Skip to main content

Mechanosensitive K2P channels, TREKking through the autonomic nervous system

  • Chapter
  • First Online:
Mechanically Gated Channels and their Regulation

Part of the book series: Mechanosensitivity in Cells and Tissues ((MECT,volume 6))

Abstract

TREK channels are background or leak potassium channels that are extensively expressed in the central, somatic peripheral and as recently demonstrated in the autonomic nervous system, where they are thought to play an important role in the modulation of neuronal excitability. Contrary to the expected behavior of “classic leak channels”, the channel activity can be strongly regulated by a number of physiological and non-physiological stimuli (physical, chemical or electrical). In fact, the TREK subfamily can be distinguished from other two-pore-domain potassium channels (K2P) by sensitivity to mechanical stimulation, suggesting an important role for this subfamily in the transduction of touch and pain. Our current understanding of the properties and functions of TREK channels is largely derived from the study of heterologously expressed channels, since the analysis of native K2P channels in real neurons is hampered by the difficulties in isolating specific channel subtypes in complex systems. The aim of this chapter is to summarize our current knowledge of TREK channels, paying particular attention to data obtained from natively expressed channels and from the autonomic nervous system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Reference

  • Aller MI, Wisden W (2008) Changes in expression of some two-pore domain potassium channel genes (KCNK) in selected brain regions of developing mice. Neuroscience 151:1154–1172

    Article  PubMed  CAS  Google Scholar 

  • Alloui A, Zimmermann K, Mamet J, Duprat F, Noel J, Chemin J, Guy N, Blondeau N, Voilley N, Rubat-Coudert C, Borsotto M, Romey G, Heurteaux C, Reeh P, Eschalier A, Lazdunski M (2006) TREK-1, a K+ channel involved in polymodal pain perception. EMBO J 25:2368–2376

    Article  PubMed  CAS  Google Scholar 

  • Bang H, Kim Y, Kim D (2000) TREK-2, a new member of the mechanosensitive tandem-pore K+ channel family. J Biol Chem 275:17412–17419

    Article  PubMed  CAS  Google Scholar 

  • Bayliss DA, Barrett PQ (2008) Emerging roles for two-pore-domain potassium channels and their potential therapeutic impact. Trends Pharmacol Sci 29:566–575

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Petrault O, Manta S, Giordanengo V, Gounon P, Bordet R, Lazdunski M, Heurteaux C (2007) Polyunsaturated fatty acids are cerebral vasodilators via the TREK-1 potassium channel. Circ Res 101:176–184

    Article  PubMed  CAS  Google Scholar 

  • Blondeau N, Widmann C, Lazdunski M, Heurteaux C (2002) Polyunsaturated fatty acids induce ischemic and epileptic tolerance. Neuroscience 109:231–241

    Article  PubMed  CAS  Google Scholar 

  • Bockenhauer D, Zilberberg N, Goldstein SAN (2001) KCNK2: reversible conversion of a hippocampal potassium leak into a voltage-dependent channel. Nat Neurosci 4:486–491

    PubMed  CAS  Google Scholar 

  • Cadaveira-Mosquera A, Pérez M, Reboreda A, Rivas-Ramírez P, Fernández-Fernández D, Lamas JA (2012) Expression of K2P channels in sensory and motor neurons of the autonomic nervous system. J Mol Neurosci 48:86–96

    Google Scholar 

  • Cadaveira-Mosquera A, Ribeiro SJ, Reboreda A, Pérez M, Lamas JA (2011) Activation of TREK currents by the neuroprotective agent riluzole in mouse sympathetic neurons. J Neurosci 31:1375–1385

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Girard C, Duprat F, Lesage F, Romey G, Lazdunski M (2003) Mechanisms underlying excitatory effects of group I metabotropic glutamate receptors via inhibition of 2P domain K + channels. EMBO J 22:5403–5411

    Article  PubMed  CAS  Google Scholar 

  • Chemin J, Patel A, Duprat F, Zanzouri M, Lazdunski M, Honore E (2005a) Lysophosphatidic acid-operated K + channels. J Biol Chem 280:4415–4421

    Article  CAS  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Lauritzen I, Lazdunski M, Honore E (2005b) A phospholipid sensor controls mechanogating of the K + channel TREK-1. EMBO J 24:44–53

    Article  CAS  Google Scholar 

  • Chemin J, Patel AJ, Duprat F, Sachs F, Lazdunski M, Honore E (2007) Up- and down-regulation of the mechano-gated K(2P) channel TREK-1 by PIP (2) and other membrane phospholipids. Pflugers Arch -Eur J Physiol 455:97–103

    Article  CAS  Google Scholar 

  • Cohen A, Ben-Abu Y, Hen S, Zilberberg N (2008) A novel mechanism for human K2P2.1 channel gating. Facilitation of C-type gating by protonation of extracellular histidine residues. J Biol Chem 283:19448–19455

    Article  PubMed  CAS  Google Scholar 

  • Cohen A, Sagron R, Somech E, Segal-Hayoun Y, Zilberberg N (2009) Pain-associated signals, acidosis and lysophosphatidic acid, modulate the neuronal K(2P)2.1 channel. Mol Cell Neurosci 40:382–389

    Article  PubMed  CAS  Google Scholar 

  • Czirják G, Enyedi P (2002) TASK-3 dominates the background potassium conductance in rat adrenal glomerulosa cells. Mol Endocrinol 16:621–629

    Article  PubMed  Google Scholar 

  • Czirják G, Enyedi P (2006) Zinc and mercuric ions distinguish TRESK from the other two-pore-domain K+ channels. Mol Pharmacol 69:1024–1032

    PubMed  Google Scholar 

  • Danthi S, Enyeart JA, Enyeart JJ (2003) Modulation of native TREK-1 and Kv1.4 K+ channels by polyunsaturated fatty acids and lysophospholipids. J Membr Biol 195:147–164

    Article  PubMed  CAS  Google Scholar 

  • Dedman A, Sharif-Naeini R, Folgering JH, Duprat F, Patel A, Honore E (2009) The mechano-gated K(2P) channel TREK-1. Eur Biophys J 38:293–303

    Article  PubMed  CAS  Google Scholar 

  • Deng PY, Xiao Z, Yang C, Rojanathammanee L, Grisanti L, Watt J, Geiger JD, Liu R, Porter JE, Lei S (2009) GABAB Receptor Activation Inhibits Neuronal Excitability and Spatial Learning in the Entorhinal Cortex by Activating TREK-2 K+ Channels. Neuron 63:230–243

    Article  PubMed  CAS  Google Scholar 

  • Dobler T, Springauf A, Tovornik S, Weber M, Schmitt A, Sedlmeier R, Wischmeyer E, Doring F (2007) TRESK two-pore-domain K+ channels constitute a significant component of background potassium currents in murine dorsal root ganglion neurones. J Physiol 585:867–879

    Article  PubMed  CAS  Google Scholar 

  • Duprat F, Lesage F, Patel AJ, Fink M, Romey G, Lazdunski M (2000) The neuroprotective agent riluzole activates the two P domain K+ channels TREK-1 and TRAAK. Mol Pharmacol 57:906–912

    PubMed  CAS  Google Scholar 

  • Eckert M, Egenberger B, Doring F, Wischmeyer E (2011) TREK-1 isoforms generated by alternative translation initiation display different susceptibility to the antidepressant fluoxetine. Neuropharmacology 61:918–923

    Article  PubMed  CAS  Google Scholar 

  • Enyeart JJ, Xu L, Danthi S, Enyeart JA (2002) An ACTH- and ATP-regulated background K+ channel in adrenocortical cells is TREK-1. J Biol Chem 277:49186–49199

    Article  PubMed  CAS  Google Scholar 

  • Enyedi P, Czirják G (2010) Molecular background of leak K + currents: two-pore domain potassium channels. Physiol Rev 90:559–605

    Article  PubMed  CAS  Google Scholar 

  • Fernández-Fernández D, Cadaveira-Mosquera A, Reboreda A, Rivas-Ramírez P, Domínguez V, Lamas JA (2011) Expresión de canales K2P y estudio de la corriente activada por riluzol en el ganglio nodoso. SENC Abstracts, SII-P31 http://www.senc2011.com/,

  • Ferroni S, Valente P, Caprini M, Nobile M, Schubert P, Rapisarda C (2003) Arachidonic acid activates an open rectifier potassium channel in cultured rat cortical astrocytes. J Neurosci Res 72:363–372

    Article  PubMed  CAS  Google Scholar 

  • Fink M, Duprat F, Lesage F, Reyes R, Romey G, Heurteaux C, Lazdunski M (1996) Cloning, functional expression and brain localization of a novel unconventional outward rectifier K + channel. EMBO J 15:6854–6862

    PubMed  CAS  Google Scholar 

  • Fink M, Lesage F, Duprat F, Heurteaux C, Reyes R, Fosset M, Lazdunski M (1998) A neuronal two P domain K + channel stimulated by arachidonic acid and polyunsaturated fatty acids. EMBO J 17:3297–3308

    Article  PubMed  CAS  Google Scholar 

  • Franks NP, Honore E (2004) The TREK K2P channels and their role in general anaesthesia and neuroprotection. Trends Pharmacol Sci 25:601–608

    Article  PubMed  CAS  Google Scholar 

  • Frederickson CJ, Bush AI (2001) Synaptically released zinc: physiological functions and pathological effects. Biometals 14:353–366

    Article  PubMed  CAS  Google Scholar 

  • Gnatenco C, Han J, Snyder AK, Kim D (2002) Functional expression of TREK-2 K+ channel in cultured rat brain astrocytes. Brain Res 931:56–67

    Article  PubMed  CAS  Google Scholar 

  • Goldman DE (1943) Potential, impedance and rectification in membranes. J Gen Physiol 3760

    Google Scholar 

  • Goldstein SAN, Bockenhauer D, O’Kelly I, Zilberberg N (2001) Potassium leak channels and the KCNK family of two-P-domain subunits. Nat Rev Neurosci 2:175–184

    Article  PubMed  CAS  Google Scholar 

  • Gordon JA, Hen R (2006) TREKing toward new antidepressants. Nat Neurosci 9:1081–1083

    Article  PubMed  CAS  Google Scholar 

  • Gruss M, Bushell TJ, Bright DP, Lieb WR, Mathie A, Franks NP (2004a) Two-pore-domain K + channels are a novel target for the anesthetic gases xenon, nitrous oxide, and cyclopropane. Mol Pharmacol 65:443–452

    Article  CAS  Google Scholar 

  • Gruss M, Mathie A, Lieb WR, Franks NP (2004b) The two-pore-domain K + Channels TREK-1 and TASK-3 are differentially modulated by copper and zinc. Mol Pharmacol 66:530–537

    CAS  Google Scholar 

  • Gu W, Günter S, Jochen RH, Hartmut E, Chiristine KS, Andreas KS, Christian D, Ortrud KS, Jürgen D (2002) Expression pattern and functional characteristics of two novel splice variants of the two-pore-domain potassium channel TREK-2. J Physiol 539:657–668

    Article  PubMed  CAS  Google Scholar 

  • Gurney A, Manoury B (2009) Two-pore potassium channels in the cardiovascular system. Eur Biophys J 38:305–318

    Article  PubMed  CAS  Google Scholar 

  • Han J, Truell J, Gnatenco C, Kim D (2002) Characterization of four types of background potassium channels in rat cerebellar granule neurons. J Physiol 542:431–444

    Article  PubMed  CAS  Google Scholar 

  • Han J, Gnatenco C, Sladek CD, Kim D (2003) Background and tandem-pore potassium channels in magnocellular neurosecretory cells of the rat supraoptic nucleus. J Physiol 546:625–639

    Article  PubMed  CAS  Google Scholar 

  • Hao J, Raoux M, Azorin N, Despoix-Rodat L, Giamarchi A, Maingret F, Crest M, Coste B, Delmas P (2009) Mechanosensitive cation currents and their molecular counterparts in mammalian sensory neurons. In: Kamkin A, Kiseleva I (ed) Mechanosensitivity of the nervous system. Mechanosensitivity in cell and tissues series, vol. 2. Springer, pp 51–64

    Google Scholar 

  • Hervieu GJ, Cluderay JE, Gray CW, Green PJ, Ranson JL, Randall AD, Meadows HJ (2001) Distribution and expression of TREK-1, a two-pore-domain potassium channel, in the adult rat CNS. Neuroscience 103:899–919

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Guy N, Laigle C, Blondeau N, Duprat F, Mazzuca M, Lang-Lazdunski L, Widmann C, Zanzouri M, Romey G, Lazdunski M (2004) TREK-1, a K+ channel involved in neuroprotection and general anesthesia. EMBO J 23:2684–2695

    Article  PubMed  CAS  Google Scholar 

  • Heurteaux C, Lucas G, Guy N, El Yacoubi M, Thümmler S, Peng X-D, Noble F, Blondeau N, Widmann C, Borsotto M, Gobbi G, Vaugeois J-M, Debonnel G, Lazdunski M (2006) Deletion of the background potassium channel TREK-1 results in a depression-resistant phenotype. Nat Neurosci 9:1134–1144

    Article  PubMed  CAS  Google Scholar 

  • Hodgkin AL, Katz B (1949) The effect of sodium ions on the electrical activity of the giant axon of the squid. J Physiol 108:37–77

    PubMed  CAS  Google Scholar 

  • Holzer P (2011) Acid sensing by visceral afferent neurones. Acta Physiol (Oxf) 201:63–75

    Article  CAS  Google Scholar 

  • Honore E (2007) The neuronal background K2P channels: focus on TREK1. Nat Rev Neurosci 8:251–261

    Article  PubMed  CAS  Google Scholar 

  • Honore E, Maingret F, Lazdunski M, Patel AJ (2002) An intracellular proton sensor commands lipid- and mechano-gating of the K+ channel TREK-1. EMBO J 21:2968–2976

    Article  PubMed  CAS  Google Scholar 

  • Honore E, Patel AJ, Chemin J, Suchyna T, Sachs F (2006) Desensitization of mechano-gated K2P channels. Proc Natl Acad Sci USA 103:6859–6864

    Article  PubMed  CAS  Google Scholar 

  • Huang D, Yu B (2008) Recent advance and possible future in TREK-2: a two-pore potassium channel may involved in the process of NPP, brain ischemia and memory impairment. Med Hypotheses 70:618–624

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Kim D (2006) TREK-2 (K2P10.1) and TRESK (K2P18.1) are major background K + channels in dorsal root ganglion neurons. Am J Physiol Cell Physiol 291:C138-C146

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Choe C, Kim D (2004) Functional expression of TREK-2 in insulin-secreting MIN6 cells. Biochem Biophys Res Commun 323:323–331

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Choe C, Kim D (2005) Thermosensitivity of the two-pore domain K + channels TREK-2 and TRAAK. J Physiol 564:103–116

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Han J, Kim D (2006) Mechanism of inhibition of TREK-2 (K2P10.1) by the Gq-coupled M3 muscarinic receptor. Am J Physiol Cell Physiol 291:C649-C656

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Choe C, Cavanaugh E, Kim D (2007) Properties of single two-pore domain TREK-2 channels expressed in mammalian cells. J Physiol 583:57–69

    Article  PubMed  CAS  Google Scholar 

  • Kang D, Kim GT, Kim EJ, La JH, Lee JS, Lee ES, Park JY, Hong SG, Han J (2008) Lamotrigine inhibits TRESK regulated by G-protein coupled receptor agonists. Biochem Biophys Res Commun 367:609–615

    Article  PubMed  CAS  Google Scholar 

  • Kennard LE, Chumbley JR, Ranatunga KM, Armstrong SJ, Veale EL, Mathie A (2005) Inhibition of the human two-pore domain potassium channel, TREK-1, by fluoxetine and its metabolite norfluoxetine. Br J Pharmacol 144:821–829

    Article  PubMed  CAS  Google Scholar 

  • Ketchum KA, Joiner WJ, Sellers AJ, Kaczmarek LK, Goldstein SA (1995) A new family of outwardly rectifying potassium channel proteins with two pore domains in tandem. Nature 376:690–695

    Article  PubMed  CAS  Google Scholar 

  • Kim D (2003) Fatty acid-sensitive two-pore domain K + channels. Trends Pharmacol Sci 24:648–654

    Article  PubMed  CAS  Google Scholar 

  • Kim Y, Bang H, Gnatenco C, Kim D (2001a) Synergistic interaction and the role of C-terminus in the activation of TRAAK K + channels by pressure, free fatty acids and alkali. Pflugers Arch -Eur J Physiol 442:64–72

    Article  CAS  Google Scholar 

  • Kim Y, Gnatenco C, Bang H, Kim D (2001b) Localization of TREK-2 K + channel domains that regulate channel kinetics and sensitivity to pressure, fatty acids and pHi. Pflugers Arch -Eur J Physiol 442:952–960

    Article  CAS  Google Scholar 

  • Kim JS, Park JY, Kang HW, Lee EJ, Bang H, Lee JH (2005) Zinc activates TREK-2 potassium channel activity. J Pharmacol Exp Ther 314:618–625

    Article  PubMed  CAS  Google Scholar 

  • Koh SD, Monaghan K, Sergeant GP, Ro S, Walker RL, Sanders KM, Horowitz B (2001) TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J Biol Chem 276:44338–44346

    Article  PubMed  CAS  Google Scholar 

  • Kucheryavykh LY, Kucheryavykh YV, Inyushin M, Shuba YM, Sanabria P, Cubano LA, Skatchkov SN, Eaton MJ (2009) Ischemia increases TREK-2 channel expression in astrocytes: relevance to glutamate clearance. Open Neurosci J 2:40–47

    Article  CAS  Google Scholar 

  • La JH, Schwartz ES, Gebhart GF (2011) Differences in the expression of transient receptor potential channel V1, transient receptor potential channel A1 and mechanosensitive two pore-domain K+ channels between the lumbar splanchnic and pelvic nerve innervations of mouse urinary bladder and colon. Neuroscience 186:179–187

    Article  PubMed  CAS  Google Scholar 

  • Lamas JA (1998) A hyperpolarization-activated cation current (Ih) contributes to resting membrane potential in rat superior cervical sympathetic neurones. Pflugers Arch -Eur J Physiol 436:429–435

    Article  CAS  Google Scholar 

  • Lamas JA (2005) The development of the concept of neuronal resting potential. Fundamental and clinical aspects. Rev Neurol 41:538–549

    PubMed  CAS  Google Scholar 

  • Lamas JA, Reboreda A, Codesido V (2002) Ionic basis of the resting membrane potential in cultured rat sympathetic neurons. Neuroreport 13:585–591

    Article  PubMed  CAS  Google Scholar 

  • Lamas JA, Romero M, Reboreda A, Sanchez E, Ribeiro SJ (2009) A riluzole- and valproate-sensitive persistent sodium current contributes to the resting membrane potential and increases the excitability of sympathetic neurones. Pflugers Arch -Eur J Physiol 458:589–599

    Article  CAS  Google Scholar 

  • Lauritzen I, Blondeau N, Heurteaux C, Widmann C, Romey G, Lazdunski M (2000) Polyunsaturated fatty acids are potent neuroprotectors. EMBO J 19:1784–1793

    Article  PubMed  CAS  Google Scholar 

  • Lauritzen I, Chemin J, Honore E, Jodar M, Guy N, Lazdunski M, Jane PA (2005) Cross-talk between the mechano-gated K2P channel TREK-1 and the actin cytoskeleton. EMBO Rep 6:642–648

    Article  PubMed  CAS  Google Scholar 

  • Lembrechts R, Pintelon I, Schnorbusch K, Timmermans JP, Adriaensen D, Brouns I (2011) Expression of mechanogated two-pore domain potassium channels in mouse lungs: special reference to mechanosensory airway receptors. Histochem Cell Biol 136:371–85

    Article  PubMed  CAS  Google Scholar 

  • Lesage F (2003) Pharmacology of neuronal background potassium channels. Neuropharmacology 44:1–7

    Article  PubMed  CAS  Google Scholar 

  • Lesage F, Lazdunski M (2000) Molecular and functional properties of two-pore-domain potassium channels. Am J Physiol Renal Physiol 279:F793-F801

    PubMed  CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996a) TWIK-1, a ubiquitous human weakly inward rectifying K + channel with a novel structure. EMBO J 15:1004–1011

    CAS  Google Scholar 

  • Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, Barhanin J (1996b) A pH-sensitive yeast outward rectifier K + channel with two pore domains and novel gating properties. J Biol Chem 271:4183–4187

    Article  CAS  Google Scholar 

  • Lesage F, Maingret F, Lazdunski M (2000a) Cloning and expression of human TRAAK, a polyunsaturated fatty acids-activated and mechano-sensitive K + channel. FEBS Lett 471:137–140

    Article  CAS  Google Scholar 

  • Lesage F, Terrenoire C, Romey G, Lazdunski M (2000b) Human TREK2, a 2P domain mechano-sensitive K + channel with multiple regulations by polyunsaturated fatty acids, lysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J Biol Chem 275:28398–28405

    Article  CAS  Google Scholar 

  • Li XT, Dyachenko V, Zuzarte M, Putzke C, Preisig-Muller R, Isenberg G, Daut J (2006) The stretch-activated potassium channel TREK-1 in rat cardiac ventricular muscle. Cardiovasc Res 69:86–97

    Article  CAS  Google Scholar 

  • Lopes CM, Rohacs T, Czirják G, Balla T, Enyedi P, Logothetis DE (2005) PIP2 hydrolysis underlies agonist-induced inhibition and regulates voltage gating of two-pore domain K+  channels. J Physiol 564:117–129

    Article  PubMed  CAS  Google Scholar 

  • Lotshaw DP (2007) Biophysical, pharmacological, and functional characteristics of cloned and native mammalian two-pore domain K+ channels. Cell Biochem Biophys 47:209–256

    Article  PubMed  CAS  Google Scholar 

  • Ma XY, Yu JM, Zhang SZ, Liu XY, Wu BH, Wei XL, Yan JQ, Sun HL, Yan HT, Zheng JQ (2011) External Ba2+ block of the two-pore domain potassium channel TREK-1 defines conformational transition in its selectivity filter. J Biol Chem 286:39813–39822

    Article  PubMed  CAS  Google Scholar 

  • Maingret F, Fosset M, Lesage F, Lazdunski M, Honore E (1999a) TRAAK is a mammalian neuronal mechano-gated K+ channel. J Biol Chem 274:1381–1387

    Article  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (1999b) Mechano- or acid stimulation, two interactive modes of activation of the TREK-1 potassium channel. J Biol Chem 274:26691–26696

    Article  CAS  Google Scholar 

  • Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M, Honore E (2000a) TREK-1 is a heat-activated background K+ channel. EMBO J 19:2483–2491

    Article  CAS  Google Scholar 

  • Maingret F, Patel AJ, Lesage F, Lazdunski M, Honoré E (2000b) Lysophospholipids open the two-pore domain mechano-gated K + channels TREK-1 and TRAAK. J Biol Chem 275:10128–10133

    Article  CAS  Google Scholar 

  • Maingret F, Honore E, Lazdunski M, Patel AJ (2002) Molecular basis of the voltage-dependent gating of TREK-1, a mechano-sensitive K+ channel. Biochem Biophys Res Commun 292:339–346

    Article  PubMed  CAS  Google Scholar 

  • Mathie A (2007) Neuronal two-pore-domain potassium channels and their regulation by G protein-coupled receptors. J Physiol 578:377–385

    Article  PubMed  CAS  Google Scholar 

  • Mathie A, Veale EL (2007) Therapeutic potential of neuronal two-pore domain potassium-channel modulators. Curr Opin Investig Drugs 8:555–562

    PubMed  CAS  Google Scholar 

  • Mazella J, Petrault O, Lucas G, Deval E, Beraud-Dufour S, Gandin C, El-Yacoubi M, Widmann C, Guyon A, Chevet E, Taouji S, Conductier G, Corinus A, Coppola T, Gobbi G, Nahon JL, Heurteaux C, Borsotto M (2010) Spadin, a sortilin-derived peptide, targeting rodent TREK-1 channels: a new concept in the antidepressant drug design. PLoS Biol 8 e1000355

    Google Scholar 

  • Meadows HJ, Benham CD, Cairns W, Gloger I, Jennings C, Medhurst AD, Murdock P, Chapman CG (2000) Cloning, localisation and functional expression of the human orthologue of the TREK-1 potassium channel. Pflugers Arch -Eur J Physiol 439:714–722

    Article  CAS  Google Scholar 

  • Meadows HJ, Chapman CG, Duckworth DM, Kelsell RE, Murdock PR, Nasir S, Rennie G, Randall AD (2001) The neuroprotective agent sipatrigine (BW619C89) potently inhibits the human tandem pore-domain K + channels TREK-1 and TRAAK. Brain Res 892:94–101

    Article  PubMed  CAS  Google Scholar 

  • Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, Pangalos MN (2001) Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Brain Res Mol Brain Res 86:101–114

    Article  PubMed  CAS  Google Scholar 

  • Moha ou Maati H, Peyronnet R, Devader C, Veyssiere J, Labbal F, Gandin C, Mazella J, Heurteaux C, Borsotto M (2011) A human TREK-1/HEK cell line: a highly efficient screening tool for drug development in neurological diseases. PLoS One 6 e25602

    Google Scholar 

  • Murbartian J, Lei Q, Sando JJ, Bayliss DA (2005) Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J Biol Chem 280:30175–30184

    Article  PubMed  CAS  Google Scholar 

  • Nicolas MT, Lesage F, Reyes R, Barhanin J, Dememes D (2004) Localization of TREK-1, a two-pore-domain K + channel in the peripheral vestibular system of mouse and rat. Brain Res 1017:46–52

    Article  PubMed  CAS  Google Scholar 

  • Noël J, Zimmermann K, Busserolles J, Deval E, Alloui A, Diochot S, Guy N, Borsotto M, Reeh P, Eschalier A, Lazdunski M (2009) The mechano-activated K + channels TRAAK and TREK-1 control both warm and cold perception. EMBO J 28:1308–1318

    Article  PubMed  CAS  Google Scholar 

  • Noël J, Sandoz G, Lesage F (2011) Molecular regulations governing TREK and TRAAK channel functions. Channels (Austin) 5:402–409

    Article  CAS  Google Scholar 

  • Ozaita A, Vega-Saenz de Miera E (2002) Cloning of two transcripts, HKT4.1a and HKT4.1b, from the human two-pore K + channel gene KCNK4: Chromosomal localization, tissue distribution and functional expression. Mol Brain Res 102:18–27

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E (2001) Properties and modulation of mammalian 2P domain K + channels. Trends Neurosci 24:339–346

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Maingret F, Lesage F, Fink M, Duprat F, Lazdunski M (1998) A mammalian two pore domain mechano-gated S-like K + channel. EMBO J 17:4283–4290

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Honore E, Lesage F, Fink M, Romey G, Lazdunski M (1999) Inhalational anesthetics activate two-pore-domain background K+ channels. Nat Neurosci 2:422–426

    Article  PubMed  CAS  Google Scholar 

  • Patel AJ, Lazdunski M, Honore E (2001) Lipid and mechano-gated 2P domain K+ channels. Curr Opin Cell Biol 13:422–428

    Article  PubMed  CAS  Google Scholar 

  • Perlis RH, Moorjani P, Fagerness J, Purcell S, Trivedi MH, Fava M, Rush AJ, Smoller JW (2008) Pharmacogenetic analysis of genes implicated in rodent models of antidepressant response: association of TREK1 and treatment resistance in the STAR*D study. Neuropsychopharmacology 33:2810–2819

    Article  PubMed  CAS  Google Scholar 

  • Plant LD, Rajan S, Goldstein SA (2005) K2P channels and their protein partners. Curr Opin Neurobiol 15:326–333

    Article  PubMed  CAS  Google Scholar 

  • Pongs O (2009) TREKing noxious thermosensation. EMBO J 28:1195–1196

    Article  PubMed  CAS  Google Scholar 

  • Putzke C, Wemhoner K, Sachse FB, Rinne S, Schlichthorl G, Li XT, Jae L, Eckhardt I, Wischmeyer E, Wulf H, Preisig-Muller R, Daut J, Decher N (2007) The acid-sensitive potassium channel TASK-1 in rat cardiac muscle. Cardiovasc Res 75:59–68

    Article  PubMed  CAS  Google Scholar 

  • Reboreda A, Cadaveira-Mosquera A, Rivas-Ramírez P, Fernández-Fernández D, Domínguez V, Lamas JA (2010) Muscarinic modulation of TREK currents in culture mouse superior cervical ganglion neurons. FENS Abstr 5:013–33

    Google Scholar 

  • Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, Lazdunski M (1998) Cloning and expression of a novel pH-sensitive two pore domain K + channel from human kidney. J Biol Chem 273:30863–30869

    Article  PubMed  CAS  Google Scholar 

  • Reyes R, Lauritzen I, Lesage F, Ettaiche M, Fosset M, Lazdunski M (2000) Immunolocalization of the arachidonic acid and mechanosensitive baseline TRAAK potassium channel in the nervous system. Neuroscience 95:893–901

    Article  PubMed  CAS  Google Scholar 

  • Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD (2004) Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J Neurophysiol 92:1928–1936

    Article  PubMed  CAS  Google Scholar 

  • Rivas-Ramírez P, Reboreda A, Cadaveira-Mosquera A, Fernández-Fernández D, Domínguez V, Lamas JA (2011) Caracterización de la vía de inhibición muscarínica de corrientes TREK en neuronas del ganglio cervical superior en cultivo. SENC Abstracts, SIII-P33, www.senc2011.com

  • Romero M, Reboreda A, Sánchez E, Lamas JA (2004) Newly developed blockers of the M-current do not reduce spike frequency adaptation in cultured mouse sympathetic neurons. Eur J Neurosci 19:2693–2702

    Article  PubMed  CAS  Google Scholar 

  • Sabbadini M, Yost CS (2009) Molecular biology of background K + channels: insights from K2P knockout mice. J Mol Biol 385:1331–1344

    Article  PubMed  CAS  Google Scholar 

  • Salkoff L, Jegla T (1995) Surfing the DNA databases for K + channels nets yet more diversity. Neuron 15:489–492

    Article  PubMed  CAS  Google Scholar 

  • Sandoz G, Thummler S, Duprat F, Feliciangeli S, Vinh J, Escoubas P, Guy N, Lazdunski M, Lesage F (2006) AKAP150, a switch to convert mechano-, pH- and arachidonic acid-sensitive TREK K + channels into open leak channels. EMBO J 25:5864–5872

    Article  PubMed  CAS  Google Scholar 

  • Sandoz G, Bell SC, Isacoff EY (2011) Optical probing of a dynamic membrane interaction that regulates the TREK1 channel. Proc Natl Acad Sci USA 108:2605–2610

    Article  PubMed  CAS  Google Scholar 

  • Segal-Hayoun Y, Cohen A, Zilberberg N (2010) Molecular mechanisms underlying membrane-potential-mediated regulation of neuronal K2P2.1 channels. Mol Cell Neurosci 43:117–126

    Article  PubMed  CAS  Google Scholar 

  • Seifert G, Huttmann K, Binder DK, Hartmann C, Wyczynski A, Neusch C, Steinhauser C (2009) Analysis of astroglial K + channel expression in the developing hippocampus reveals a predominant role of the Kir4.1 subunit. J Neurosci 29:7474–7488

    Article  PubMed  CAS  Google Scholar 

  • Simkin D, Cavanaugh EJ, Kim D (2008) Control of the single channel conductance of K2P10.1 (TREK-2) by the amino-terminus: role of alternative translation initiation. J Physiol 586:5651–5663

    Article  PubMed  CAS  Google Scholar 

  • Suh BC, Hille B (2005) Regulation of ion channels by phosphatidylinositol 4,5-bisphosphate. Curr Opin Neurobiol 15:370–378

    Article  PubMed  CAS  Google Scholar 

  • Suh BC, Hille B (2007) Regulation of KCNQ channels by manipulation of phosphoinositides. J Physiol 582:911–916

    Article  PubMed  CAS  Google Scholar 

  • Talley EM, Solorzano G, Lei Q, Kim D, Bayliss DA (2001) CNS distribution of members of the two-pore-domain (KCNK) potassium channel family. J Neurosci 21:7491–7505

    PubMed  CAS  Google Scholar 

  • Talley EM, Sirois JE, Lei Q, Bayliss DA (2003) Two-pore-domain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist 9:46–56

    Article  PubMed  CAS  Google Scholar 

  • Tan JHC, Liu W, Saint DA (2002) Trek-like potassium channels in rat cardiac ventricular myocytes are activated by intracellular ATP. J Membr Biol 185:201–207

    Article  PubMed  CAS  Google Scholar 

  • Terrenoire C, Lauritzen I, Lesage F, Romey G, Lazdunski M (2001) A TREK-1-like potassium channel in atrial cells inhibited by beta-adrenergic stimulation and activated by volatile anesthetics. Circ Res 89:336–342

    Article  PubMed  CAS  Google Scholar 

  • Thomas D, Plant LD, Wilkens CM, McCrossan ZA, Goldstein SAN (2008) Alternative translation initiation in rat brain yields K2P2.1 potassium channels permeable to sodium. Neuron 58:859–870

    Article  PubMed  CAS  Google Scholar 

  • Thümmler S, Duprat F, Lazdunski M (2007) Antipsychotics inhibit TREK but not TRAAK channels. Biochem Biophys Res Commun 354:284–289

    Article  PubMed  CAS  Google Scholar 

  • Viana F, de la Peña E, Belmonte C (2002) Specificity of cold thermotransduction is determined by differential ionic channel expression. Nat Neurosci 5:254–260

    Article  PubMed  CAS  Google Scholar 

  • Voloshyna I, Besana A, Castillo M, Matos T, Weinstein IB, Mansukhani M, Robinson RB, Cordon-Cardo C, Feinmark SJ (2008) TREK-1 is a novel molecular target in prostate cancer. Cancer Res 68:1197–1203

    Article  PubMed  CAS  Google Scholar 

  • Xiao Z, Deng PY, Rojanathammanee L, Yang C, Grisanti L, Permpoonputtana K, Weinshenker D, Doze VA, Porter JE, Lei S (2009) Noradrenergic depression of neuronal excitability in the entorhinal cortex via activation of TREK-2 K + channels. J Biol Chem 284:10980–10991

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Taniguchi K (2006) Expression of tandem P domain K + channel, TREK-1, in the rat carotid body. J Histochem Cytochem 54:467–472

    Article  PubMed  CAS  Google Scholar 

  • Yamamoto Y, Hatakeyama T, Taniguchi K (2009) Immunohistochemical colocalization of TREK-1, TREK-2 and TRAAK with TRP channels in the trigeminal ganglion cells. Neurosci Lett 454:129–133

    Article  PubMed  CAS  Google Scholar 

  • Yang SB, Jan LY (2008) Thrilling moment of an inhibitory channel. Neuron 58:823–824

    Article  PubMed  CAS  Google Scholar 

  • Zhao H, Sprunger LK, Simasko SM (2010) Expression of transient receptor potential channels and two-pore potassium channels in subtypes of vagal afferent neurons in rat. Am J Physiol Gastrointest Liver Physiol 298:G212-G221

    Article  PubMed  CAS  Google Scholar 

  • Zhou M, Xu G, Xie M, Zhang X, Schools GP, Ma L, Kimelberg HK, Chen H (2009) TWIK-1 and TREK-1 are potassium channels contributing significantly to astrocyte passive conductance in rat hippocampal slices. J Neurosci 29:8551–8564

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Our investigation is currently supported by grants from the Spanish Ministry of Science and Innovation (MICINN BFU2008–02952/BFI and CONSOLIDER-INGENIO CSD2008–00005) and the Galician Government (INBIOMED 2009/063) to JAL. Help from Antonio Reboreda and Alba Cadaveira is gratefully recognized.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Antonio Lamas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lamas, J.A. (2012). Mechanosensitive K2P channels, TREKking through the autonomic nervous system. In: Kamkin, A., Lozinsky, I. (eds) Mechanically Gated Channels and their Regulation. Mechanosensitivity in Cells and Tissues, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5073-9_2

Download citation

Publish with us

Policies and ethics