Skip to main content

Instabilities of Flows through Deformable Tubes and Channels

  • Conference paper
Mechanics Down Under

Abstract

Flow driven through a segment of flexible tube, supported between rigid pipes and enclosed in a pressurized chamber, is susceptible to a variety of self-excited oscillations. This paper provides a brief review of recent modelling efforts aimed at understanding some of the underlying mechanisms of instability in this system. In particular, it is shown how a family of spatially one-, two- and three-dimensional models have been used to investigate a global instability arising at high frequencies, whereby axial sloshing motions driven by transverse wall oscillations are able to sustain themselves by extracting kinetic energy from the underlying mean flow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pedley, T.J., Brook, B.S., Seymour, R.S.: Blood pressure and flow rate in the giraffe jugular vein. Phil. Trans. Roy. Soc. B 351, 855–866 (1996)

    Article  Google Scholar 

  2. Heil, M., Jensen, O.E.: Flows in deformable tubes and channels - Theoretical models and biological applications. In: Carpenter, P.W., Pedley, T.J. (eds.) Flow Past Highly Compliant Boundaries and in Collapsible Tubes, IUTAM Proceedings, vol. 72. Springer (2003)

    Google Scholar 

  3. Grotberg, J.B., Jensen, O.E.: Biofluidmechanics of flexible tubes. Ann. Rev. Fluid Mech. 36, 121–147 (2004)

    Article  MathSciNet  Google Scholar 

  4. Knowlton, F.P., Starling, E.H.: The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J. Physiol. London 44, 206–219 (1912)

    Google Scholar 

  5. Bertram, C.D., Raymond, C.J., Pedley, T.J.: Mapping of instabilities for flow through collapsed tubes of differing length. J. Fluids Struct. 4, 125–153 (1990)

    Article  Google Scholar 

  6. Bertram, C.D., Tscherry, J.: The onset of flow-rate limitation and flow-induced oscillations in collapsible tubes. J. Fluids Struct. 22, 1029–1045 (2006)

    Article  Google Scholar 

  7. Pedley, T.J., Luo, X.Y.: Modelling flow and oscillations in collapsible tubes. Theor. Comput. Fluid. Dyn. 10, 277–294 (1998)

    Article  MATH  Google Scholar 

  8. Bertram, C.D., Pedley, T.J.: A mathematical model of collapsible tube behaviour. J. Biomech. 15, 39–50 (1982)

    Article  Google Scholar 

  9. Armitstead, J., Bertram, C.D., Jensen, O.E.: A study of the bifurcation behaviour of a model of flow through a collapsible tube. Bull. Math. Biol. 58, 611–641 (1996)

    Article  MATH  Google Scholar 

  10. Shapiro, A.H.: Steady flow in collapsible tubes. J. Biomech. Engng. 99, 126–147 (1977)

    Article  Google Scholar 

  11. Cancelli, C., Pedley, T.J.: A separated-flow model for collapsible-tube oscillations. J. Fluid Mech. 157, 375–404 (1985)

    Article  Google Scholar 

  12. Hayashi, S., Hayase, T., Kawamura, H.: Numerical analysis for stability and self-excited oscillation in collapsible tube flow. J. Biomech. Engng. 120, 468–475 (1998)

    Article  Google Scholar 

  13. Jensen, O.E., Pedley, T.J.: The existence of steady flow in a collapsed tube. J. Fluid Mech. 206, 339–374 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. Jensen, O.E.: Instabilities of flow in a collapsed tube. J. Fluid Mech. 220, 623–659 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  15. Pedley, T.J.: Longitudinal tension variation in collapsible channels: a new mechanism for the breakdown of steady flow. J. Biomech. Engng. 114, 60–67 (1992)

    Article  Google Scholar 

  16. Guneratne, J., Pedley, T.J.: High Reynolds number steady flow in a collapsible channel. J. Fluid Mech. 569, 151–184 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Luo, X.Y., Pedley, T.J.: A numerical simulation of unsteady flow in a two-dimensional collapsible channel. J. Fluid Mech. 314, 191–225 (1996)

    Article  MATH  Google Scholar 

  18. Luo, X.Y., Cai, Z.X., Li, W.G., Pedley, T.J.: The cascade structure of linear instability in collapsible channel flows. J. Fluid Mech. 600, 45–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Heil, M., Hazel, A.L., Boyle, J.: Solvers for large-displacement fluid-structure interaction problems: segregated versus monolithic approaches. Comput. Mech. 43, 91–101 (2008)

    Article  MATH  Google Scholar 

  20. Hazel, A.L., Heil, M.: Steady finite Reynolds number flows in three-dimensional collapsible tubes. J. Fluid Mech. 486, 79–103 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marzo, A., Luo, X.Y., Bertram, C.D.: Three-dimensional collapse and steady flow in thick-walled flexible tubes. J. Fluids Struct. 20, 817–835 (2005)

    Article  Google Scholar 

  22. Heil, M., Boyle, J.: Recent progress in the theoretical and computational modelling of flow in 3D collapsible tubes. XXII ICTAM, Adelaide, Australia (2008)

    Google Scholar 

  23. Benjamin, T.B.: The threefold classificion of unstable disturbances in flexible surface bounding inviscid flows. J. Fluid Mech. 16, 436–450 (1963)

    Article  MATH  Google Scholar 

  24. Landahl, M.: On the stability of a laminar incompressible boundary layer over a flexible surface. J. Fluid Mech. 13, 609–632 (1962)

    Article  MATH  Google Scholar 

  25. Davies, C., Carpenter, P.W.: Instabilities in plane channel flow between compliant walls. J. Fluid Mech. 352, 205–243 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  26. Stewart, P.S., Waters, S.L., Jensen, O.E.: Local and global instabilities of flow in a flexible-walled channel (2008) (submitted)

    Google Scholar 

  27. Doaré, O., de Langre, E.: The role of boundary conditions in the instability of one-dimensional systems. Eur. J. Mech. B 25, 948–959 (2006)

    Article  MATH  Google Scholar 

  28. Jensen, O.E., Heil, M.: High-frequency self-excited oscillations in a collapsible-channel flow. J. Fluid Mech. 481, 235–268 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  29. Heil, M., Waters, S.L.: Transverse flows in rapidly oscillating elastic cylindrical shells. J. Fluid Mech. 547, 185–214 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  30. Heil, M., Waters, S.L.: How rapidly oscillating collapsible tubes extract energy from a viscous mean flow. J. Fluid Mech. 601, 199–227 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  31. Whittaker, R.J., Waters, S.L., Jensen, O.E., Boyle, J., Heil, M.: The energetics of flow through a rapidly oscillating tube. Part I: general theory. Part II: application to an elliptical tube (preprint) (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. E. Jensen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 © Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Jensen, O.E. (2013). Instabilities of Flows through Deformable Tubes and Channels. In: Denier, J., Finn, M. (eds) Mechanics Down Under. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5968-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5968-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5967-1

  • Online ISBN: 978-94-007-5968-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics