobulin-like receptor, Allergin-1, inhibits immunoglobulin E-mediated immediate hypersensitivity reactions. Nat Immunol 11:601–607

    PubMed  CAS  Google Scholar 

  • Hodgkin M, Craxton A, Parry J, Hughes P, Potter B, Michell R, Kirk C (1994) Bovine testis and human erythrocytes contain different subtypes of membrane-associated Ins(1,4,5)P3/Ins(1,3,4,5)P4 5-phosphomonoesterases. Biochem J 297:637

    PubMed  CAS  Google Scholar 

  • Hodgson MC, Shao LJ, Frolov A, Li R, Peterson LE, Ayala G, Ittmann MM, Weigel NL, Agoulnik IU (2011) Decreased expression and androgen regulation of the tumor suppressor gene INPP4B in prostate cancer. Cancer Res 71:572–582

    PubMed  CAS  Google Scholar 

  • Hollander MC, Blumenthal GM, Dennis PA (2011) PTEN loss in the continuum of common cancers, rare syndromes and mouse models. Nat Rev Cancer 11:289–301

    PubMed  CAS  Google Scholar 

  • Hoopes RR Jr, Shrimpton AE, Knohl SJ, Hueber P, Hoppe B, Matyus J, Simckes A, Tasic V, Toenshoff B, Suchy SF, Nussbaum RL, Scheinman SJ (2005) Dent disease with mutations in OCRL1. Am J Hum Genet 76:260–267

    PubMed  CAS  Google Scholar 

  • Horan KA, Watanabe K-I, Kong AM, Bailey CG, Rasko JEJ, Sasaki T, Mitchell CA (2007) Regulation of FcγR-stimulated phagocytosis by the 72-kDa inositol polyphosphate 5-phosphatase: SHIP1, but not the 72-kDa 5-phosphatase, regulates complement receptor 3 mediated phagocytosis by differential recruitment of these 5-phosphatases to the phagocytic cup. Blood 110:4480–4491

    PubMed  CAS  Google Scholar 

  • Hori H, Sasaoka T, Ishihara H, Wada T, Murakami S, Ishiki M, Kobayashi M (2002) Association of SH2-containing inositol phosphatase 2 with the insulin resistance of diabetic db/db Mice. Diabetes 51:2387–2394

    PubMed  CAS  Google Scholar 

  • Horn S, Endl E, Fehse B, Weck MM, Mayr GW, Jucker M (2004) Restoration of SHIP activity in a human leukemia cell line downregulates constitutively activated phosphatidylinositol 3-kinase/Akt/GSK-3β signaling and leads to an increased transit time through the G1 phase of the cell cycle. Leukemia 18:1839–1849

    PubMed  CAS  Google Scholar 

  • Hou X, Hagemann N, Schoebel S, Blankenfeldt W, Goody RS, Erdmann KS, Itzen A (2011) A structural basis for Lowe syndrome caused by mutations in the Rab-binding domain of OCRL1. EMBO J 30:1659–1670

    PubMed  CAS  Google Scholar 

  • Huber M, Helgason CD, Damen JE, Liu L, Humphries RK, Krystal G (1998a) The src homology 2-containing inositol phosphatase (SHIP) is the gatekeeper of mast cell degranulation. Proc Natl Acad Sci U S A 95:11330–11335

    PubMed  CAS  Google Scholar 

  • Huber M, Helgason CD, Scheid MP, Duronio V, Humphries RK, Krystal G (1998b) Targeted disruption of SHIP leads to steel factor-induced degranulation of mast cells. EMBO J 17:7311–7319

    PubMed  CAS  Google Scholar 

  • Hughes WE, Cooke FT, Parker PJ (2000) Sac phosphatase domain proteins. Biochem J 350:337–352

    PubMed  CAS  Google Scholar 

  • Hung CS, Lin YL, Wu CI, Huang CJ, Ting LP (2009) Suppression of hepatitis B viral gene expression by phosphoinositide 5-phosphatase SKIP. Cell Microbiol 11:37–50

    PubMed  CAS  Google Scholar 

  • Hyvola N, Diao A, McKenzie E, Skippen A, Cockcroft S, Lowe M (2006) Membrane targeting and activation of the Lowe syndrome protein OCRL1 by rab GTPases. EMBO J 25:3750–3761

    PubMed  CAS  Google Scholar 

  • Hyvonen ME, Saurus P, Wasik A, Heikkila E, Havana M, Trokovic R, Saleem M, Holthofer H, Lehtonen S (2010) Lipid phosphatase SHIP2 downregulates insulin signalling in podocytes. Mol Cell Endocrinol 328:70–79

    PubMed  Google Scholar 

  • Ibarra JA, Steele-Mortimer O (2009) Salmonella—the ultimate insider. Salmonella virulence factors that modulate intracellular survival. Cell Microbiol 11:1579–1586

    PubMed  CAS  Google Scholar 

  • Ijuin T, Mochizuki Y, Fukami K, Funaki M, Asano T, Takenawa T (2000) Identification and characterization of a novel inositol polyphosphate 5- phosphatase. J Biol Chem 275:10870–10875

    PubMed  CAS  Google Scholar 

  • Ijuin T, Takenawa T (2003) SKIP negatively regulates insulin-induced GLUT4 translocation and membrane ruffle formation. Mol Cell Biol 23:1209–1220

    PubMed  CAS  Google Scholar 

  • Ijuin T, Yu YE, Mizutani K, Pao A, Tateya S, Tamori Y, Bradley A, Takenawa T (2008) Increased insulin action in SKIP heterozygous knockout mice. Mol Cell Biol 28:5184–5195

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Fligger J, Delvecchio K, Shisheva A (2010) ArPIKfyve regulates Sac3 protein abundance and turnover. J Biol Chem 285:26760–26764

    PubMed  CAS  Google Scholar 

  • Ikonomov OC, Sbrissa D, Ijuin T, Takenawa T, Shisheva A (2009) Sac3 is an insulin-regulated PtdIns(3,5)P2 phosphatase: gain in insulin responsiveness through Sac3 downregulation in adipocytes. J Biol Chem 284:23961–23971

    PubMed  CAS  Google Scholar 

  • Irie F, Okuno M, Pasquale EB, Yamaguchi Y (2005) EphrinB-EphB signalling regulates clathrin-mediated endocytosis through tyrosine phosphorylation of synaptojanin 1. Nat Cell Biol 7:501–509

    PubMed  CAS  Google Scholar 

  • Ishida S, Funakoshi A, Miyasaka K, Shimokata H, Ando F, Takiguchi S (2006) Association of SH-2 containing inositol 5’-phosphatase 2 gene polymorphisms and hyperglycemia. Pancreas 33:63–67

    PubMed  CAS  Google Scholar 

  • Ivetac I, Gurung R, Hakim S, Horan KA, Sheffield DA, Binge LC, Majerus PW, Tiganis T, Mitchell CA (2009) Regulation of PI(3)K/Akt signalling and cellular transformation by inositol polyphosphate 4-phosphatase-1. EMBO Rep 10:487–493

    PubMed  CAS  Google Scholar 

  • Ivetac I, Munday AD, Kisseleva MV, Zhang XM, Luff S, Tiganis T, Whisstock JC, Rowe T, Majerus PW, Mitchell CA (2005) The type Iα inositol polyphosphate 4-phosphatase generates and terminates phosphoinositide 3-kinase signals on endosomes and the plasma membrane. Mol Biol Cell 16:2218–2233

    PubMed  CAS  Google Scholar 

  • Jackson S, Schoenwaelder S, Matzaris M, Brown S, CA M (1995) Phosphatidylinositol 3,4,5-trisphosphate is a substrate for the 75 kDa inositol polyphosphate 5-phosphatase and a novel 5-phosphatase which forms a complex with the p85/p110 form of phosphoinositide 3-kinase. EMBO J 14:4490–4500

    PubMed  CAS  Google Scholar 

  • Jacoby M, Cox JJ, Gayral S, Hampshire DJ, Ayub M, Blockmans M, Pernot E, Kisseleva MV, Compère P, Schiffmann SN, Gergely F, Riley JH, Pérez-Morga D, Woods CG, Schurmans S (2009) INPP5E mutations cause primary cilium signaling defects, ciliary instability and ciliopathies in human and mouse. Nat Genet 41:1027–1031

    PubMed  CAS  Google Scholar 

  • Jänne PA, Suchy SF, Bernard D, MacDonald M, Crawley J, Grinberg A, Wynshaw-Boris A, Westphal H, Nussbaum RL (1998) Functional overlap between murine Inpp 5b and Ocrl1 may explain why deficiency of the murine ortholog for OCRL1 does not cause Lowe syndrome in mice. J Clin Investig 101:2042–2053

    PubMed  Google Scholar 

  • Jefferson AB, Majerus PW (1995) Properties of type II inositol polyphosphate 5-phosphatase. J Biol Chem 270:9370–9377

    PubMed  CAS  Google Scholar 

  • Jiang J, Hui CC (2008) Hedgehog signaling in development and cancer. Dev Cell 15:801–812

    PubMed  CAS  Google Scholar 

  • Jiang X, Stuible M, Chalandon Y, Li A, Chan WY, Eisterer W, Krystal G, Eaves A, Eaves C (2003) Evidence for a positive role of SHIP in the BCR-ABL-mediated transformation of primitive murine hematopoietic cells and in human chronic myeloid leukemia. Blood 102:2976–2984

    PubMed  CAS  Google Scholar 

  • Jin H, White SR, Shida T, Schulz S, Aguiar M, Gygi SP, Bazan JF, Nachury MV (2010) The conserved Bardet–Biedl syndrome proteins assemble a coat that traffics membrane proteins to cilia. Cell 141:1208–1219

    PubMed  CAS  Google Scholar 

  • Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, Fellbaum C, Gu X, Joseph M, Pantuck AJ, Jonas D, Libermann TA (2005) Gene signatures of progression and metastasis in renal cell cancer. Clin Cancer Res 11:5730–5739

    PubMed  CAS  Google Scholar 

  • Joseph RE, Walker J, Norris FA (1999) Assignment of the inositol polyphosphate 4-phosphatase type I gene (INPP4A) to human chromosome band 2q11.2 by in situ hybridization. Cytogenet Cell Genet 87:276–277

    PubMed  CAS  Google Scholar 

  • Jospin M, Watanabe S, Joshi D, Young S, Hamming K, Thacker C, Snutch TP, Jorgensen EM, Schuske K (2007) UNC-80 and the NCA ion channels contribute to endocytosis defects in synaptojanin mutants. Curr Biol 17:1595–1600

    PubMed  CAS  Google Scholar 

  • Joubert M, Eisenring J, Robb J, Andermann F (1969) Familial agenesis of the cerebellar vermis. A syndrome of episodic hyperpnea, abnormal eye movements, ataxia, and retardation. Neurology 19:813–825

    PubMed  CAS  Google Scholar 

  • Kagawa S, Sasaoka T, Yaguchi S, Ishihara H, Tsuneki H, Murakami S, Fukui K, Wada T, Kobayashi S, Kimura I, Kobayashi M (2005) Impact of SRC homology 2-containing inositol 5’-phosphatase 2 gene polymorphisms detected in a Japanese population on insulin signaling. J Clin Endocrinol Metab 90:2911–2919

    PubMed  CAS  Google Scholar 

  • Kagawa S, Soeda Y, Ishihara H, Oya T, Sasahara M, Yaguchi S, Oshita R, Wada T, Tsuneki H, Sasaoka T (2008) Impact of transgenic overexpression of SH2-containing inositol 5’-phosphatase 2 on glucose metabolism and insulin signaling in mice. Endocrinology 149:642–650

    PubMed  CAS  Google Scholar 

  • Kaisaki PJ, Delpine M, Woon PY, Sebag-Montefiore L, Wilder SP, Menzel S, Vionnet N, Marion E, Riveline JP, Charpentier G, Schurmans S, Levy JC, Lathrop M, Farrall M, Gauguier D (2004) Polymorphisms in type II SH2 domain-containing inositol 5-phosphatase (INPPL1, SHIP2) are associated with physiological abnormalities of the metabolic syndrome. Diabetes 53:1900–1904

    PubMed  CAS  Google Scholar 

  • Kalesnikoff J, Lam V, Krystal G (2002) SHIP represses mast cell activation and reveals that IgE alone triggers signaling pathways which enhance normal mast cell survival. Mol Immunol 38:1201–1206

    PubMed  CAS  Google Scholar 

  • Kamen LA, Levinsohn J, Swanson JA (2007) Differential association of phosphatidylinositol 3-kinase, SHIP-1, and PTEN with forming phagosomes. Mol Biol Cell 18:2463–2472

    PubMed  CAS  Google Scholar 

  • Karayiorgou M, Simon TJ, Gogos JA (2010) 22q11.2 microdeletions: linking DNA structural variation to brain dysfunction and schizophrenia. Nat Rev Neurosci 11:402–416

    PubMed  CAS  Google Scholar 

  • Kashiwada M, Cattoretti G, McKeag L, Rouse T, Showalter BM, Al-Alem U, Niki M, Pandolfi PP, Field EH, Rothman PB (2006) Downstream of tyrosine kinases-1 and Src homology 2-containing inositol 5’-phosphatase are required for regulation of CD4 + CD25+ T Cell development. J Immunol 176:3958–3965

    PubMed  CAS  Google Scholar 

  • Kasprowicz J, Kuenen S, Miskiewicz K, Habets RLP, Smitz L, Verstreken P (2008) Inactivation of clathrin heavy chain inhibits synaptic recycling but allows bulk membrane uptake. J Cell Biol 182:1007–1016

    PubMed  CAS  Google Scholar 

  • Kawano T, Indo Y, Nakazato H, Shimadzu M, Matsuda I (1998) Oculocerebrorenal syndrome of Lowe: three mutations in the OCRL1 gene derived from three patients with different phenotypes. Am J Med Genet 77:348–355

    PubMed  CAS  Google Scholar 

  • Kenworthy L, Park T, Charnas LR (1993) Cognitive and behavioral profile of the oculocerebrorenal syndrome of Lowe. Am J Med Genet 46:297–303

    PubMed  CAS  Google Scholar 

  • Kim B, Bang S, Lee S, Kim S, Jung Y, Lee C, Choi K, Lee S-G, Lee K, Lee Y, Kim S-S, Yeom Y-I, Kim Y-S, Yoo H-S, Song K, Lee I (2003) Expression profiling and subtype-specific expression of stomach cancer. Cancer Res 63:8248–8255

    PubMed  CAS  Google Scholar 

  • Kimura T, Sakamoto H, Appella E, Siraganian RP (1997) The negative signaling molecule SH2 domain-containing inositol-polyphosphate 5-phosphatase (SHIP) binds to the tyrosine-phosphorylated β subunit of the high affinity IgE receptor. J Biol Chem 272:13991–13996

    PubMed  CAS  Google Scholar 

  • Kisseleva MV, Cao L, Majerus PW (2002) Phosphoinositide-specific inositol polyphosphate 5-phosphatase IV inhibits Akt/protein kinase B phosphorylation and leads to apoptotic cell death. J Biol Chem 277:6266–6272

    PubMed  CAS  Google Scholar 

  • Kisseleva MV, Wilson MP, Majerus PW (2000) The isolation and characterization of a cDNA encoding phospholipid-specific inositol polyphosphate 5-phosphatase. J Biol Chem 275:20110–20116

    PubMed  CAS  Google Scholar 

  • Knodler LA, Steele-Mortimer O (2003) Taking possession: biogenesis of the Salmonella-containing vacuole. Traffic 4:587–599

    PubMed  CAS  Google Scholar 

  • Koch A, Mancini A, El Bounkari O, Tamura T (2005) The SH2-domian-containing inositol 5-phosphatase (SHIP)-2 binds to c-Met directly via tyrosine residue 1356 and involves hepatocyte growth factor (HGF)-induced lamellipodium formation, cell scattering and cell spreading. Oncogene 24:3436–3447

    PubMed  CAS  Google Scholar 

  • Kong AM, Horan KA, Sriratana A, Bailey CG, Collyer LJ, Nandurkar HH, Shisheva A, Layton MJ, Rasko JEJ, Rowe T, Mitchell CA (2006) Phosphatidylinositol 3-phosphate [PtdIns(3)P] is generated at the plasma membrane by an inositol polyphosphate 5-phosphatase: endogenous PtdIns(3)P can promote GLUT4 translocation to the plasma membrane. Mol Cell Biol 26:6065–6081

    PubMed  CAS  Google Scholar 

  • Kong AM, Speed CJ, O’Malley CJ, Layton MJ, Meehan T, Loveland KL, Cheema S, Ooms LM, Mitchell CA (2000) Cloning and characterization of a 72-kDa inositol-polyphosphate 5-phosphatase localized to the Golgi network. J Biol Chem 275:24052–24064

    PubMed  CAS  Google Scholar 

  • Konishi H, Takahashi T, Kozaki KI, Yatabe Y, Mitsudomi T, Fujii Y, Sugiura T, Matsuda H (1998) Detailed deletion mapping suggests the involvement of a tumor suppressor gene at 17p13.3, distal to p53, in the pathogenesis of lung cancers. Oncogene 17:2095–2100

    PubMed  CAS  Google Scholar 

  • Konrad G, Schlecker T, Faulhammer F, Mayinger P (2002) Retention of the yeast Sac1p phosphatase in the endoplasmic reticulum causes distinct changes in cellular phosphoinositide levels and stimulates microsomal ATP transport. J Biol Chem 277:10547–10554

    PubMed  CAS  Google Scholar 

  • Konradt C, Frigimelica E, Nothelfer K, Puhar A, Salgado-Pabon W, di Bartolo V, Scott-Algara D, Rodrigues Cristina D, Sansonetti Philippe J, Phalipon A (2011) The Shigella flexneri type three secretion system effector IpgD inhibits T cell migration by manipulating host phosphoinositide metabolism. Cell Host Microbe 9:263–272

    PubMed  CAS  Google Scholar 

  • Kortüm F, Das S, Flindt M, Morris-Rosendahl DJ, Stefanova I, Goldstein A, Horn D, Klopocki E, Kluger G, Martin P, Rauch A, Roumer A, Saitta S, Walsh LE, Wieczorek D, Uyanik G, Kutsche K, Dobyns WB (2011) The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet 48:396–406

    PubMed  Google Scholar 

  • Kubota T, Sakurai A, Arakawa K, Shirnazu M, Wakui K, Furihata K, Fukushirna Y (1998) Identification of two novel mutations in the OCRLI gene in Japanese families with Lowe syndrome. Clin Genet 54:199–202

    PubMed  CAS  Google Scholar 

  • Kuroda E, Antignano F, Ho VW, Hughes MR, Ruschmann J, Lam V, Kawakami T, Kerr WG, McNagny KM, Sly LM, Krystal G (2011) SHIP represses Th2 skewing by inhibiting IL-4 production from basophils. J Immunol 186:323–332

    PubMed  CAS  Google Scholar 

  • Kurose K, Hoshaw-Woodard S, Adeyinka A, Lemeshow S, Watson HP, Eng C (2001) Genetic model of multi-step breast carcinogenesis involving the epithelium and stroma: clues to tumour–microenvironment interactions. Hum Mol Genet 10:1907–1913

    PubMed  CAS  Google Scholar 

  • Labrec EH, Schneider H, Magnani TJ, Formal SB (1964) Epithelial cell penetration as an essential step in the pathogenesis of bacillary dysentery. J Bacteriol 88:1503–1518

    PubMed  CAS  Google Scholar 

  • Lai X-H, Golovliov I, Sjostedt A (2001) Francisella tularensis induces cytopathogenicity and apoptosis in murine macrophages via a mechanism that requires intracellular bacterial multiplication. Infect Immun 69:4691–4694

    PubMed  CAS  Google Scholar 

  • Lai X-H, Sjostedt A (2003) Delineation of the molecular mechanisms of Francisella tularensis-induced apoptosis in murine macrophages. Infect Immun 71:4642–4646

    PubMed  CAS  Google Scholar 

  • Lakhanpal GK, Vecchiarelli-Federico LM, Li YJ, Cui JW, Bailey ML, Spaner DE, Dumont DJ, Barber DL, Ben-David Y (2010) The inositol phosphatase SHIP-1 is negatively regulated by Fli-1 and its loss accelerates leukemogenesis. Blood 116:428–436

    PubMed  CAS  Google Scholar 

  • Lamkin TD, Walk SF, Liu L, Damen JE, Krystal G, Ravichandran KS (1997) Shc interaction with Src homology two domain containing inositol phosphatase (SHIP) in vivo requires the Shc-phosphotyrosine binding domain and two specific phosphotyrosines on SHIP. J Biol Chem 272:10396–10401

    PubMed  CAS  Google Scholar 

  • Lamont JM, McManamy CS, Pearson AD, Clifford SC, Ellison DW (2004) Combined histopathological and molecular cytogenetic stratification of medulloblastoma patients. Clin Cancer Res 10:5482–5493

    PubMed  CAS  Google Scholar 

  • LaTulippe E, Satagopan J, Smith A, Scher H, Scardino P, Reuter V, Gerald WL (2002) Comprehensive gene expression analysis of prostate cancer reveals distinct transcriptional programs associated with metastatic disease. Cancer Res 62:4499–4506

    PubMed  CAS  Google Scholar 

  • Laxminarayan KM, Chan BK, Tetaz T, Bird PI, Mitchell CA (1994) Characterization of a cDNA encoding the 43-kDa membrane-associated inositol-polyphosphate 5-phosphatase. J Biol Chem 269:17305–17310

    PubMed  CAS  Google Scholar 

  • Laxminarayan KM, Matzaris M, Speed CJ, Mitchell CA (1993) Purification and characterization of a 43-kDa membrane-associated inositol polyphosphate 5-phosphatase from human placenta. J Biol Chem 269:17305–17310

    Google Scholar 

  • Leahey A-M, Charnas LR, Nussbaum RL (1993) Nonsense mutations in the OCRL-1 gene in patients with the oculocerebrorenal syndrome of Lowe. Hum Mol Genet 2:461–463

    PubMed  CAS  Google Scholar 

  • Lee SH, Davison JA, Vidal SM, Belouchi A (2001) Cloning, expression and chromosomal location of NKX6B to 10q26, a region frequently deleted in brain tumors. Mamm Genome 12:157–162

    PubMed  CAS  Google Scholar 

  • Lee SY, Wenk MR, Kim Y, Nairn AC, De Camilli P (2004) Regulation of synaptojanin 1 by cyclin-dependent kinase five at synapses. Proc Natl Acad Sci U S A 101:546–551

    PubMed  CAS  Google Scholar 

  • Leheste J-R, Rolinski B, Vorum H, Hilpert J, Nykjaer A, Jacobsen C, Aucouturier P, Moskaug JØ, Otto A, Christensen EI, Willnow TE (1999) Megalin knockout mice as an animal model of low molecular weight proteinuria. Am J Pathol 155:1361–1370

    PubMed  CAS  Google Scholar 

  • Lenk GM, Ferguson CJ, Chow CY, Jin N, Jones JM, Grant AE, Zolov SN, Winters JJ, Giger RJ, Dowling JJ, Weisman LS, Meisler MH (2011) Pathogenic Mechanism of the FIG4 mutation responsible for charcot-marie-tooth disease CMT4J. PLoS Genet 7:e1002104

    PubMed  CAS  Google Scholar 

  • Leone M, Cellitti J, Pellecchia M (2008) NMR studies of a heterotypic Sam–Sam domain association: the interaction between the lipid phosphatase Ship2 and the EphA2 receptor. Biochemistry 47:12721–12728

    PubMed  CAS  Google Scholar 

  • Lin T, Orrison BM, Suchy SF, Lewis RA, Nussbaum RL (1998) Mutations are not uniformly distributed throughout the OCRL1 gene in Lowe syndrome patients. Mol Genet Metab 64:58–61

    PubMed  CAS  Google Scholar 

  • Liu Q, Dumont DJ (1997) Molecular cloning and chromosomal localization in human and mouse of the SH2-containing inositol phosphatase, INPP5D (SHIP). Genomics 39:109–112

    PubMed  CAS  Google Scholar 

  • Liu Q, Oliveira-Dos-Santos AJ, Mariathasan S, Bouchard D, Jones J, Sarao R, Kozieradzki I, Ohashi PS, Penninger JM, Dumont DJ (1998a) The inositol polyphosphate 5-phosphatase Ship is a crucial negative regulator of B cell antigen receptor signaling. J Exp Med 188:1333–1342

    PubMed  CAS  Google Scholar 

  • Liu Q, Sasaki T, Kozieradzki I, Wakeham A, Itie A, Dumont DJ, Penninger JM (1999) SHIP is a negative regulator of growth factor receptor-mediated PKB/Akt activation and myeloid cell survival. Genes Dev 13:786–791

    PubMed  CAS  Google Scholar 

  • Liu Q, Shalaby F, Jones J, Bouchard D, Dumont DJ (1998b) The SH2-containing inositol polyphosphate 5-phosphatase, ship, is expressed during hematopoiesis and spermatogenesis. Blood 91:2753–2759

    PubMed  CAS  Google Scholar 

  • Liu Y, Bankaitis VA (2010) Phosphoinositide phosphatases in cell biology and disease. Prog Lipid Res 49:201–217

    PubMed  CAS  Google Scholar 

  • Liu Y, Boukhelifa M, Tribble E, Morin-Kensicki E, Uetrecht A, Bear JE, Bankaitis VA (2008) The Sac1 phosphoinositide phosphatase regulates Golgi membrane morphology and mitotic spindle organization in mammals. Mol Biol Cell 19:3080–3096

    Google Scholar 

  • Lo TC, Barnhill LM, Kim Y, Nakae EA, Yu AL, Diccianni MB (2009) Inactivation of SHIP1 in T-cell acute lymphoblastic leukemia due to mutation and extensive alternative splicing. Leuk Res 33:1562–1566

    PubMed  CAS  Google Scholar 

  • López-Pedrera C, Barbarroja N, Villalba JM (2009) Novel biomarkers of atherosclerosis and cardiovascular risk in autoimmune diseases: genomics and proteomics approaches poteomics. Clin Appl 3:213–225

    Google Scholar 

  • Lowe C, Terrey M, Maclachlan EA (1952) Organic-aciduria, decreased renal ammonia production, hydrophthalmos, and mental retardation: a clinical entity. AMA Am J Dis Child 83:164–184

    PubMed  CAS  Google Scholar 

  • Lucas DM, Rohrschneider LR (1999) A novel spliced form of SH2-containing inositol phosphatase is expressed during myeloid development. Blood 93:1922–1933

    PubMed  CAS  Google Scholar 

  • Luo JM, Liu ZL, Hao HL, Wang FX, Dong ZR, Ohno R (2004) Mutation analysis of SHIP gene in acute leukemia. Zhongguo Shi Yan Xue Ye Xue Za Zhi 12:420–426

    PubMed  CAS  Google Scholar 

  • Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K, Hanamura I, Miura K, Iida S, Ueda R, Naoe T, Akao Y, Ohno R, Ohnishi K (2003) Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 17:1–8

    PubMed  CAS  Google Scholar 

  • MacKeigan JP, Murphy LO, Blenis J (2005) Sensitized RNAi screen of human kinases and phosphatases identifies new regulators of apoptosis and chemoresistance. Nat Cell Biol 7:591–600

    PubMed  CAS  Google Scholar 

  • Maeda K, Mehta H, Drevets DA, Coggeshall KM (2010) IL-6 increases B-cell IgG production in a feed-forward proinflammatory mechanism to skew hematopoiesis and elevate myeloid production. Blood 115:4699–4706

    PubMed  CAS  Google Scholar 

  • Maher CA, Kumar-Sinha C, Cao X, Kalyana-Sundaram S, Han B, Jing X, Sam L, Barrette T, Palanisamy N, Chinnaiyan AM (2009) Transcriptome sequencing to detect gene fusions in cancer. Nature 458:97–101

    PubMed  CAS  Google Scholar 

  • Malecz N, McCabe PC, Spaargaren C, Qiu R-G, Chuang Y, Symons M (2000) Synaptojanin 2, a novel Rac1 effector that regulates clathrin-mediated endocytosis. Curr Biol 10:1383–1386

    PubMed  CAS  Google Scholar 

  • Mallo GV, Espina M, Smith AC, Terebiznik MR, Alemán A, Finlay BB, Rameh LE, Grinstein S, Brumell JH (2008) SopB promotes phosphatidylinositol 3-phosphate formation on Salmonella vacuoles by recruiting Rab5 and Vps34. J Cell Biol 182:741–752

    PubMed  CAS  Google Scholar 

  • Manford A, Xia T, Saxena AK, Stefan C, Hu F, Emr SD, Mao Y (2010) Crystal structure of the yeast Sac1: implications for its phosphoinositide phosphatase function. EMBO J 29:1489–1498

    PubMed  CAS  Google Scholar 

  • Mani M, Lee SY, Lucast L, Cremona O, Di Paolo G, De Camilli P, Ryan TA (2007) The dual phosphatase activity of synaptojanin1 is required for both efficient synaptic vesicle endocytosis and reavailability at nerve terminals. Neuron 56:1004–1018

    PubMed  CAS  Google Scholar 

  • Manji SSM, Williams LH, Miller KA, Ooms LM, Bahlo M, Mitchell CA, Dahl H-HM (2011) A mutation in synaptojanin 2 causes progressive hearing loss in the ENU-mutagenised mouse strain Mozart. PLoS ONE 6:e17607

    PubMed  CAS  Google Scholar 

  • Mantovani A, Sica A, Locati M (2007) New vistas on macrophage differentiation and activation. Eur J Immunol 37:14–16

    PubMed  CAS  Google Scholar 

  • Mao Y, Balkin DM, Zoncu R, Erdmann KS, Tomasini L, Hu F, Jin MM, Hodsdon ME, De Camilli P (2009) A PH domain within OCRL bridges clathrin-mediated membrane trafficking to phosphoinositide metabolism. EMBO J 28:1831–1842

    PubMed  CAS  Google Scholar 

  • Marcello MR, Evans JP (2010) Multivariate analysis of male reproductive function in Inpp 5b−/− mice reveals heterogeneity in defects in fertility, sperm–egg membrane interaction and proteolytic cleavage of sperm ADAMs. Mol Hum Reprod 16:492–505

    PubMed  CAS  Google Scholar 

  • Marcus SL, Wenk MR, Steele-Mortimer O, Finlay BB (2001) A synaptojanin-homologous region of Salmonella typhimurium SigD is essential for inositol phosphatase activity and Akt activation. FEBS Lett 494:201–207

    PubMed  CAS  Google Scholar 

  • Marion E, Kaisaki PJ, Pouillon V, Gueydan C, Levy JC, Bodson A, Krzentowski G, Daubresse JC, Mockel J, Behrends J, Servais G, Szpirer C, Kruys V, Gauguier D, Schurmans S (2002) The gene INPPL1, encoding the lipid phosphatase SHIP2, is a candidate for type 2 diabetes in rat and man. Diabetes 51:2012–2017

    PubMed  CAS  Google Scholar 

  • Marjanovic J, Wilson MP, Zhang C, Zou J, Nicholas P, Majerus PW (2011) The role of inositol polyphosphate 4-phosphatase 1 in platelet function using a weeble mouse model. Adv Enzyme Regul 51:101–105

    PubMed  CAS  Google Scholar 

  • Marza E, Long T, Saiardi A, Sumakovic M, Eimer S, Hall DH, Lesa GM (2008) Polyunsaturated fatty acids influence synaptojanin localization to regulate synaptic vesicle recycling. Mol Biol Cell 19:833–842

    PubMed  CAS  Google Scholar 

  • Matzaris M, Jackson SP, Laxminarayan KM, Speed CJ, Mitchell CA (1994) Identification and characterization of the phosphatidylinositol-(4, 5)-bisphosphate 5-phosphatase in human platelets. J Biol Chem 269:3397–3402

    PubMed  CAS  Google Scholar 

  • Matzaris M, O’Malley CJ, Badger A, Speed CJ, Bird PI, Mitchell CA (1998) Distinct membrane and cytosolic forms of inositol polyphosphate 5-phosphatase II. J Biol Chem 273:8256–8267

    PubMed  CAS  Google Scholar 

  • Maxwell MJ, Yuan Y, Anderson KE, Hibbs ML, Salem HH, Jackson SP (2004) SHIP1 and Lyn kinase negatively regulate integrin αIIbβ3 signaling in platelets. J Biol Chem 279:32196–32204

    PubMed  CAS  Google Scholar 

  • McPherson PS, Garcia EP, Slepnev VI, David C, Zhang X, Grabs D, Sossini WS, Bauerfeind R, Nemoto Y, De Camilli P (1996) A presynaptic inositol-5-phosphatase. Nature 379:353–357

    PubMed  CAS  Google Scholar 

  • Metzner A, Precht C, Fehse B, Fiedler W, Stocking C, Günther A, Mayr GW, Jücker M (2009) Reduced proliferation of CD34(+) cells from patients with acute myeloid leukemia after gene transfer of INPP5D. Gene Ther 16:570–573

    PubMed  CAS  Google Scholar 

  • Miletic AV, Anzelon-Mills AN, Mills DM, Omori SA, Pedersen IM, Shin D-M, Ravetch JV, Bolland S, Morse HC, Rickert RC (2010) Coordinate suppression of B cell lymphoma by PTEN and SHIP phosphatases. J Exp Med 207:2407–2420

    PubMed  CAS  Google Scholar 

  • Milosevic I, Sorensen JB, Lang T, Krauss M, Nagy GB, Haucke V, Jahn R, Neher E (2005) Plasmalemmal phosphatidylinositol-4,5-bisphosphate level regulates the releasable vesicle pool size in chromaffin cells. J Neurosci 25:2557–2565

    PubMed  CAS  Google Scholar 

  • Minagawa T, Ijuin T, Mochizuki Y, Takenawa T (2001) Identification and characterization of a Sac domain-containing phosphoinositide 5-phosphatase. J Biol Chem 276:22011–22015

    PubMed  CAS  Google Scholar 

  • Mitchell CA, Connolly TM, Majerus PW (1989) Identification and isolation of a 75-kDa inositol polyphosphate-5-phosphatase from human platelets. J Biol Chem 264:8873–8877

    PubMed  CAS  Google Scholar 

  • Mochizuki Y, Takenawa T (1999) Novel inositol polyphosphate 5-phosphatase localizes at membrane ruffles. J Biol Chem 274:36790–36795

    PubMed  CAS  Google Scholar 

  • Munday AD, Norris FA, Caldwell KK, Brown S, Majerus PW, Mitchell CA (1999) The inositol polyphosphate 4-phosphatase forms a complex with phosphatidylinositol 3-kinase in human platelet cytosol. Proc Natl Acad Sci U S A 96:3640–3645

    PubMed  CAS  Google Scholar 

  • Muraille E, Dassesse D, Vanderwinden JM, Cremer H, Rogister B, Erneux C, Schiffmann SN (2001) The SH2 domain-containing 5-phosphatase SHIP2 is expressed in the germinal layers of embryo and adult mouse brain: increased expression in N-CAM-deficient mice. Neuroscience 105:1019–1030

    PubMed  CAS  Google Scholar 

  • Nakamura K, Malykhin A, Coggeshall KM (2002) The Src homology two domain-containing inositol 5-phosphatase negatively regulates Fcγ receptor-mediated phagocytosis through immunoreceptor tyrosine-based activation motif-bearing phagocytic receptors. Blood 100:3374–3382

    PubMed  CAS  Google Scholar 

  • Nakatsu F, Perera RM, Lucast L, Zoncu R, Domin J, Gertler FB, Toomre D, De Camilli P (2010) The inositol 5-phosphatase SHIP2 regulates endocytic clathrin-coated pit dynamics. J Cell Biol 190:307–315

    PubMed  CAS  Google Scholar 

  • Naylor T, Greshock J, Wang Y, Colligon T, Yu QC, Clemmer V, Zaks T, Weber B (2005) High resolution genomic analysis of sporadic breast cancer using array-based comparative genomic hybridization. Breast Cancer Res 7:1–13

    Google Scholar 

  • Neill L, Tien AH, Rey-Ladino J, Helgason CD (2007) SHIP-deficient mice provide insights into the regulation of dendritic cell development and function. Exp Hematol 35:627–639

    PubMed  CAS  Google Scholar 

  • Nemoto Y, Arribas M, Haffner C, DeCamilli P (1997) Synaptojanin 2, a novel synaptojanin isoform with a distinct targeting domain and expression pattern. J Biol Chem 272:30817–30821

    PubMed  CAS  Google Scholar 

  • Nemoto Y, De Camilli P (1999) Recruitment of an alternatively spliced form of synaptojanin 2 to mitochondria by the interaction with the PDZ domain of a mitochondrial outer membrane protein. EMBO J 18:2991–3006

    PubMed  CAS  Google Scholar 

  • Nemoto Y, Kearns BG, Wenk MR, Chen H, Mori K, Alb JG, De Camilli P, Bankaitis VA (2000) Functional characterization of a mammalian Sac1 and mutants exhibiting substrate-specific defects in phosphoinositide phosphatase activity. J Biol Chem 275:34293–34305

    PubMed  CAS  Google Scholar 

  • Nemoto Y, Wenk MR, Watanabe M, Daniell L, Murakami T, Ringstad N, Yamada H, Takei K, De Camilli P (2001) Identification and characterization of a synaptojanin 2 splice isoform predominantly expressed in nerve terminals. J Biol Chem 276:41133–41142

    PubMed  CAS  Google Scholar 

  • Nguyen N-YN, Maxwell MJ, Ooms LM, Davies EM, Hilton AA, Collinge JE, Hilton DJ, Kile BT, Mitchell CA, Hibbs ML, Jane SM, Curtis DJ (2011) An ENU-induced mouse mutant of SHIP1 reveals a critical role of the stem cell isoform for suppression of macrophage activation. Blood 117:5362–5371

    PubMed  CAS  Google Scholar 

  • Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F, Sable J, Sheetz MP, Parsot C, Sansonetti PJ, Payrastre B (2002) Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S.flexneri effector IpgD reorganizes host cell morphology. EMBO J 21:5069–5078

    PubMed  CAS  Google Scholar 

  • Niebuhr K, Jouihri N, Allaoui A, Gounon P, Sansonetti PJ, Parsot C (2000) IpgD, a protein secreted by the type III secretion machinery of Shigella flexneri, is chaperoned by IpgE and implicated in entry focus formation. Mol Microbiol 38:8–19

    PubMed  CAS  Google Scholar 

  • Nigg EA, Raff JW (2009) Centrioles, centrosomes, and cilia in health and disease. Cell 139:663–678

    PubMed  CAS  Google Scholar 

  • Nishio M, Watanabe K, Sasaki J, Taya C, Takasuga S, Iizuka R, Balla T, Yamazaki M, Watanabe H, Itoh R, Kuroda S, Horie Y, Förster I, Mak TW, Yonekawa H, Penninger JM, Kanaho Y, Suzuki A, Sasaki T (2007) Control of cell polarity and motility by the PtdIns(3,4,5)P3 phosphatase SHIP1. Nat Cell Biol 9:36–44

    PubMed  CAS  Google Scholar 

  • Noakes CJ, Lee G, Lowe M (2011) The PH domain proteins IPIP27A and B link OCRL1 to receptor recycling in the endocytic pathway. Mol Biol Cell 22:606–623

    PubMed  CAS  Google Scholar 

  • Norden AGW, Lapsley M, Igarashi T, Kelleher CL, Lee PJ, Matsuyama T, Scheinman SJ, Shiraga H, Sundin DP, Thakker RV, Unwin RJ, Verroust P, Moestrup SK (2002) Urinary megalin deficiency implicates abnormal tubular endocytic function in fanconi syndrome. J Am Soc Nephrol 13:125–133

    PubMed  CAS  Google Scholar 

  • Norris FA, Atkins RC, Majerus PW (1997a) The cDNA cloning and characterization of inositol polyphosphate 4- phosphatase type II. Evidence for conserved alternative splicing in the 4- phosphatase family. J Biol Chem 272:23859–23864

    PubMed  CAS  Google Scholar 

  • Norris FA, Atkins RC, Majerus PW (1997b) Inositol polyphosphate 4-phosphatase is inactivated by calpain-mediated proteolysis in stimulated human platelets. J Biol Chem 272:10987–10989

    PubMed  CAS  Google Scholar 

  • Norris FA, Auethavekiat V, Majerus PW (1995) The isolation and characterization of cDNA encoding human and rat brain inositol polyphosphate 4-phosphatase. J Biol Chem 270:16128–16133

    PubMed  CAS  Google Scholar 

  • Norris FA, Majerus PW (1994) Hydrolysis of phosphatidylinositol 3,4-bisphosphate by inositol polyphosphate 4-phosphatase isolated by affinity elution chromatography. J Biol Chem 269:8716–8720

    PubMed  CAS  Google Scholar 

  • Norris FA, Wilson MP, Wallis TS, Galyov EE, Majerus PW (1998) SopB, a protein required for virulence of Salmonella Dublin, is an inositol phosphate phosphatase. Proc Natl Acad Sci U S A 95:14057–14059

    PubMed  CAS  Google Scholar 

  • Novick P, Osmond BC, Botstein D (1989) Suppressors of yeast actin mutations. Genetics 121:659–674

    PubMed  CAS  Google Scholar 

  • Nystuen A, Legare ME, Shultz LD, Frankel WN (2001) A null mutation in inositol polyphosphate 4-phosphatase type I causes selective neuronal loss in weeble mutant mice. Neuron 32:203–212

    PubMed  CAS  Google Scholar 

  • O’Connell RM, Chaudhuri AA, Rao DS, Baltimore D (2009) Inositol phosphatase SHIP1 is a primary target of miR-155. Proc Natl Acad Sci U S A 106:7113–7118

    PubMed  Google Scholar 

  • Oh S-Y, Zheng T, Bailey ML, Barber DL, Schroeder JT, Kim Y-K, Zhu Z (2007) Src homology 2 domain-containing inositol 5-phosphatase 1 deficiency leads to a spontaneous allergic inflammation in the murine lung. J Allergy Clin Immunol 119:123–131

    PubMed  CAS  Google Scholar 

  • Olivos-Glander I, Jänne P, Nussbaum R (1995) The oculocerebrorenal syndrome gene product is a 105-kD protein localized to the Golgi complex. Am J Hum Genet 57:817–823

    PubMed  CAS  Google Scholar 

  • Ong CJ, Ming-Lum A, Nodwell M, Ghanipour A, Yang L, Williams DE, Kim J, Demirjian L, Qasimi P, Ruschmann J, Cao LP, Ma K, Chung SW, Duronio V, Andersen RJ, Krystal G, Mui AL (2007) Small-molecule agonists of SHIP1 inhibit the phosphoinositide 3-kinase pathway in hematopoietic cells. Blood 110:1942–1949

    PubMed  CAS  Google Scholar 

  • Ooms LM, Fedele CG, Astle MV, Ivetac I, Cheung V, Pearson RB, Layton MJ, Forrai A, Nandurkar HH, Mitchell CA (2006) The inositol polyphosphate 5-phosphatase, PIPP, is a novel regulator of phosphoinositide 3-kinase-dependent neurite elongation. Mol Biol Cell 17:607–622

    PubMed  CAS  Google Scholar 

  • Osborne MA, Zenner G, Lubinus M, Zhang X, Songyang Z, Cantley LC, Majerus P, Burn P, Kochan JP (1996) The inositol 5′-phosphatase SHIP binds to immunoreceptor signaling motifs and responds to high affinity IgE receptor aggregation. J Biol Chem 271:29271–29278

    PubMed  CAS  Google Scholar 

  • Ou Z, Berg JS, Yonath H, Enciso VB, Miller DT, Picker J, Lenzi T, Keegan CE, Sutton VR, Belmont J, Chinault AC, Lupski JR, Cheung SW, Roeder E, Patel A (2008) Microduplications of 22q11.2 are frequently inherited and are associated with variable phenotypes. Genet Med 10:267–277

    PubMed  Google Scholar 

  • Palomo I, Alarcon M, Moore-Carrasco R, Argiles JM (2006) Hemostasis alterations in metabolic syndrome. Int J Mol Med 18:969–974

    PubMed  CAS  Google Scholar 

  • Paolo GD, Moskowitz HS, Gipson K, Wenk MR, Voronov S, Obayashi M, Flavell R, Fitzsimonds RM, Ryan TA, Camilli PD (2004) Impaired PtdIns(4,5)P2 synthesis in nerve terminals produces defects in synaptic vesicle trafficking. Nature 431:415–422

    PubMed  Google Scholar 

  • Parker JA, Metzler M, Georgiou J, Mage M, Roder JC, Rose AM, Hayden MR, Neri C (2007) Huntingtin-interacting protein 1 influences worm and mouse presynaptic function and protects caenorhabditis elegans neurons against mutant polyglutamine toxicity. J Neurosci 27:11056–11064

    PubMed  CAS  Google Scholar 

  • Parrella P, Scintu M, Prencipe M, Poeta ML, Gallo AP, Rabitti C, Rinaldi M, Tommasi S, Paradiso A, Schittulli F, Valori VM, Toma S, Altomare V, Fazio VM (2005) HIC1 promoter methylation and 17p13.3 allelic loss in invasive ductal carcinoma of the breast. Cancer Lett 222:75–81

    PubMed  CAS  Google Scholar 

  • Parsa KV, Ganesan LP, Rajaram MV, Gavrilin MA, Balagopal A, Mohapatra NP, Wewers MD, Schlesinger LS, Gunn JS, Tridandapani S (2006) Macrophage pro-inflammatory response to Francisella novicida infection is regulated by SHIP. PLoS Pathog 2:e71

    PubMed  Google Scholar 

  • Paternotte N, Zhang J, Vandenbroere I, Backers K, Blero D, Kioka N, Vanderwinden JM, Pirson I, Erneux C (2005) SHIP2 interaction with the cytoskeletal protein Vinexin. FEBS J 272:6052–6066

    PubMed  CAS  Google Scholar 

  • Patterson D (2009) Molecular genetic analysis of Down syndrome. Hum Genet 126:195–214

    PubMed  CAS  Google Scholar 

  • Pedersen IM, Otero D, Kao E, Miletic AV, Hother C, Ralfkiaer E, Rickert RC, Gronbaek K, David M (2009) Onco-miR-155 targets SHIP1 to promote TNFα-dependent growth of B cell lymphomas. EMBO Mol Med 1:288–295

    PubMed  CAS  Google Scholar 

  • Pendaries C, Tronchère H, Arbibe L, Mounier J, Gozani O, Cantley L, Fry MJ, Gaits-Iacovoni F, Sansonetti PJ, Payrastre B (2006) PtdIns(5)P activates the host cell PI3-kinase/Akt pathway during Shigella flexneri infection. EMBO J 25:1024–1034

    PubMed  CAS  Google Scholar 

  • Peng Q, Malhotra S, Torchia JA, Kerr WG, Coggeshall KM, Humphrey MB (2010) TREM2- and DAP12-dependent activation of PI3 K requires DAP10 and is inhibited by SHIP1. Sci Signal 3:ra38

    Google Scholar 

  • Perera RM, Zoncu R, Lucast L, De Camilli P, Toomre D (2006) Two synaptojanin 1 isoforms are recruited to clathrin-coated pits at different stages. Proc Natl Acad Sci U S A 103:19332–19337

    PubMed  CAS  Google Scholar 

  • Pernot E, Terryn S, Cheong S, Markadieu N, Janas S, Blockmans M, Jacoby M, Pouillon V, Gayral S, Rossier B, Beauwens R, Erneux C, Devuyst O, Schurmans S (2011) The inositol Inpp5k 5-phosphatase affects osmoregulation through the vasopressin-aquaporin 2 pathway in the collecting system. Pflügers Archiv Eur J Physiol 462(6):871-883

    Google Scholar 

  • Pesesse X, Deleu S, De Smedt F, Drayer L, Erneux C (1997) Identification of a second SH2-domain-containing protein closely related to the phosphatidylinositol polyphosphate 5-phosphatase SHIP. Biochem Biophys Res Commun 239:697–700

    PubMed  CAS  Google Scholar 

  • Peverall J, Edkins E, Goldblatt J, Murch A (2000) Identification of a novel deletion of the entire OCRL1 gene detected by FISH analysis in a family with Lowe syndrome. Clin Genet 58:479–482

    PubMed  CAS  Google Scholar 

  • Pirruccello M, Swan LE, Folta-Stogniew E, De Camilli P (2011) Recognition of the F&H motif by the Lowe syndrome protein OCRL. Nat Struct Mol Biol 18:789–795

    PubMed  CAS  Google Scholar 

  • Pixley FJ, Stanley ER (2004) CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–638

    PubMed  CAS  Google Scholar 

  • Poretti A, Dietrich-Alber F, Brancati F, Dallapiccola B, Valente EM, Boltshauser E (2009) Normal cognitive functions in Joubert syndrome. Neuropediatrics 40:287–290

    PubMed  CAS  Google Scholar 

  • Prasad N, Topping RS, Decker SJ (2001) SH2-containing inositol 5’-phosphatase SHIP2 associates with the p130(Cas) adapter protein and regulates cellular adhesion and spreading. Mol Cell Biol 21:1416–1428

    PubMed  CAS  Google Scholar 

  • Prasad NK, Decker SJ (2005) SH2-containing 5’-inositol phosphatase, SHIP2, regulates cytoskeleton organization and ligand-dependent down-regulation of the epidermal growth factor receptor. J Biol Chem 280:13129–13136

    PubMed  CAS  Google Scholar 

  • Prasad NK, Tandon M, Badve S, Snyder PW, Nakshatri H (2008a) Phosphoinositol phosphatase SHIP2 promotes cancer development and metastasis coupled with alterations in EGF receptor turnover. Carcinogenesis 29:25–34

    PubMed  CAS  Google Scholar 

  • Prasad NK, Tandon M, Handa A, Moore GE, Babbs CF, Snyder PW, Bose S (2008b) High expression of obesity-linked phosphatase SHIP2 in invasive breast cancer correlates with reduced disease-free survival. Tumour Biol 29:330–341

    PubMed  CAS  Google Scholar 

  • Prasad NK, Werner ME, Decker SJ (2009) Specific tyrosine phosphorylations mediate signal-dependent stimulation of SHIP2 inositol phosphatase activity, while the SH2 domain confers an inhibitory effect to maintain the basal activity. Biochemistry 48:6285–6287

    PubMed  CAS  Google Scholar 

  • Quade BJ, Wang T-Y, Sornberger K, Cin PD, Mutter GL, Morton CC (2004) Molecular pathogenesis of uterine smooth muscle tumors from transcriptional profiling. Genes Chromosom Cancer 40:97–108

    PubMed  CAS  Google Scholar 

  • Qualmann B, Roos J, DiGregorio PJ, Kelly RB (1999) Syndapin I, a synaptic dynamin-binding protein that associates with the neural Wiskott–Aldrich syndrome protein. Mol Biol Cell 10:501–513

    PubMed  CAS  Google Scholar 

  • Raaijmakers JH, Deneubourg L, Rehmann H, de Koning J, Zhang Z, Krugmann S, Erneux C, Bos JL (2007) The PI3K effector Arap3 interacts with the PI(3,4,5)P3 phosphatase SHIP2 in a SAM domain-dependent manner. Cell Signal 19:1249–1257

    PubMed  CAS  Google Scholar 

  • Rahman P, Huysmans RD, Wiradjaja F, Gurung R, Ooms LM, Sheffield DA, Dyson JM, Layton MJ, Sriratana A, Takada H, Tiganis T, Mitchell CA (2011) Silencer of death domains (SODD) inhibits skeletal muscle and kidney enriched inositol phosphatase (SKIP) and regulates phosphoinositide 3-kinase (PI3K)/Akt signalling to the actin cytoskeleton. J Biol Chem 286(34):29758–29770

    Google Scholar 

  • Rajaram MVS, Butchar JP, Parsa KVL, Cremer TJ, Amer A, Schlesinger LS, Tridandapani S (2009) Akt and SHIP modulate Francisella escape from the phagosome and induction of the Fas-mediated death pathway. PLoS ONE 4:e7919

    PubMed  Google Scholar 

  • Ramaswamy S, Ross KN, Lander ES, Golub TR (2003) A molecular signature of metastasis in primary solid tumors. Nat Genet 33:49–54

    PubMed  CAS  Google Scholar 

  • Ramjaun AR, McPherson PS (1996) Tissue-specific alternative splicing generates two synaptojanin isoforms with differential membrane binding properties. J Biol Chem 271:24856–24861

    PubMed  CAS  Google Scholar 

  • Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A, Krystal G (2005) SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374

    PubMed  CAS  Google Scholar 

  • Richard F, Pacyna-Gengelbach M, Schlüns K, Fleige B, Winzer KJ, Szymas J, Dietel M, Petersen I, Schwendel A (2000) Patterns of chromosomal imbalances in invasive breast cancer. Int J Cancer 89:305–310

    PubMed  CAS  Google Scholar 

  • Ringstad N, Nemoto Y, De Camilli P (1997) The SH3p4/Sh3p8/SH3p13 protein family: binding partners for synaptojanin and dynamin via a Grb2-like Src homology 3 domain. Proc Natl Acad Sci U S A 94:8569–8574

    PubMed  CAS  Google Scholar 

  • Risio M, Casorzo L, et al (2003) Deletions of 17p are associated with transition from early to advanced colorectal cancer. Cancer Gene Cytogenet 147(1):44–49

    Google Scholar 

  • Rivas MP, Kearns BG, Xie Z, Guo S, Sekar MC, Hosaka K, Kagiwada S, York JD, Bankaitis VA (1999) Pleiotropic alterations in lipid metabolism in yeast sac1 mutants: relationship to “Bypass Sec14p” and inositol auxotrophy. Mol Biol Cell 10:2235–2250

    PubMed  CAS  Google Scholar 

  • Rodríguez-Escudero I, Ferrer NL, Rotger R, Cid VJ, Molina M (2011) Interaction of the Salmonella Typhimurium effector protein SopB with host cell Cdc42 is involved in intracellular replication. Mol Microbiol 80:1220–1240

    PubMed  Google Scholar 

  • Rodriguez-Gabin AG, Ortiz E, Demoliner K, Si Q, Almazan G, Larocca JN (2010) Interaction of Rab31 and OCRL-1 in oligodendrocytes: its role in transport of mannose 6-phosphate receptors. J Neurosci Res 88:589–604

    PubMed  CAS  Google Scholar 

  • Roget K, Malissen M, Malbec O, Malissen B, Daëron M (2008) Non-T cell activation linker promotes mast cell survival by dampening the recruitment of SHIP1 by linker for activation of T cells. J Immunol 180:3689–3698

    PubMed  CAS  Google Scholar 

  • Rohde HM, Cheong FY, Konrad G, Paiha K, Mayinger P, Boehmelt G (2003) The human phosphatidylinositol phosphatase SAC1 interacts with the coatomer I complex. J Biol Chem 278:52689–52699

    PubMed  CAS  Google Scholar 

  • Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM (2000) Structure, function, and biology of SHIP proteins. Genes Dev 14:505–520

    PubMed  CAS  Google Scholar 

  • Roongapinun S, Oh S-Y, Wu F, Panthong A, Zheng T, Zhu Z (2010) Role of SHIP-1 in the adaptive immune responses to aeroallergen in the airway. PLoS ONE 5:e14174

    PubMed  CAS  Google Scholar 

  • Roos J, Kelly RB (1998) Dap160, a neural-specific Eps15 homology and multiple SH3 domain-containing protein that interacts with Drosophila Dynamin. J Biol Chem 273:19108–19119

    PubMed  CAS  Google Scholar 

  • Ross TS, Jefferson AB, Mitchell CA, Majerus PW (1991) Cloning and expression of human 75-kDa inositol polyphosphate-5-phosphatase. J Biol Chem 266:20283–20289

    PubMed  CAS  Google Scholar 

  • Rudge SA, Anderson DM, Emr SD (2004) Vacuole size control: regulation of PtdIns(3,5)P2 levels by the vacuole-associated Vac14–Fig4 complex, a PtdIns(3,5)P2-specific phosphatase. Mol Biol Cell 15:24–36

    PubMed  CAS  Google Scholar 

  • Ruschmann J, Ho V, Antignano F, Kuroda E, Lam V, Ibaraki M, Snyder K, Kim C, Flavell RA, Kawakami T, Sly L, Turhan AG, Krystal G (2010) Tyrosine phosphorylation of SHIP promotes its proteasomal degradation. Exp Hematol 38(392–402):402 e1

    Google Scholar 

  • Rusk N, Le PU, Mariggio S, Guay G, Lurisci C, Nabi IR, Corda D, Symons M (2003) Synaptojanin 2 functions at an early step of clathrin-mediated endocytosis. Curr Biol 13:659–663

    PubMed  CAS  Google Scholar 

  • Sachs AJ, David SA, Haider NB, Nystuen AM (2009) Patterned neuroprotection in the Inpp4awbl mutant mouse cerebellum correlates with the expression of Eaat4. PLoS ONE 4

    Google Scholar 

  • Sakisaka T, Itoh T, Miura K, Takenawa T (1997) Phosphatidylinositol 4,5-bisphosphate phosphatase regulates the rearrangement of actin filaments. Mol Cell Biol 17:3841–3849

    PubMed  CAS  Google Scholar 

  • Saltiel AR, Kahn CR (2001) Insulin signalling and the regulation of glucose and lipid metabolism. Nature 414:799–806

    PubMed  CAS  Google Scholar 

  • Sanchez-Carbayo M, Socci ND, Lozano J, Saint F, Cordon-Cardo C (2006) Defining molecular profiles of poor outcome in patients with invasive bladder cancer using oligonucleotide microarrays. J Clin Oncol 24:778–789

    PubMed  CAS  Google Scholar 

  • Sansonetti PJ, Kopecko DJ, Formal SB (1982) Involvement of a plasmid in the invasive ability of Shigella flexineri. Infect Immun 35:852–860

    PubMed  CAS  Google Scholar 

  • Santic M, Al-Khodor S, Abu Kwaik Y (2010) Cell biology and molecular ecology of Francisella tularensis. Cell Microbiol 12:129–139

    PubMed  CAS  Google Scholar 

  • Sasaki J, Kofuji S, Itoh R, Momiyama T, Takayama K, Murakami H, Chida S, Tsuya Y, Takasuga S, Eguchi S, Asanuma K, Horie Y, Miura K, Davies EM, Mitchell C, Yamazaki M, Hirai H, Takenawa T, Suzuki A, Sasaki T (2010) The PtdIns(3,4)P2 phosphatase INPP4A is a suppressor of excitotoxic neuronal death. Nature 465:497–501

    PubMed  CAS  Google Scholar 

  • Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S, Yamazaki M, Suzuki A (2009) Mammalian phosphoinositide kinases and phosphatases. Prog Lipid Res 48:307–343

    PubMed  CAS  Google Scholar 

  • Sasaoka T, Hori H, Wada T, Ishiki M, Haruta T, Ishihara H, Kobayashi M (2001) SH2-containing inositol phosphatase 2 negatively regulates insulin-induced glycogen synthesis in L6 myotubes. Diabetologia 44:1258–1267

    PubMed  CAS  Google Scholar 

  • Sasaoka T, Wada T, Fukui K, Murakami S, Ishihara H, Suzuki R, Tobe K, Kadowaki T, Kobayashi M (2004) SH2-containing inositol phosphatase 2 predominantly regulates Akt2, and not Akt1, phosphorylation at the plasma membrane in response to insulin in 3T3-L1 adipocytes. J Biol Chem 279:14835–14843

    PubMed  CAS  Google Scholar 

  • Satre V, Monnier N, Berthoin F, Ayuso C, Joannard A, Jouk P-S, Lopez-Pajares I, Megabarne A, Philippe HJ, Plauchu H, Torres ML, Lunardi J (1999) Characterization of a Germline Mosaicism in families with Lowe syndrome, and identification of seven novel mutations in the OCRL1 gene. Am J Hum Genet 65:68–76

    PubMed  CAS  Google Scholar 

  • Sattler M, Griffin JD (2003) Molecular mechanisms of transformation by the BCR-ABL oncogene. Seminars in hematology 40. Supplement 2:4–10

    Google Scholar 

  • Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA, Rohrschneider LR, Griffin JD (1999) BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 19:7473–7480

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fenner H, Shisheva A (2008) ArPIKfyve homomeric and heteromeric interactions Scaffold PIKfyve and Sac3 in a complex to promote PIKfyve activity and functionality. J Mol Biol 384:766–779

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Fu Z, Ijuin T, Gruenberg J, Takenawa T, Shisheva A (2007) Core protein machinery for mammalian phosphatidylinositol 3,5-bisphosphate synthesis and turnover that regulates the progression of endosomal transport. J Biol Chem 282:23878–23891

    PubMed  CAS  Google Scholar 

  • Sbrissa D, Ikonomov OC, Strakova J, Dondapati R, Mlak K, Deeb R, Silver R, Shisheva A (2004) A mammalian ortholog of saccharomyces cerevisiae Vac14 that associates with and up-regulates PIKfyve phosphoinositide 5-kinase activity. Mol Biol Cell 24:10437–10447

    CAS  Google Scholar 

  • Sbrissa D, Shisheva A (2005) Acquisition of unprecedented phosphatidylinositol 3,5-bisphosphate rise in hyperosmotically stressed 3T3-L1 adipocytes, mediated by ArPIKfyve-PIKfyve pathway. J Biol Chem 280:7883–7889

    PubMed  CAS  Google Scholar 

  • Schmid AC, Wise HM, Mitchell CA, Nussbaum R, Woscholski R (2004) Type II phosphoinositide 5-phosphatases have unique sensitivities towardss fatty acid composition and head group phosphorylation. FEBS Lett 576:9–13

    PubMed  CAS  Google Scholar 

  • Schneider JF, Boltshauser E, Neuhaus TJ, Rauscher C, Martin E (2001) MRI and proton spectroscopy in Lowe syndrome. Neuropediatrics 32(45):48

    Google Scholar 

  • Schorr M, Then A, Tahirovic S, Hug N, Mayinger P (2001) The phosphoinositide phosphatase Sac1p controls trafficking of the yeast Chs3p chitin synthase. Curr Biol 11:1421–1426

    PubMed  CAS  Google Scholar 

  • Seet L-F, Cho S, Hessel A, Dumont DJ (1998) Molecular cloning of multiple isoforms of synaptojanin 2 and assignment of the gene to mouse chromosome 17A2-3.1. Biochem Biophys Res Commun 247:116–122

    PubMed  CAS  Google Scholar 

  • Sekulic A, Kim SY, Hostetter G, Savage S, Einspahr JG, Prasad A, Sagerman P, Curiel-Lewandrowski C, Krouse R, Bowden GT, Warneke J, Alberts DS, Pittelkow MR, DiCaudo D, Nickoloff BJ, Trent JM, Bittner M (2010) Loss of inositol polyphosphate 5-phosphatase is an early event in development of cutaneous squamous cell carcinoma. Cancer Prev Res 3:1277–1283

    Google Scholar 

  • Severin S, Gratacap MP, Lenain N, Alvarez L, Hollande E, Penninger JM, Gachet C, Plantavid M, Payrastre B (2007) Deficiency of Src homology 2 domain-containing inositol 5-phosphatase 1 affects platelet responses and thrombus growth. J Clin Investig 117:944–952

    PubMed  CAS  Google Scholar 

  • Sharma M, Batra J, Mabalirajan U, Sharma S, Nagarkatti R, Aich J, Sharma SK, Niphadkar PV, Ghosh B (2008) A genetic variation in inositol polyphosphate 4 phosphatase A enhances susceptibility to asthma. Am J Respir Crit Care Med 177:712–719

    PubMed  CAS  Google Scholar 

  • Shearman AM, Hudson TJ, Andresen JM, Wu X, Sohn RL, Haluska F, Housman DE, Weiss JS (1996) The gene for Schnyder’s crystalline corneal dystrophy maps to human chromosome 1p34.1–p36. Hum Mol Genet 5:1667–1672

    PubMed  CAS  Google Scholar 

  • Shearn CT, Norris FA (2007) Biochemical characterization of the type I inositol polyphosphate 4-phosphatase C2 domain. Biochem Biophys Res Commun 356:255–259

    PubMed  CAS  Google Scholar 

  • Shearn CT, Walker J, Norris FA (2001) Identification of a novel spliceoform of inositol polyphosphate 4-phosphatase type Iα expressed in human platelets: structure of human inositol polyphosphate 4-phosphatase type I gene. Biochem Biophys Res Commun 286:119–125

    PubMed  CAS  Google Scholar 

  • Shin H-W, Hayashi M, Christoforidis S, Lacas-Gervais S, Hoepfner S, Wenk MR, Modregger J, Uttenweiler-Joseph S, Wilm M, Nystuen A, Frankel WN, Solimena M, De Camilli P, Zerial M (2005) An enzymatic cascade of Rab5 effectors regulates phosphoinositide turnover in the endocytic pathway. J Cell Biol 170:607–618

    PubMed  CAS  Google Scholar 

  • Shrimpton A, Hoopes RJ, Knohl S, Hueber P, Reed A, Christie P, Igarashi T, Lee P, Lehman A, White C, Milford D, Sanchez M, Unwin R, Wrong O, Thakker R, Scheinman S (2009) OCRL1 mutations in Dent 2 patients suggest a mechanism for phenotypic variability. Nephron Physiol 112:27–36

    Google Scholar 

  • Sjöblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, Szabo S, Buckhaults P, Farrell C, Meeh P, Markowitz SD, Willis J, Dawson D, Willson JKV, Gazdar AF, Hartigan J, Wu L, Liu C, Parmigiani G, Park BH, Bachman KE, Papadopoulos N, Vogelstein B, Kinzler KW, Velculescu VE (2006) The consensus coding sequences of human breast and colorectal cancers. Science 314:268–274

    PubMed  Google Scholar 

  • Sleeman MW, Wortley KE, Lai KM, Gowen LC, Kintner J, Kline WO, Garcia K, Stitt TN, Yancopoulos GD, Wiegand SJ, Glass DJ (2005) Absence of the lipid phosphatase SHIP2 confers resistance to dietary obesity. Nat Med 11:199–205

    PubMed  CAS  Google Scholar 

  • Sly LM, Hamilton MJ, Kuroda E, Ho VW, Antignano FL, Omeis SL, van Netten-Thomas CJ, Wong D, Brugger HK, Williams O, Feldman ME, Houseman BT, Fiedler D, Shokat KM, Krystal G (2009) SHIP prevents lipopolysaccharide from triggering an antiviral response in mice. Blood 113:2945–2954

    PubMed  CAS  Google Scholar 

  • Sly LM, Rauh MJ, Kalesnikoff J, Büchse T, Krystal G (2003) SHIP, SHIP2, and PTEN activities are regulated in vivo by modulation of their protein levels: SHIP is up-regulated in macrophages and mast cells by lipopolysaccharide. Exp Hematol 31:1170–1181

    PubMed  CAS  Google Scholar 

  • Smith K, Humphreys D, Hume PJ, Koronakis V (2010) Enteropathogenic Escherichia coli recruits the cellular inositol phosphatase SHIP2 to regulate actin-pedestal formation. Cell Host Microbe 7:13–24

    PubMed  CAS  Google Scholar 

  • Sørlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, Demeter J, Perou CM, Lønning PE, Brown PO, Børresen-Dale A-L, Botstein D (2003) Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 100:8418–8423

    PubMed  Google Scholar 

  • Sotiropoulou G, Pampalakis G, Lianidou E, Mourelatos Z (2009) Emerging roles of microRNAs as molecular switches in the integrated circuit of the cancer cell. RNA 15:1443–1461

    PubMed  CAS  Google Scholar 

  • Speed CJ, Little PJ, Hayman JA, Mitchell CA (1996) Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with cellular transformation. EMBO J 15:4852–4861

    PubMed  CAS  Google Scholar 

  • Speed CJ, Matzaris M, Bird PI, Mitchell CA (1995) Tissue distribution and intracellular localisation of the 75-kDa inositol polyphosphate 5-phosphatase. Eur J Biochem 234:216–224

    PubMed  CAS  Google Scholar 

  • Speed CJ, Mitchell CA (2000) Sustained elevation in inositol 1,4,5-trisphosphate results in inhibition of phosphatidylinositol transfer protein activity and chronic depletion of the agonist-sensitive phosphoinositide pool. J Cell Sci 113:2631–2638

    PubMed  CAS  Google Scholar 

  • Speed CJ, Neylon CB, Little PJ, Mitchell CA (1999) Underexpression of the 43 kDa inositol polyphosphate 5-phosphatase is associated with spontaneous calcium oscillations and enhanced calcium responses following endothelin-1 stimulation. J Cell Sci 112:669–679

    PubMed  CAS  Google Scholar 

  • Stearman RS, Dwyer-Nield L, Zerbe L, Blaine SA, Chan Z, Bunn PA Jr, Johnson GL, Hirsch FR, Merrick DT, Franklin WA, Baron AE, Keith RL, Nemenoff RA, Malkinson AM, Geraci MW (2005) Analysis of orthologous gene expression between human pulmonary adenocarcinoma and a carcinogen-induced murine model. Am J Pathol 167:1763–1775

    PubMed  CAS  Google Scholar 

  • Steele-Mortimer O, Knodler LA, Marcus SL, Scheid MP, Goh B, Pfeifer CG, Duronio V, Finlay BB (2000) Activation of Akt/protein kinase B in epithelial cells by the Salmonella typhimurium effector SigD. J Biol Chem 275:37718–37724

    PubMed  CAS  Google Scholar 

  • Suchy SF, Nussbaum RL (2002) The deficiency of PIP2 5-phosphatase in Lowe syndrome affects actin polymerization. Am J Hum Genet 71:1420–1427

    PubMed  CAS  Google Scholar 

  • Suchy SF, Olivos-Glander IM, Nussbaum RL (1995) Lowe syndrome, a deficiency of a phosphatidyl-inositol 4,5-bisphosphate 5-phosphatase in the Golgi apparatus. Hum Mol Genet 4:2245–2250

    PubMed  CAS  Google Scholar 

  • Suwa A, Yamamoto T, Sawada A, Minoura K, Hosogai N, Tahara A, Kurama T, Shimokawa T, Aramori I (2009) Discovery and functional characterization of a novel small molecule inhibitor of the intracellular phosphatase, SHIP2. Br J Pharmacol 158:879–887

    PubMed  CAS  Google Scholar 

  • Swan LE, Tomasini L, Pirruccello M, Lunardi J, De Camilli P (2010) Two closely related endocytic proteins that share a common OCRL-binding motif with APPL1. Proc Natl Acad Sci U S A 107:3511–3516

    PubMed  CAS  Google Scholar 

  • Swanson JA, Hoppe AD (2004) The coordination of signaling during Fc receptor-mediated phagocytosis. J Leukoc Biol 76:1093–1103

    PubMed  CAS  Google Scholar 

  • Tahirovic S, Schorr M, Mayinger P (2005) Regulation of intracellular phosphatidylinositol-4-phosphate by the Sac1 lipid phosphatase. Traffic 6:116–130

    PubMed  CAS  Google Scholar 

  • Takabayashi T, Xie MJ, Takeuchi S, Kawasaki M, Yagi H, Okamoto M, Tariqur RM, Malik F, Kuroda K, Kubota C, Fujieda S, Nagano T, Sato M (2010) LL5β directs the translocation of filamin A and SHIP2 to sites of phosphatidylinositol 3,4,5-triphosphate (PtdIns(3,4,5)P3) accumulation, and PtdIns(3,4,5)P3 localization is mutually modified by co-recruited SHIP2. J Biol Chem 285:16155–16165

    PubMed  CAS  Google Scholar 

  • Takahashi H, Masuda K, Ando T, Kobayashi T, Honda H (2004) Prognostic predictor with multiple fuzzy neural models using expression profiles from DNA microarray for metastases of breast cancer. J Biosci Bioeng 98:193–199

    PubMed  CAS  Google Scholar 

  • Takeshita S, Namba N, Zhao JJ, Jiang Y, Genant HK, Silva MJ, Brodt MD, Helgason CD, Kalesnikoff J, Rauh MJ, Humphries RK, Krystal G, Teitelbaum SL, Ross FP (2002) SHIP-deficient mice are severely osteoporotic due to increased numbers of hyper-resorptive osteoclasts. Nat Med 8:943–949

    PubMed  CAS  Google Scholar 

  • Takimoto K, Okada M, Nakagawa H (1989) Purification and characterization of membrane-bound inositolpolyphosphate 5-phosphatase. J Biochem 106:684–690

    PubMed  CAS  Google Scholar 

  • Tang X, Powelka AM, Soriano NA, Czech MP, Guilherme A (2005) PTEN, but Not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. J Biol Chem 280:22523–22529

    PubMed  CAS  Google Scholar 

  • Taniguchi CM, Emanuelli B, Kahn CR (2006) Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7:85–96

    PubMed  CAS  Google Scholar 

  • Tarasenko T, Kole HK, Chi AW, Mentink-Kane MM, Wynn TA, Bolland S (2007) T cell-specific deletion of the inositol phosphatase SHIP reveals its role in regulating Th1/Th2 and cytotoxic responses. Proc Natl Acad Sci U S A 104:11382–11387

    PubMed  CAS  Google Scholar 

  • Taylor BS, Schultz N, Hieronymus H, Gopalan A, Xiao Y, Carver BS, Arora VK, Kaushik P, Cerami E, Reva B, Antipin Y, Mitsiades N, Landers T, Dolgalev I, Major JE, Wilson M, Socci ND, Lash AE, Heguy A, Eastham JA, Scher HI, Reuter VE, Scardino PT, Sander C, Sawyers CL, Gerald WL (2010) Integrative genomic profiling of human prostate cancer. Cancer Cell 18:11–22

    PubMed  CAS  Google Scholar 

  • Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM, Moodie S, Stokoe D (2000) 5’ phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 20:6860–6871

    PubMed  CAS  Google Scholar 

  • Terebiznik MR, Vieira OV, Marcus SL, Slade A, Yip CM, Trimble WS, Meyer T, Finlay BB, Grinstein S (2002) Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat Cell Biol 4:766–773

    PubMed  CAS  Google Scholar 

  • Trapani JG, Obholzer N, Mo W, Brockerhoff SE, Nicolson T (2009) Synaptojanin1 is required for temporal fidelity of synaptic transmission in hair cells. PLoS Genet 5:e1000480

    PubMed  Google Scholar 

  • Trivedi CM, Luo Y, Yin Z, Zhang M, Zhu W, Wang T, Floss T, Goettlicher M, Noppinger PR, Wurst W, Ferrari VA, Abrams CS, Gruber PJ, Epstein JA (2007) Hdac2 regulates the cardiac hypertrophic response by modulating Gsk3β activity. Nat Med 13:324–331

    PubMed  CAS  Google Scholar 

  • Trotta R, Parihar R, Yu J, Becknell B, Allard JN, Wen J, Ding W, Mao H, Tridandapani S, Carson WE, Caligiuri MA (2005) Differential expression of SHIP1 in CD56bright and CD56dim NK cells provides a molecular basis for distinct functional responses to monokine costimulation. Blood 105:3011–3018

    PubMed  CAS  Google Scholar 

  • Tsujishita Y, Guo S, Stolz LE, York JD, Hurley JH (2001) Specificity determinants in phosphoinositide dephosphorylation: crystal structure of an archetypal inositol polyphosphate 5-phosphatase. Cell 105:379–389

    PubMed  CAS  Google Scholar 

  • Tu Z, Ninos JM, Ma Z, Wang J-W, Lemos MP, Desponts C, Ghansah T, Howson JM, Kerr WG (2001) Embryonic and hematopoietic stem cells express a novel SH2-containing inositol 5′-phosphatase isoform that partners with the Grb2 adapter protein. Blood 98:2028–2038

    PubMed  CAS  Google Scholar 

  • Ungewickell A, Hugge C, Kisseleva M, Chang SC, Zou J, Feng Y, Galyov EE, Wilson M, Majerus PW (2005) The identification and characterization of two phosphatidylinositol-4,5-bisphosphate 4-phosphatases. Proc Natl Acad Sci U S A 102:18854–18859

    PubMed  CAS  Google Scholar 

  • Ungewickell A, Ward ME, Ungewickell E, Majerus PW (2004) The inositol polyphosphate 5-phosphatase Ocrl associates with endosomes that are partially coated with clathrin. Proc Natl Acad Sci U S A 101:13501–13506

    PubMed  CAS  Google Scholar 

  • Ungewickell AJ, Majerus PW (1999) Increased levels of plasma lysosomal enzymes in patients with Lowe syndrome. Proc Natl Acad Sci U S A 96:13342–13344

    PubMed  CAS  Google Scholar 

  • van’t Veer LJ, Dai H, van de Vijver MJ, He YD, Hart AAM, Mao M, Peterse HL, van der Kooy K, Marton MJ, Witteveen AT, Schreiber GJ, Kerkhoven RM, Roberts C, Linsley PS, Bernards R, Friend SH (2002) Gene expression profiling predicts clinical outcome of breast cancer. Nature 415:530–536

    Google Scholar 

  • Vandenbroere I, Paternotte N, Dumont JE, Erneux C, Pirson I (2003) The c-Cbl-associated protein and c-Cbl are two new partners of the SH2-containing inositol polyphosphate 5-phosphatase SHIP2. Biochem Biophys Res Commun 300:494–500

    PubMed  CAS  Google Scholar 

  • Vara JÁF, Casado E, de Castro J, Cejas P, Belda-Iniesta C, González-Barón M (2004) PI3K/Akt signalling pathway and cancer. Cancer Treat Rev 30:193–204

    CAS  Google Scholar 

  • Vicinanza M, Di Campli A, Polishchuk E, Santoro M, Di Tullio G, Godi A, Levtchenko E, De Leo MG, Polishchuk R, Sandoval L, Marzolo M, De Matteis MA (2011) OCRL controls trafficking through early endosomes via PtdIns4,5P2-dependent regulation of endosomal actin. EMBO J 30(24):4970–4985

    Google Scholar 

  • Voronov SV, Frere SG, Giovedi S, Pollina EA, Borel C, Zhang H, Schmidt C, Akeson EC, Wenk MR, Cimasoni L, Arancio O, Davisson MT, Antonarakis SE, Gardiner K, De Camilli P, Di Paolo G (2008) Synaptojanin 1-linked phosphoinositide dyshomeostasis and cognitive deficits in mouse models of Down’s syndrome. Proc Natl Acad Sci U S A 105:9415–9420

    PubMed  CAS  Google Scholar 

  • Vyas P, Norris FA, Joseph R, Majerus PW, Orkin SH (2000) Inositol polyphosphate 4-phosphatase type I regulates cell growth downstream of transcription factor GATA-1. Proc Natl Acad Sci U S A 97:13696–13701

    PubMed  CAS  Google Scholar 

  • Wada T, Sasaoka T, Funaki M, Hori H, Murakami S, Ishiki M, Haruta T, Asano T, Ogawa W, Ishihara H, Kobayashi M (2001) Overexpression of SH2-containing inositol phosphatase 2 results in negative regulation of insulin-induced metabolic actions in 3T3-L1 adipocytes via its 5’-phosphatase catalytic activity. Mol Cell Biol 21:1633–1646

    PubMed  CAS  Google Scholar 

  • Wang F, Ijuin T, Itoh T, Takenawa T (2011) Regulation of IGF-1/PI3K/Akt signaling by the phosphoinositide phosphatase pharbin. J Biochem 150:83–93

    PubMed  CAS  Google Scholar 

  • Wang JW, Howson JM, Ghansah T, Desponts C, Ninos JM, May SL, Nguyen KH, Toyama-Sorimachi N, Kerr WG (2002) Influence of SHIP on the NK repertoire and allogeneic bone marrow transplantation. Science 295:2094–2097

    PubMed  CAS  Google Scholar 

  • Weber-Mangal S, Sinn H-P, Popp S, Klaes R, Emig R, Bentz M, Mansmann U, Bastert G, Bartram CR, Jauch A (2003) Breast cancer in young women (≤35 years): genomic aberrations detected by comparative genomic hybridization. Int J Cancer 107:583–592

    PubMed  CAS  Google Scholar 

  • Wei H-C, Sanny J, Shu H, Baillie DL, Brill JA, Price JV, Harden N (2003) The Sac1 lipid phosphatase regulates cell shape change and the JNK cascade during dorsal closure in drosophila. Curr Biol 13:1882–1887

    PubMed  CAS  Google Scholar 

  • Weisser SB, McLarren KW, Voglmaier N, van Netten-Thomas CJ, Antov A, Flavell RA, Sly LM (2011) Alternative activation of macrophages by IL-4 requires SHIP degradation. Eur J Immunol 41:1742–1753

    PubMed  CAS  Google Scholar 

  • Wen X-Y, Wu S-Y, Li Z-Q, Liu Z-Q, Zhang J-J, Wang G-F, Jiang Z-H, Wu; S-G (2009) Ellagitannin (BJA3121), an anti-proliferative natural polyphenol compound, can regulate the expression of MiRNAs in HepG2 cancer cells. Phytotherapy Res 23:778–784

    CAS  Google Scholar 

  • West M, Blanchette C, Dressman H, Huang E, Ishida S, Spang R, Zuzan H, Olson JA, Marks JR, Nevins JR (2001) Predicting the clinical status of human breast cancer by using gene expression profiles. Proc Natl Acad Sci U S A 98:11462–11467

    PubMed  CAS  Google Scholar 

  • Westbrook TF, Martin ES, Schlabach MR, Leng Y, Liang AC, Feng B, Zhao JJ, Roberts TM, Mandel G, Hannon GJ, DePinho RA, Chin L, Elledge SJ (2005) A genetic screen for candidate tumor suppressors identifies REST. Cell 121:837–848

    PubMed  CAS  Google Scholar 

  • Whisstock JC, Romero S, Gurung R, Nandurkar H, Ooms LM, Bottomley SP, Mitchell CA (2000) The inositol polyphosphate 5-phosphatases and the apurinic/apyrimidinic base excision repair endonucleases share a common mechanism for catalysis. J Biol Chem 275:37055–37061

    PubMed  CAS  Google Scholar 

  • Whitters E, Cleves A, McGee T, Skinner H, Bankaitis V (1993) SAC1p is an integral membrane protein that influences the cellular requirement for phospholipid transfer protein function and inositol in yeast. J Cell Biol 122:79–94

    PubMed  CAS  Google Scholar 

  • Williams C, Choudhury R, McKenzie E, Lowe M (2007) Targeting of the type II inositol polyphosphate 5-phosphatase INPP5B to the early secretory pathway. J Cell Sci 120:3941–3951

    PubMed  CAS  Google Scholar 

  • Wisniewski D, Strife A, Swendeman S, Erdjument-Bromage H, Geromanos S, Kavanaugh WM, Tempst P, Clarkson B (1999) A novel SH2-containing phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase (SHIP2) is constitutively tyrosine phosphorylated and associated with src homologous and collagen gene (SHC) in chronic myelogenous leukemia progenitor cells. Blood 93:2707–2720

    PubMed  CAS  Google Scholar 

  • Wolf G, Ziyadeh FN (2007) Cellular and molecular mechanisms of proteinuria in diabetic nephropathy. Nephron Physiol 106:p26–p31

    PubMed  CAS  Google Scholar 

  • Xiong Q, Deng CY, Chai J, Jiang SW, Xiong YZ, Li FE, Zheng R (2009) Knockdown of endogenous SKIP gene enhanced insulin-induced glycogen synthesis signaling in differentiating C2C12 myoblasts. BMB Reports 42:119–124

    PubMed  CAS  Google Scholar 

  • Yan C, Hongjuan H, Yanjiang X, Zhengbin H, Kai L, Fengwei Z, Jing H, Qiong W (2011) Expression patterns of imprinted gene Inpp 5f-v3 during mouse brain development. J Mol Histol 42:167–173

    PubMed  CAS  Google Scholar 

  • Yavari A, Nagaraj R, Owusu-Ansah E, Folick A, Ngo K, Hillman T, Call G, Rohatgi R, Scott MP, Banerjee U (2010) Role of lipid metabolism in smoothened derepression in hedgehog signaling. Dev Cell 19:54–65

    PubMed  CAS  Google Scholar 

  • Yogo K, Mizutamari M, Mishima K, Takenouchi H, Ishida-Kitagawa N, Sasaki T, Takeya T (2006) Src homology 2 (SH2)-containing 5’-inositol phosphatase localizes to podosomes, and the SH2 domain is implicated in the attenuation of bone resorption in osteoclasts. Endocrinology 147:3307–3317

    PubMed  CAS  Google Scholar 

  • Yoon J, Lee J, Namkoong S, Bae S, Kim Y, Han S, Cho Y, Nam G, Kim C, Seo J, Ahn W (2003) cDNA microarray analysis of gene expression profiles associated with cervical cancer. Cancer Res Treat 35:451–459

    Google Scholar 

  • Yoshida M (2001) Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 19:475–496

    PubMed  CAS  Google Scholar 

  • Yu J, Ryan DG, Getsios S, Oliveira-Fernandes M, Fatima A, Lavker RM (2008) MicroRNA-184 antagonizes microRNA-205 to maintain SHIP2 levels in epithelia. Proc Natl Acad Sci U S A 105:19300–19305

    PubMed  CAS  Google Scholar 

  • Yuan Y, Gao X, Guo N, Zhang H, Xie Z, Jin M, Li B, Yu L, Jing N (2007) rSac3, a novel Sac domain phosphoinositide phosphatase, promotes neurite outgrowth in PC12 cells. Cell Res 17:919–932

    PubMed  CAS  Google Scholar 

  • Zhang TY, Daynes RA (2007) Macrophages from 11β-hydroxysteroid dehydrogenase type 1-deficient mice exhibit an increased sensitivity to lipopolysaccharide stimulation due to TGF-β-mediated up-regulation of SHIP1 expression. J Immunol 179:6325–6335

    PubMed  CAS  Google Scholar 

  • Zhang X, Chow CY, Sahenk Z, Shy ME, Meisler MH, Li J (2008) Mutation of FIG4 causes a rapidly progressive, asymmetric neuronal degeneration. Brain 131:1990–2001

    PubMed  Google Scholar 

  • Zhang X, Hartz PA, Philip E, Racusen LC, Majerus PW (1998) Cell lines from kidney proximal tubules of a patient with Lowe syndrome lack OCRL inositol polyphosphate 5-phosphatase and accumulate phosphatidylinositol 4,5-bisphosphate. J Biol Chem 273:1574–1582

    PubMed  CAS  Google Scholar 

  • Zhang X, Jefferson AB, Auethavekiat V, Majerus PW (1995) The protein deficient in Lowe syndrome is a phosphatidylinositol-4,5-bisphosphate 5-phosphatase. Proc Natl Acad Sci U S A 92:4853–4856

    PubMed  CAS  Google Scholar 

  • Zhang Y, Wavreille AS, Kunys AR, Pei D (2009) The SH2 domains of inositol polyphosphate 5-phosphatases SHIP1 and SHIP2 have similar ligand specificity but different binding kinetics. Biochemistry 48:11075–11083

    PubMed  CAS  Google Scholar 

  • Zhang Y, Zolov SN, Chow CY, Slutsky SG, Richardson SC, Piper RC, Yang B, Nau JJ, Westrick RJ, Morrison SJ, Meisler MH, Weisman LS (2007) Loss of Vac14, a regulator of the signaling lipid phosphatidylinositol 3,5-bisphosphate, results in neurodegeneration in mice. Proc Natl Acad Sci U S A 104:17518–17523

    PubMed  CAS  Google Scholar 

  • Zheng S, Zhang J, Di X, Xiao Z, Wang D, Li C, He Z, Han N, Guo S, Cheng S, Gao Y (2002) Loss of heterozygosity fine mapping of chromosome 17p13 in transitional cell carcinoma of human urinary bladder. Zhonghua yi xue za zhi 82:161–163

    PubMed  CAS  Google Scholar 

  • Zhou CZ, Peng ZH, Zhang F, Qiu GQ, He L (2002) Loss of heterozygosity on long arm of chromosome 22 in sporadic colorectal carcinoma. World J Gastroenterol 8:668–673

    PubMed  CAS  Google Scholar 

  • Zhou D, Chen L-M, Hernandez L, Shears SB, Galán JE (2001) A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol Microbiol 39:248–260

    PubMed  CAS  Google Scholar 

  • Zhou P, Kitaura H, Teitelbaum SL, Krystal G, Ross FP, Takeshita S (2006) SHIP1 negatively regulates proliferation of osteoclast precursors via Akt-dependent alterations in D-type cyclins and p27. J Immunol 177:8777–8784

    PubMed  CAS  Google Scholar 

  • Zhou QL, Park JG, Jiang ZY, Holik JJ, Mitra P, Semiz S, Guilherme A, Powelka AM, Tang X, Virbasius J, Czech MP (2004) Analysis of insulin signalling by RNAi-based gene silencing. Biochem Soc Trans 32:817–821

    PubMed  CAS  Google Scholar 

  • Zhu GN, Zuo L, Zhou Q, Zhang SM, Zhu HQ, Gui SY, Wang Y (2004) Loss of heterozygosity on chromosome 10q22–10q23 and 22q11.2–22q12.1 and p53 gene in primary hepatocellular carcinoma. World J Gastroenterol 10:1975–1978

    PubMed  CAS  Google Scholar 

  • Zhu W, Trivedi CM, Zhou D, Yuan L, Lu MM, Epstein JA (2009) Inpp 5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness. Circ Res 105:1240–1247

    PubMed  CAS  Google Scholar 

  • Zhuang G, Hunter S, Hwang Y, Chen J (2007) Regulation of EphA2 receptor endocytosis by SHIP2 lipid phosphatase via phosphatidylinositol 3-kinase-dependent Rac1 activation. J Biol Chem 282:2683–2694

    PubMed  CAS  Google Scholar 

  • Zou J, Marjanovic J, Kisseleva MV, Wilson M, Majerus PW (2007) Type I phosphatidylinositol-4,5-bisphosphate 4-phosphatase regulates stress-induced apoptosis. Proc Natl Acad Sci U S A 104:16834–16839

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christina A. Mitchell .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hakim, S., Bertucci, M.C., Conduit, S.E., Vuong, D.L., Mitchell, C.A. (2012). Inositol Polyphosphate Phosphatases in Human Disease. In: FALASCA, M. (eds) Phosphoinositides and Disease. Current Topics in Microbiology and Immunology, vol 362. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5025-8_12

Download citation

Publish with us

Policies and ethics