Skip to main content

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

  • 622 Accesses

Abstract

Mesozoic bivalves have been the subject of many paleobiogeographic studies, either with the aim of recognizing units, to argue about the proposal of opening of seaways and exotic terranes movements, or even to relate biogeography with extinction and evolution. With a few notable exceptions, Northern Hemisphere data were used and frequently conclusions extrapolated worldwide. In the analysis of bivalve geographic distribution, some special issues should be taken into account, such as larval type, mode of life, and tolerance to certain environmental factors, which are here briefly discussed for Southern Hemisphere bivalves. Special attention is paid to the proposed pseudoplanktonic habit as an aid to dispersal, to reef-building bivalves, and to those with special low-oxygen tolerance. For some of the various analyses performed, Triassic-Jurassic bivalve genera were classified according to their paleobiogeographic affinities in truly cosmopolitan, low-latitude (Tethyan), high-latitude (austral or bipolar), trans-temperate (Pacific), and endemic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aberhan M (1998) Paleobiogeographic patterns of pectinoid Bivalves and the early Jurassic tectonic evolution of western Canadian terranes. Palaios 13:129–148

    Article  Google Scholar 

  • Aberhan M (1999) Terrane history of the Canadian Cordillera: estimating amounts of latitudinal displacement and rotation of Wrangellia and Stikinia. Geol Mag 136(5):481–492

    Article  Google Scholar 

  • Aberhan M (2001) Bivalve palaeobiogeography and the hispanic corridor: time of opening and effectiveness of a proto-Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 165:375–394

    Article  Google Scholar 

  • Aberhan M (2002) Opening of the Hispanic Corridor and early Jurassic bivalve biodiversity. In: Crame JA, Owen AW (eds) Paleobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiation. Geol Soc London Spec Publ 194:127–139

    Google Scholar 

  • Aberhan M, Pálfy J (1996) A low oxygen tolerant East Pacific flat clam (Posidonotis semiplicata) from the lower Jurassic of the Canadian cordillera. Can J Earth Sci 33:993–1006

    Article  Google Scholar 

  • Accorsi Benini C (1979) Lithioperna, un nuovo genere fra i grandi lamellibranchi della facies a “Lithiotis”. Morfologia, tassonomia ed analisi morfofunzionale. Boll Soc Geol Ital 18:221–257

    Google Scholar 

  • Accorsi Benini C (1981) Opisoma Stoliczka, 1871 lamellibranco eterodonte della facies a “Lithiotis” (Giurassic inf., Liassico). Boll Soc Paleontol Ital 20:197–228

    Google Scholar 

  • Accorsi Benini C (1985) The large liassic bivalves: symbiosis or longevity. Palaeogeogr Palaeoclimatol Palaeoecol 52:21–33

    Article  Google Scholar 

  • Accorsi Benini C, Broglio Loriga C (1977) Lithiotis Gümbel, 1871 e Cochlearites Reis, 1903. I. Revisione morfologica e tassonomica. Boll Soc Paleontol Ital 16:15–60

    Google Scholar 

  • Accorsi Benini C, Broglio Loriga C (1982) Microstructure, modalità di accrescimento e priodicità nei lamellibranchi liasssici (Facies a “Lithiotis”). Geol Romana 21:795–823

    Google Scholar 

  • Aguirre-Urreta MB, Casadío S, Cichowolski M, Lazo DG, Rodríguez DL (2008) Afinidades paleobiogeográficas de los invertebrados cretácicos de la Cuenca Neuquina. Ameghiniana 45:593–613

    Google Scholar 

  • Al-Suwaidi AH, Angelozzi GN, Baudin F, Damborenea SE, Hesselbo SP, Jenkyns HC, Manceñido MO, Riccardi AC (2010) First record of the Early Toarcian Oceanic Anoxic Event from the Southern Hemisphere, Neuquén Basin, Argentina. J Geol Soc London 167:633–636

    Article  Google Scholar 

  • Ando H (1987) Evolution and biogeography of Late Triassic bivalve Monotis from Japan. In: Proceedings International Symposium on Shallow Tethys 2 (Wagga Wagga 1986), pp 233–246

    Google Scholar 

  • Böhm G (1906) Zur Stellung von Lithiotis. Centralbl Mineral Geol Paläontol 1906:161–167

    Google Scholar 

  • Broglio Loriga C, Neri C (1976) Aspetti paleobiologici e palaeogeografici della facies a “Lithiotis” (Giurese inf.). Riv Ital Paleontol e Stratigr 82:651–705

    Google Scholar 

  • Campbell HJ (1994) The Triassic bivalves Daonella and Halobia in New Zealand, New Caledonia, and Svalbard. Inst Geol Nucl Sci Monogr 4:1–166

    Google Scholar 

  • Caswell BA, Coe AL, Cohen AS (2009) New range data for marine invertebrate species across the early Toarcian (early Jurassic) mass extinction. J Geol Soc London 166:859–872

    Article  Google Scholar 

  • Chen J (1982) Mesozoic transgressions, regressions and bivalve provinces in China. Acta Geol Sin 21:334–346

    Google Scholar 

  • Chinzei K (1982) Morphological and structural adaptations to soft substrates in the early Jurassic monomyarians Lithiotis and Cochlearites. Lethaia 15:179–197

    Article  Google Scholar 

  • Coates AG (1973) Cretaceous tethyan coral-rudist biogeography related to the evolution of the Atlantic Ocean. In: Hughes (ed) Organisms and continents through time. Spec Pap in Palaeontol 12:169–174

    Google Scholar 

  • Cope JCW (2002) Diversification and biogeography of bivalves during the Ordovician period. In: Crame JA, Owen AW (eds) Paleobiogeography and biodiversity change: the Ordovician and Mesozoic-Cenozoic radiation. Geol Soc Spec Publ 194:25–52

    Google Scholar 

  • Crame JA (1986) Late Mesozoic bipolar bivalve faunas. Geol Mag 123:611–618

    Article  Google Scholar 

  • Crame JA (1993) Bipolar molluscs and their evolutionary implications. J Biogeogr 20:145–161

    Article  Google Scholar 

  • Crame JA (1996) Evolution of high-latitude molluscan faunas. In: Taylor JD (ed) Origin and evolutionary radiation of the mollusca. Oxford University Press, Oxford

    Google Scholar 

  • Crame JA (2002) Evolution of taxonomic diversity gradients in the marine realm: a comparison of late Jurassic and recent bivalve faunas. Paleobiology 28:184–207

    Article  Google Scholar 

  • Damborenea SE (1989) El género Posidonotis Losacco (Bivalvia, Jurásico inferior): su distribución estratigráfica y paleogeográfica. Actas 4° Congr Argent Paleontol y Bioestratigr (Mendoza, 1986) 4:45–51

    Google Scholar 

  • Damborenea SE (1993) Early Jurassic South American pectinaceans and circum-Pacific paleobiogeography. Palaeogeogr Palaeoclimatol Palaeoecol 100:109–123

    Article  Google Scholar 

  • Damborenea SE (1996) Paleobiogeography of early Jurassic bivalves along the southeastern Pacific margin. 13° Congr Geol Argent y 3° Congr Explorac Hidrocarb (Buenos Aires). Actas 5:151–167

    Google Scholar 

  • Damborenea SE (1998) The bipolar bivalve Kolymonectes in South America and the diversity of Propeamussiidae in Mesozoic times. In: Johnston PA, Haggart JW (eds) Bivalves: an eon of evolution—paleobiological studies honoring Norman D. Newell University Calgary Press, Calgary

    Google Scholar 

  • Damborenea SE (2000) Hispanic Corridor: its evolution and the biogeography of bivalve molluscs. In: Hall RL, Smith PL (eds) Advances in Jurassic research 2000. Geo Res Forum 6:369–380

    Google Scholar 

  • Damborenea SE (2002) Jurassic evolution of Southern Hemisphere marine palaeobiogeographic units based on benthonic bivalves. Geobios 35, MS 24:51–71

    Google Scholar 

  • Damborenea SE, Manceñido MO (1979) On the palaeogeographical distribution of the pectinid genus Weyla (Bivalvia, Lower Jurassic). Palaeogeogr Palaeoclimatol Palaeoecol 27:85–102

    Article  Google Scholar 

  • Damborenea SE, Manceñido MO (1988) Weyla: semblanza de un bivalvo Jurásico andino. Actas 5o Congr Geol Chileno 2:C13–C25 (Santiago de Chile)

    Google Scholar 

  • Darragh TA (1985) Molluscan biogeography and biostratigraphy of the Tertiary of southeastern Australia. Alcheringa 9:83–116

    Article  Google Scholar 

  • Dhondt AV (1992) Cretaceous inoceramid biogeography: a review. Palaeogeogr Palaeoclimatol Palaeoecol 92:217–232

    Article  Google Scholar 

  • Dhondt AV (1999) Palaeogeographical distribution patterns in Upper Cretaceous bivalves. Malacol Soc London, Biology and evolution of the bivalvia, Paper and Poster Abstracts: 18, Cambridge

    Google Scholar 

  • Dickins JM (1993) Permian bivalve faunas. stratigraphical and geographical distribution. C R 12° Congr Internat Stratigr et Géol du Carbonifère et Permien 1:523–536

    Google Scholar 

  • Douvillé H (1900) Sur la distribution géographique des Rudistes, des orbitolines at des orbitoides. Bull, Soc Géol France, 3° sér. 28:222–235

    Google Scholar 

  • Duff KL (1978) Bivalvia of the English lower Oxford Clay (Middle Jurassic). Palaeontograph Soc Monogr 132(553):1–137

    Google Scholar 

  • Emerson WK (1978) Mollusks with Indo-Pacific affinities in the eastern Pacific Ocean. Nautilus 92:91–96

    Google Scholar 

  • Etter W (1996) Pseudoplanktonic and benthic invertebrates in the Middle Jurassic Opalinum Clay, northern Switzerland. Palaeogeogr Palaeoclimatol Palaeoecol 126:325–341

    Article  Google Scholar 

  • Flessa KW, Jablonski D (1995) Biogeography of recent marine bivalve molluscs and its implications for paleobiogeography and the geography of extinction: a progress report. Hist Biol 10:25–47

    Article  Google Scholar 

  • Fürsich FT, Sykes RM (1977) Palaeobiogeography of the European Boreal realm during Oxfordian (upper Jurassic) times: a quantitative approach. N Jb Geol Paläontol Adhand 172:271–329

    Google Scholar 

  • Grant-Mackie JA, Aita Y, Balme BE, Campbell HJ, Challinor AB, MacFarlan DAB, Molnar RE, Stevens GR, Thulborn RA (2000) Jurassic palaeobiogeography of Australasia. In: Wright AJ, Young GC, Talent JA, Laurie JR (eds) Paleobiogeography of Australasian faunas and floras. Mem Assoc Australas Palaeontol 23:311–353

    Google Scholar 

  • Hall CA (1964) Shallow water marine climates and molluscan provinces. Ecology 45:226–234

    Article  Google Scholar 

  • Hallam A (1967) The bearing of certain palaeozoogeographic data on continental drift. Palaeogeogr Palaeoclimatol Palaeoecol 3:201–241

    Article  Google Scholar 

  • Hallam A (1969) Faunal realms and facies in the Jurassic. Palaeontology 12:1–18

    Google Scholar 

  • Hallam A (1971) Provinciality in Jurassic faunas in relation to facies and palaeogeography. In: Middlemiss FA, Rawson PF, Newall G (eds) Faunal provinces in space and time. Geol J Spec Issue 4:129–152

    Google Scholar 

  • Hallam A (1977) Jurassic bivalve biogeography. Paleobiology 3:58–73

    Google Scholar 

  • Hallam A (1981) Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the early Mesozoic. In: Nelson G, Rosen DE (eds) Vicariance biogeography: a critique. Columbia University Press, New York

    Google Scholar 

  • Hallam A (1983) Early and mid-Jurassic molluscan biogeography and the establishment of the central Atlantic seaway. Palaeogeogr Palaeoclimatol Palaeoecol 43:181–193

    Article  Google Scholar 

  • Hallam A, Biró-Bagóczky L, Pérez E (1986) Facies analysis of the Lo Valdés Formation (Tithonian-Hauterivian) of the high cordillera of central Chile, and the palaeogeographic evolution of the Andean Basin. Geol Mag 123:425–435

    Article  Google Scholar 

  • Hayami I (1961) On the Jurassic pelecypod faunas in Japan. J Fac Sci, Univ Tokyo, Sect II. Geol Mineral Geogr Geophys 13:243–343

    Google Scholar 

  • Hayami I (1969) Notes on Mesozoic “planktonic” bivalves. J Geol Soc Japan 75:375–385

    Article  Google Scholar 

  • Hayami I (1984) Jurassic marine bivalve faunas and biogeography in Southeast Asia. Geol Palaeontol Southeast Asia 25:229–237

    Google Scholar 

  • Hayami I (1987) Geohistorical background of Wallace’s Line and Jurassic marine biogeography. In: Taira A, Tashiro M (eds) Historical biogeography and plate tectonic evolution of Japan and Eastern Asia, Tokyo

    Google Scholar 

  • Hayami I (1989) Outlook of the post-Paleozoic historical biogeography of pectinids in the Western Pacific region. Univ Mus Univ Tokyo Nat Cult 1:3–25

    Google Scholar 

  • Hayami I (1990) Geographic distribution of Jurassic faunas in eastern Asia. In: Ichikawa K, Mizutani S, Hara I, Hada S, Yao A (eds) Pre-Cretaceous terranes of Japan. Publication of IGCP project 224, Osaka

    Google Scholar 

  • Hillebrandt A (1980) Paleozoogeografía de Jurásico marino (Lías hasta Oxfordiano) en Suramérica. In: Zeil W (ed) Nuevos resultados de la investigación geocientífica alemana en Latinoamérica. Deuts Forschungs and Inst Colabor Cient, Tübingen

    Google Scholar 

  • Hillebrandt A (1981) Kontinentalverschiebung und die paläozoogeographischen Beziehungen des südamerikanischen Lias. Geolog Runds 70:570–582

    Article  Google Scholar 

  • Jablonski D, Hunt G (2006) Larval ecology, geographic range, and species survivorship in Cretaceous mollusks: organismic versus species-level explanations. Am Nat 168:556–564

    Article  Google Scholar 

  • Jablonski D, Lutz RA (1983) Larval ecology of marine benthic invertebrates: paleobiological implications. Biol Rev 58:21–89

    Article  Google Scholar 

  • Jablonski D, Valentine JW (1990) From regional to total geographic ranges: testing the relationship in recent bivalves. Paleobiology 16:126–142

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (1999) Dissecting the latitudinal gradient in marine bivalves. Malacol Soc London, Biology and evolution of the Bivalvia, Paper and Poster Abstracts: 24, Cambridge

    Google Scholar 

  • Jablonski D, Roy K, Valentine JW (2000) Analysing the latitudinal gradient in marine bivalves. In: Harper EM, Taylor JD, Crame JA (eds) The evolutionary biology of the Bivalvia. Geol Soc Spec Publ 177:361–365

    Google Scholar 

  • Jefferies R, Minton P (1965) The mode of life of two Jurassic species of “Posidonia” (Bivalvia). Palaeontology 8:156–185

    Google Scholar 

  • Johannesson K (1988) The paradox of rockall: why is a brooding gastropod (Littorina saxatilis) more widespread than one having a planktonic larval dispersal stage (L. littorea)? Mar Biol 99:507–513

    Article  Google Scholar 

  • Kauffman EG (1973) Cretaceous Bivalvia. In: Hallam A (ed) Atlas of palaeobiogeography. Elsevier, Amsterdam

    Google Scholar 

  • Kauffman EG (1975) Dispersal and biostratigraphic potential of Cretaceous benthonic Bivalvia in the Western Interior. In: Caldwell WGE (ed) The Cretaceous System in the Western Interior of North America. Spec Pap Geol Assoc Can 13:163–194

    Google Scholar 

  • Kiessling W, Aberhan M (2007) Geographical distribution and extinction risk: lessons from Triassic-Jurassic marine benthic organisms. J Biogeogr 34:1473–1489

    Article  Google Scholar 

  • Knight RI, Morris NJ (1996) Inoceramid larval planktotrophy: evidence from the Gault Formation (Middle and basal Upper Albian), Folkestone, Kent. Palaeontology 39:1027–1036

    Google Scholar 

  • Kobayashi T, Tamura M (1983a) On the oriental province of the Tethyan realm in the Triassic period. Proc Jpn Ac Ser B 59:203–206

    Google Scholar 

  • Kobayashi T, Tamura M (1983b) The Arcto-Pacific Realm and the trigoniidae in the Triassic period. Proc Jpn Acad Ser B 59:207–210

    Article  Google Scholar 

  • Körner K (1937) Marine (Cassianer-Raibler) Trias am Nevado de Acrotambo (Nord-Peru). Palaeontogr A 86:145–237

    Google Scholar 

  • Kříž J (1996) Maida nov. gen., the oldest known nektoplanktic bivalve from the Přídolí (Silurian) of Europe. Geobios 29:529–535

    Article  Google Scholar 

  • Krobicki M, Golonka J (2009) Palaeobiogeography of early Jurassic Lithiotis-type bivalve buildups as recovery effect after Triassic/Jurassic mass extinction and their connection with Asian palaeogeography. Acta Geoscient Sinica 30 supl 1:30–33

    Google Scholar 

  • Liu C (1995) Jurassic bivalve palaeobiogeography of the proto-Atlantic and the application of multivariate analysis methods in palaeobiogeography. Beringeria 16:3–123

    Google Scholar 

  • Liu C, Heinze M, Fürsich FT (1998) Bivalve provinces in the proto-Atlantic and along the southern margin of the Tethys in the Jurassic. Palaeogeogr Palaeoclimatol Palaeoecol 137:127–151

    Article  Google Scholar 

  • Liu C, Xie Y, Chen L (2007) Distribution of larval developmental types of marine bivalves along the eastern Pacific coast. Beringeria 37:95–103

    Google Scholar 

  • Malchus N (2004) Early ontogeny of Jurassic bakevelliids and their bearing on bivalve evolution. Acta Palaeontol Pol 49(1):85–110

    Google Scholar 

  • Marwick J (1953) Faunal migrations in New Zealand seas during the Triassic and Jurassic. N Z J Sci Technol B 34:317–321

    Google Scholar 

  • Masse JP (1992) The Lower Cretaceous Mesogean benthic ecosystems: palaeoecologic aspects and palaeobiogeographic implications. Palaeogeogr Palaeoclimatol Palaeoecol 91:331–345

    Article  Google Scholar 

  • McRoberts CA (1997) Late Triassic North American halobiid bivalves; diversity trends and circum-Pacific correlations. In: Dickins JM et al (eds) Late Paleozoic and Early Mesozoic circum-Pacific events. Cambridge University Press, Cambridge, p 22

    Google Scholar 

  • McRoberts CA, Aberhan M (1997) Marine diversity and sea-level changes: numerical tests for association using early Jurassic bivalves. Geol Runds 86:160–167

    Article  Google Scholar 

  • Nauss AL, Smith PL (1988) Lithiotis (Bivalvia) bioherms in the lower Jurassic of East-central Oregon, USA. Palaeogeogr Palaeoclimatol Palaeoecol 65:253–268

    Article  Google Scholar 

  • Newton CR (1983) Paleozoogeographic affinities of Norian bivalves from the Wrangellian, Peninsular, and Alexander terranes. In: Stevens CH (ed) Pre-Jurassic Rocks in Western North American suspect terranes. Pacific Section, Society of Economic Paleontologists and Mineralogists, Los Angeles

    Google Scholar 

  • Newton CR (1987) Biogeographic complexity in Triassic bivalves of the Wallowa terrane, northwestern United States: Oceanic islands, not continents, provide the best analogues. Geology 15:1126–1129

    Article  Google Scholar 

  • Newton CR (1988) Significance of “Tethyan” fossils in the American Cordillera. Science 242:385–391

    Article  Google Scholar 

  • Niu Y, Jiang B, Huang H (2011) Triassic marine biogeography constrains the palaeogeographic reconstruction of Tibet and adjacent areas. Palaeogeogr Palaeoclimatol Palaeoecol 306:160–175

    Article  Google Scholar 

  • O’Foighil D (1989) Planktotrophic larval development is associated with a restricted geographic range in Lasaea, a genus of brooding, hermaphroditic bivalves. Mar Biol 103:349–358

    Article  Google Scholar 

  • Oschmann W (1993) Environmental fluctuations and the adaptive response of marine benthic organisms. J Geol Soc 150:187–191

    Article  Google Scholar 

  • Palmer CP (1989) Larval shells of four Jurassic bivalve molluscs. Bull Brit Mus Nat Hist Geol 45:57–69

    Google Scholar 

  • Raby D, Laagdeuc Y, Dodson JJ, Mingelbier M (1994) Relationship between feeding and vertical distribution of bivalve larvae in stratified and mixed waters. Mar Ecol Progr Ser 103:275–284

    Article  Google Scholar 

  • Rey J, Andreo B, García-Hernández M, Martín-Algarra A, Vera JA (1990) The Liassic “Lithiotis” facies north of Vélez Rubio (Subbetic Zone). Rev Soc Geol España 3:199–212

    Google Scholar 

  • Roy K, Jablonski D, Martien KK (2000) Invariant size-frequency distributions along a latitudinal gradient in marine bivalves. Proc Nation Acad Sci USA 97:13150–13155

    Article  Google Scholar 

  • Runnegar B (1975) Late Palaeozoic Bivalvia from South America: provincial affinities and age. An Acad Brasil Sci [1972] 44 (suppl):295–312

    Google Scholar 

  • Runnegar B, Newell ND (1971) Caspian-like relict molluscan fauna in the South American Permian. Bull Am Mus Nat Hist 146:1–66

    Google Scholar 

  • Sánchez MT, Babin C (2001) Paleogeographic distribution of Ordovician molluscan bivalves. In: International conference Paleobiogeogr Paleoecol, p 117

    Google Scholar 

  • Savazzi E (1996) Preserved ligament in the Jurassic Lithiotis: apaptive and evolutionary significance. Palaeogeogr Palaeoclimatol Palaeoecol 120:281–289

    Article  Google Scholar 

  • Schatz W (2005) Palaeoecology of the Triassic black shale bivalve Daonella–new insights into an old controversy. Palaeogeogr Palaeoclimatol Palaeoecol 216:189–201

    Article  Google Scholar 

  • Scheltema RS (1977) Dispersal of marine invertebrate organisms: paleobiogeographic and biostratigraphic implications. In: Kauffman EG, Hazel JE (eds) Concepts and methods in biostratigraphy. Hutchinson and Ross, Stroudsburg, PA

    Google Scholar 

  • Scheltema RS (1988) Initial evidence for the transport of teleplanic larvae of benthic invertebrates across the East Pacific barrier. Biol Bull 174:145–152

    Article  Google Scholar 

  • Scheltema RS, Williams IP (1983) Long-distance dispersal of planktonic larvae and the biogeography and evolution of some Polynesian and Western Pacific mollusks. Bull Mar Sci 33:545–565

    Google Scholar 

  • Scotese CR (1997) Paleogeographic Atlas. PALEOMAP Progress Report 90-0497, Department of Geology, University of Texas at Arlington, Arlington, Texas

    Google Scholar 

  • Sha J (1996) Antitropicality of the Mesozoic Bivalves. In: Pang ZH et al (eds) Advances in Solid Earth Sciences. Science Press, Peking

    Google Scholar 

  • Sha J (2002) Hispanic corridor formed as early as Hettangian: on the basis of bivalve fossils. Chin Sci Bull 47:414–417

    Article  Google Scholar 

  • Shi GR, Grunt TA (2000) Permian Gondwana-Boreal antitropicality with special reference to brachiopod faunas. Palaeogeogr Palaeoclimatol Palaeoecol 155:239–263

    Article  Google Scholar 

  • Shurygin BN (2005) Biogeografiya, fatsii i stratigrafiya nizhnej i srednej Yury Sibiri po dvustvorchatym mollyuskan [Lower and Middle Jurassic biogeography, facies and stratigraphy in Siberia based on bivalve mollusks]. Trofimuk United Institute of Geology, Geophysics and Mineralogy; Institute of Petroleum Geology. Academic Publishing House “Geo”, pp 156 Novosibirsk

    Google Scholar 

  • Silberling NJ (1985) Biogeographic significance of the Upper Triassic bivalve Monotis in Circum-Pacific Accreted Terranes. In: Howell DG (ed) Tectonostratigraphic Terranes of the Circum-Pacific region. Circum-Pacific Council for Energy and Mineral Resources, Earth Science Series 1:63–70

    Google Scholar 

  • Silberling NJ, Grant-Mackie JA, Nichols KM (1997) The Late Triassic Bivalve Monotis in Accreted Terranes of Alaska. US Geol Surv Bull 2151:1–21

    Google Scholar 

  • Skelton PW, Wright VP (1987) A Caribbean rudist bivalve in Oman: island-hopping across the Pacific in the Late Cretaceous. Palaeontology 30:505–529

    Google Scholar 

  • Skwarko SK (1983) Somareoides hastatus (Skwarko), a new Late Triassic bivalve from Papua New Guinea. Bull Bur Min Res Geol Geophy-s 217:67–68

    Google Scholar 

  • Smith AG, Briden JC (1977) Mesozoic and Cenozoic paleocontinental maps. Cambridge University Press, Cambridge

    Google Scholar 

  • Smith PL, Westermann GEG, Stanley GD Jr, Yancey TE Jr (1990) Paleobiogeography of the Ancient Pacific (response by Newton CR). Science 249:680–683

    Article  Google Scholar 

  • Speden IG, Keyes IW (1981) Illustrations of New Zealand Fossils. New Zealand Department of Scientific and Industrial Research, DSIR Information Series, Wellington, 150

    Google Scholar 

  • Stanley SM (1972) Functional morphology and evolution of byssally attached bivalve mollusks. J Paleontol 46(2):165–212

    Google Scholar 

  • Stevens GR (1967) Upper Jurassic fossils from Ellsworth Land, West Antarctica, and notes on Upper Jurassic biogeography of the South Pacific region. N Z J Geol Geophys 10:345–393

    Article  Google Scholar 

  • Stevens GR (1977) Mesozoic biogeography of the South-West Pacific and its relationship to plate tectonics. In: International Symposium on the Geodynamics of the SW Pacific. Ed. Technip, Paris

    Google Scholar 

  • Stevens GR (1980) Southwest Pacific faunal palaeobiogeography in Mesozoic and Cenozoic times: a review. Palaeogeogr Palaeoclimatol Palaeoecol 31:153–196

    Article  Google Scholar 

  • Tamura M (1990) The distribution of Japanese Triassic bivalve funas with special reference to parallel distribution of inner arcto-Pacific fauna and outer Tethyan fauna in Upper Triassic. In: Ichikawa K, Mizutani S, Hara I, Hara S, Yao A (eds) Pre-Cretaceous terranes of Japan. Publ IGCP Project 224:347–359

    Google Scholar 

  • Tanoue K (2003) Larval ecology of Cretaceous inoceramid bivalves from northwestern Hokkaido, Japan. Paleontol Res 7:105–110

    Article  Google Scholar 

  • Tausch von Gloeckelsthurn L (1890) Zur Kenntniss der Fauna der “grauen Kalke” der Süd-Alpen. Abhandl k.k. Geolog Reichs 15(2):1–42

    Google Scholar 

  • Voigt S, Hay WW, Höfling R, De Conte RM (1999) Biogeographic distribution of late Early to Late Cretaceous rudist-reefs in the Mediterranean as climate indicators. Geol Soc Am Spec Pap 332:91–103

    Google Scholar 

  • Wignall PB (1990) Observations on the evolution and classification of dysaerobic communities. In: Miller W (ed) Paleocommunity temporal dynamics: the long-term development of multispecies assemblies. Paleontol Soc Spec Publ 5:99–111

    Google Scholar 

  • Wignall PB, Simms MJ (1990) Pseudoplankton. Palaeontol 33:359–378

    Google Scholar 

  • Zinsmeister WJ (1979) Biogeographic Significance of the late Mesozoic and early Tertiary Molluscan Faunas of Seymour Island (Antarctic Peninsula) to the final breakup of Gondwanaland. In: Gray J, Boucot AJ (eds) Historical biogeography, plate tectonics, and the changing environment. Oregon State University Press, Oregon

    Google Scholar 

  • Zinsmeister WJ (1982) Late Cretaceous-early Tertiary molluscan biogeography of the southern circum-Pacific. J Paleontol 56:84–102

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susana E. Damborenea .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 The Author(s)

About this chapter

Cite this chapter

Damborenea, S.E., Echevarría, J., Ros-Franch, S. (2013). A Bivalve Perspective. In: Southern Hemisphere Palaeobiogeography of Triassic-Jurassic Marine Bivalves. SpringerBriefs in Earth System Sciences. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5098-2_3

Download citation

Publish with us

Policies and ethics