Skip to main content

Molecular Diversity and Biotechnological Relevance of Thermophilic Actinobacteria

  • Chapter
  • First Online:
Thermophilic Microbes in Environmental and Industrial Biotechnology

Abstract

Extremophilic organisms have attracted significant attention of the research community during the recent past, not only due to their survival and growth at extreme conditions but also due to their huge potential in various fields of biotechnology. Among the various groups of extremophiles, thermophilic actinomycetes have been less explored due to the difficulties in their isolation and maintenance in pure culture. Therefore, it largely remains to explore their diversity, molecular phylogeny, adaptive features, and biocatalytic and other biotechnological potentials. In order to study actinomycetes, morphological features and morphogenesis, antibiotic sensitivity and resistance, biochemical characteristics, and certain key molecular features have been taken into account to get insight into the actinomycetes, in general. The molecular approaches include sequence homology of 16S rRNA genes, nucleic acid hybridization, G + C% ratio, protein profiling, RFLP, DGGE, TGGE and ARDRA for the assessment of diversity, taxonomic status, and molecular phylogeny. The thermophilic actinomycetes reflect quite appealing and unique applications in various fields of biotechnology, viz., production of thermostable enzymes, antibiotics, and hormones and their role in bioremediation processes of recalcitrant compounds. Further studies on the diversity and phylogeny would enhance understanding of the unexplored thermophilic actinobacteria that will promote their applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrami M, Le I, Korica T, Vitale L, Saenger W, Pigac J (1999) Enzyme Microb Technol 25:522–529

    Article  Google Scholar 

  • Al-Tai AM, Abdul-Razzak S, Al-Attiyah SS, Abdul-Nour BA (1989) Cellulase production from actinomycetes isolated from IRAQI soils: II. Cell growth and cellulase activity of Streptomyces sp. strain AT7 at different temperatures. J Islamic Acad Sci 2(3):185–188

    Article  PubMed  CAS  Google Scholar 

  • Anne J, Mellaert L (1993) FEMS Microbiol Lett 114:121–128

    Article  PubMed  CAS  Google Scholar 

  • Austin B (1988) Methods in aquatic bacteriology. In: Modern microbiological methods. A Wiley -Interscience Publication, pp 222–231

    Google Scholar 

  • Bakken LR (1997) Culturable and nonculturable bacteria in soil. In: van Elsas JD, Trevors JT, Wellington EMH (eds) Modern soil microbiology. Marcel Dekker, New York, pp 47–61

    Google Scholar 

  • Bakken LR, Olsen RA (1987) Microb Ecol 13:103–114

    Article  Google Scholar 

  • Bernard L, Courties C, Servais P, Troussellier M, Petit M, LeBaron P (2000) Microb Ecol 40:148–158

    PubMed  Google Scholar 

  • Brock T (1986) Introduction: an overview of the thermophiles. In: Brock T (ed) Thermophiles: general, molecular and applied microbiology. Wiley, New York, pp 2–15

    Google Scholar 

  • Cowan D, Littlechild J (1996) High temperature enzymes; sources of information for engineering protein stability. In: Savage (ed) Enzyme technology for industrial application, IBC Biomedical Library series, pp 197–237

    Google Scholar 

  • Cowan DA, Daniel RA, Morgan HW (1985) Trends Biotechnol 3:68–72

    Article  CAS  Google Scholar 

  • Dastager SG, Li WJ, Agasar D, Sulochana MB, Tang SK, Tian XP, Zhi XY (2007) Antonie Van Leeuwenhoek 91:99–104

    Article  PubMed  Google Scholar 

  • Ellis RJ, Best JG, Fry JC, Morgan P, Neish B, Trett MW, Weightman AJ (2002) FEMS Microbiol Ecol 40:113–122

    Article  PubMed  CAS  Google Scholar 

  • Emmanuel L, Stefan J, Bernard H, Abdel B (2000) Enzyme Microb Technol 26:3–14

    Article  Google Scholar 

  • Foerster HF (1978) Arch Microbiol 118:257–264

    Article  Google Scholar 

  • Fukumori K, Kudo T, Horikoshi K (1985) Gen Microbiol 191:3339–3345

    Article  Google Scholar 

  • Goff OL, Bru-Adan V, Barcheley H, Godon JJ, Wery N (2010) J Appl Microbiol 108:325–340

    Article  PubMed  Google Scholar 

  • Gohel S, Singh SP (2012a) J Chromatogr B 889:61–68

    Article  Google Scholar 

  • Gohel S, Singh SP (2012b) Int J Biol Macromol 50:664–671

    Article  PubMed  CAS  Google Scholar 

  • Grant WD, Mwatha WE, Jones BE (1990) FEMS Microbiol Rev 75:255–270

    Article  CAS  Google Scholar 

  • Grundling A, Schneewind O (2007) Proc Natl Acad Sci USA 104:8478–8483

    Article  PubMed  Google Scholar 

  • Harvey I, Cormier Y, Beaulieu C, Akimov VN, Mériaux A, Duchaine C (2001) Syst Appl Microbiol 24:277–284

    Article  PubMed  CAS  Google Scholar 

  • Holtz C, Kaspari H, Klemme JH (1990) Antonie Van Leeuwenhoek 59:1–7

    Article  Google Scholar 

  • Huber H, Stetter K (1998) J Biotechnol 64:39–52

    Article  CAS  Google Scholar 

  • Jaeger K, Reetz T (1998) TIBTECH 16:396–403

    Article  CAS  Google Scholar 

  • Janseen PH, Yates PS, Grinton BE, Taylor PM, Sait M (2002) Appl Environ Microbiol 68:2391–2396

    Article  Google Scholar 

  • Jaouadi B, Abdelmalek B, Fodil D, Ferradji FZ, Rekik H, Zaraî N, Bejar S (2010) Bioresour Technol 101:8361–8369

    Article  PubMed  CAS  Google Scholar 

  • Junji I, Hideo T, Haruo I, Satoshi O (1992) Gene 119:29–35

    Article  Google Scholar 

  • Kell DB, Kaprelyants AS, Weichart DH, Harwood CR, Barer MR (1998) Antonie Van Leeuwenhoek 73:169–187

    Article  PubMed  CAS  Google Scholar 

  • Kelly CT, Forgarty WM (1976) Microbial alkaline enzymes. Process Biochem 11:3

    Google Scholar 

  • Kikani BA, Singh SP (2011) Int J Biol Macromol 48:676–681

    Article  PubMed  CAS  Google Scholar 

  • Kikani BA, Shukla RJ, Singh SP (2010) Biocatalytic potential of thermophilic bacteria and actinomycetes. In: Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, Badajoz, pp 1000–1007

    Google Scholar 

  • Kim I, Kim H, Lee K, Chung S, Ko S (2002a) J Am Oil Chem Soc 79:363–367

    Article  CAS  Google Scholar 

  • Kim Y, Bae J, Oh B, Lee W, Choi J (2002b) Bioresour Technol 82:157–164

    Article  PubMed  CAS  Google Scholar 

  • Kurup VP, Fink JN (1975) J Clin Microbiol 25:55–61

    Google Scholar 

  • Kurup VP, Barboriak JJ, Fink JN, Lechevalier MP (1975) Int J Syst Bacteriol 25:150–154

    Article  Google Scholar 

  • LeBaron P, Servais P, Agogué H, Courties C, Joux F (2001) Appl Environ Microbiol 67:1775–1782

    Article  PubMed  CAS  Google Scholar 

  • Linko Y, Lamsa M, Huhatala A, Linko P (1994) J Am Oil Chem Soc 71:1411–1414

    Article  CAS  Google Scholar 

  • Matsui I, Sakai Y, Matsui E, Kikuchi H, Kawarabayasi Y, Honda K (2000) FEBS Lett 467:195–200

    Article  PubMed  CAS  Google Scholar 

  • Mc Carthy AJ, Peace E, Broda P (1985) Appl Microbiol Biotechnol 21:238–244

    Article  CAS  Google Scholar 

  • McCaig AE, Grayston SJ, Prosser JI, Glover LA (2001) FEMS Microbiol Ecol 35:37–48

    Article  PubMed  CAS  Google Scholar 

  • Mehta VJ, Thumar JT, Singh SP (2006) Bioresour Technol 97:1650–1654

    Article  PubMed  CAS  Google Scholar 

  • Morihara K, Oda K (1993) Microbial degradation of proteins. In: Winkelmann G (ed) Microbial degradradation of natural products, VCH Verlagsgesellschaft mbH, Weinheim, pp 293–364

    Google Scholar 

  • Nakanishi T Matsumura Y, Minamiura N, Yamamoto T, (1973) Purification and some properties of an alkalophilic proteinase of a Streptomyces species. Agric Biol Chem 38:37–44

    Article  PubMed  Google Scholar 

  • OvreÃ¥s L, Torsvik V (1998) Microb Ecol 36:303–315

    Article  PubMed  Google Scholar 

  • Pandey A, Benjamin S, Soccol C, Nigam P, Krieger N, Soccol V (1999) Biotechnol Appl Biochem 29:119–131

    PubMed  CAS  Google Scholar 

  • Perez C, Juarez K, Castells EG, Soberon G, Gonzalez LS (1992) Gene 123:109–114

    Article  Google Scholar 

  • Poonam N, Dalel S (1995) Enzyme Microb Technol 17:770–778

    Article  Google Scholar 

  • Purohit MK, Singh SP (2009) Lett Appl Microbiol 49:338–344

    Article  PubMed  CAS  Google Scholar 

  • Radhakrishnan M, Balaji S, Balagurunathan R (2007) Appl Biol 36:59–65

    Google Scholar 

  • Rahman O, Pfitzenmaier M, Pester O, Morath S, Cummings SP, Hartung T, Sutcliffe IC (2009) J Bacteriol 191:152–160

    Article  PubMed  CAS  Google Scholar 

  • Rao M, Tankasale A, Ghatge M, Desphande V (1998) Microbiol Mol Biol Rev 62:597–634

    PubMed  CAS  Google Scholar 

  • Rathi P, Sapna B, Sexena R, Gupta R (2000) Biotechnol Lett 22:495–498

    Article  CAS  Google Scholar 

  • Roberts RC, Nelles LP, Treuhaft MW, Marx JJ (1983) Infect Immunol 40:553–562

    CAS  Google Scholar 

  • Sait M, Hugenholtz P, Janssen PH (2002) Environ Microbiol 4:654–666

    Article  PubMed  CAS  Google Scholar 

  • Sedlmeier R, Altenbuchner J (1992) Mol Gen Genet 236:76–85

    PubMed  CAS  Google Scholar 

  • Sharma R, Soni S, Vohra R, Gupta L, Gupta J (2002) Process Biochem 37:1075–1084

    Article  CAS  Google Scholar 

  • Siddhpura PK, Vanparia S, Purohit MK, Singh SP (2010) Int J Biol Macromol 47:375–379

    Article  Google Scholar 

  • Sidhu GS, Sharma P, Chakrabarti T, Gupta JK (1997) Enzyme Microb Technol 21:525–530

    Article  CAS  Google Scholar 

  • Singh SP (2006) Special libraries in India: some current trends. In: National science digital library (CSIR): E-Book on environmental microbiology, pp 1–35

    Google Scholar 

  • Soderberg KH, Baath E (1998) Soil Biol Biochem 30:1259–1268

    Article  CAS  Google Scholar 

  • Srinivasan MC, Rele MV, Ingale S (1999) Proc Indian Natl Sci Acad B65(3 & 4):143–162

    Google Scholar 

  • Subramani R, Mahalingam R, Narayanasamy, M. (2009) Characterization of thermostable alkaline protease produced by marine Streptomyces fungicidicus MML 1614. Bioprocess Biosyst Eng 32:791–800

    Article  CAS  Google Scholar 

  • Suihko ML, Priha O, Alakomi HL, Thompson P, Malarstig B, Stott R, Richardson M (2009) Indoor Air (Int J Indoor Environ Health) 19:268–277

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2007a) J Chromatogr B 854:198–203

    Article  CAS  Google Scholar 

  • Thumar JT, Singh SP (2007b) Braz J Microbiol 38:1–9

    Article  Google Scholar 

  • Thumar JT, Singh SP (2009) J Ind Microbiol Biotechnol 36:211–218

    Article  PubMed  CAS  Google Scholar 

  • Thumar JT, Singh SP (2011) Biotechnol Bioprocess Eng 16(6):1180–1186

    Article  CAS  Google Scholar 

  • Tonozuka T, Ohtsuka M, Mogi S, Sakai H, Ohta T, Sakano Y (1993) Biosci Biotechnol Biochem 57:395–401

    Article  PubMed  CAS  Google Scholar 

  • Tsuchiya K, Sakahita H, Nakamura Y, Kimura T (1991) Biol Chem 55:3125–3127

    CAS  Google Scholar 

  • Van der Maarel M, Van der Veen B, Uitdehaag H, Leemhuis H, Dijkhuizen L (2002) J Biotechnol 94:137–155

    Article  PubMed  Google Scholar 

  • Wultsch G, Haas D, Galler H, Feierl G, Melkes A, Reinthaler FF (2009) Aerobiologia 26:63–73

    Article  Google Scholar 

  • Xu J, Rao JR, Millar BC, Elborn JS, Evans J, Barr JG, Moore JE (2002) J Med Microbiol 51:1117–1127

    PubMed  CAS  Google Scholar 

  • Yang CH, Crowley DE, Borneman J, Keen NT (2001) Proc Natl Acad Sci 98:3889–3894

    Article  PubMed  CAS  Google Scholar 

  • Yang CH, Huang YC, Chen CY (2009) J Agric Food Chem 57:5095–5099

    Article  PubMed  CAS  Google Scholar 

  • Yassin AF, Hupfer H, Klenk HP, Siering C (2006) Int J Syst Evol Microbiol 59:454–459

    Article  Google Scholar 

  • Zengler K, Toledo G, Rappé M, Elkins J, Mathur EJ, Short JM, Keller M (2002) Proc Natl Acad Sci 99:15681–15686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial and infrastructural support from Saurashtra University, Rajkot. BAK acknowledges the Council for Scientific and Industrial Research, New Delhi, India, for awarding Senior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satya P. Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Singh, S.P., Shukla, R.J., Kikani, B.A. (2013). Molecular Diversity and Biotechnological Relevance of Thermophilic Actinobacteria. In: Satyanarayana, T., Littlechild, J., Kawarabayasi, Y. (eds) Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5899-5_18

Download citation

Publish with us

Policies and ethics