Skip to main content

Correction of Diabetes-Induced Endothelial Progenitor Dysfunction to Promote Retinal Vascular Repair

  • Chapter
  • First Online:
New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM

Part of the book series: Advances in Predictive, Preventive and Personalised Medicine ((APPPM,volume 3))

  • 1391 Accesses

Abstract

Progressive obliteration of the retinal microvessels is a characteristic of diabetic retinopathy and the resultant retinal ischemia that can lead to sight-­threatening macular edema, macular ischemia and ultimately preretinal neovascularization. Bone marrow derived endothelial progenitor cells (EPCs) play a critical role in vascular maintenance and repair. There is still great debate about the most appropriate markers that define an EPC and much deliberation occurs regarding the plasticity of monocytes and their ability to promote repair as well as contribute to angiogenesis. EPC populations can be isolated using cell sorting by surface phenotype selection or in vitro cell culture. For freshly isolated cells, EPC cell sorting is heavily dependent on the surface markers used; EPC populations can also be isolated by in vitro propagation of heterogeneous mixtures of cells in culture using adhesion to specific substrates and cell growth characteristics. In vitro isolation enables consistent reproducibility and with this approach at least two distinct types of populations with different angiogenic properties have been identified from adult peripheral and umbilical cord blood. These groups are early EPCs (eEPCs) and “endothelial colony forming cells” (ECFCs), initially termed “late outgrowth endothelial progenitor cells” (OECs).

Emerging studies demonstrate the potential of these cells in revascularization of ischemic/injured tissues including the retina. Since ischemic retinopathies are the leading causes of blindness, they are a potential disease target for cell based therapy. In this chapter, we summarize the current knowledge about the most well described EPC populations and discuss the possibility of cell therapy for treatment of diabetic macular ischemia and the vasodegenerative phase of diabetic retinopathy. We also report on current pharmacological options that can be utilized to correct diabetes associated defects in one particular EPC population, CD34+ cells, so that these cells can potentially be used therapeutically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fong DS, Sharza M, Chen W, Paschal JF, Ariyasu RG, Lee PP (2002) Vision loss among diabetics in a group model Health Maintenance Organization (HMO). Am J Ophthalmol 133:236–241

    PubMed  Google Scholar 

  2. ETDRS (1991) Early photocoagulation for diabetic retinopathy. ETDRS report number 9. Early Treatment Diabetic Retinopathy Study Research Group. Ophthalmology 98:766–785

    Google Scholar 

  3. ETDRS (1995) Focal photocoagulation treatment of diabetic macular edema. ETDRS report number 19. Arch Ophthalmol 113:1144–1155

    Google Scholar 

  4. Avery RB, Diener-West M, Reynolds SM, Grossniklaus HE, Green WR, Albert DM (2008) Histopathologic characteristics of choroidal melanoma in eyes enucleated after iodine 125 brachytherapy in the collaborative ocular melanoma study. Arch Ophthalmol 126:207–212

    PubMed  Google Scholar 

  5. Domen J, Wagers A, Weissman IL Bone marrow (hematiopoietic) stem cells. http://stemcells.nih.gov/staticresources/info/scireport/PDFs/D.%20Chapter%202.pdf. Accessed 20 Oct 2012

    Google Scholar 

  6. Yoder MC, Mead LE, Prater D, Krier TR, Mroueh KN, Li F, Krasich R, Temm CJ, Prchal JT, Ingram DA (2007) Redefining endothelial progenitor cells via clonal analysis and hematopoietic stem/progenitor cell principals. Blood 109:1801–1809

    PubMed  CAS  Google Scholar 

  7. Asahara T, Murohara T, Sullivan A, Silver M, van der Zee R, Li T, Witzenbichler B, Schatteman G, Isner JM (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275:964–967

    PubMed  CAS  Google Scholar 

  8. Schatteman GC, Dunnwald M, Jiao C (2007) Biology of bone marrow-derived endothelial cell precursors. Am J Physiol Heart Circ Physiol 292:H1–H18

    PubMed  CAS  Google Scholar 

  9. Spring H, Schuler T, Arnold B, Hämmerling GJ, Ganss R (2005) Chemokines direct endothelial progenitors into tumor neovessels. Proc Natl Acad Sci U S A 102:18111–18116

    PubMed  CAS  Google Scholar 

  10. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6:93–106

    PubMed  CAS  Google Scholar 

  11. Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9:702–712

    PubMed  CAS  Google Scholar 

  12. Minami E, Laflamme MA, Saffitz JE, Murry CE (2005) Extracardiac progenitor cells repopulate most major cell types in the transplanted human heart. Circulation 112:2951–2958

    PubMed  Google Scholar 

  13. Ruzinova MB, Schoer RA, Gerald W, Egan JE, Pandolfi PP, Rafii S, Manova K, Mittal V, Benezra R (2003) Effect of angiogenesis inhibition by Id loss and the contribution of bone-­marrow-derived endothelial cells in spontaneous murine tumors. Cancer Cell 4:277–289

    PubMed  CAS  Google Scholar 

  14. Peters BA, Diaz LA, Polyak K, Meszler L, Romans K, Guinan EC, Antin JH, Myerson D, Hamilton SR, Vogelstein B, Kinzler KW, Lengauer C (2005) Contribution of bone marrow-­derived endothelial cells to human tumor vasculature. Nat Med 11:261–262

    PubMed  CAS  Google Scholar 

  15. Caballero S, Sengupta N, Afzal A, Chang KH, Li Calzi S, Guberski DL, Kern TS, Grant MB (2007) Ischemic vascular damage can be repaired by healthy, but not diabetic, endothelial progenitor cells. Diabetes 56:960–967

    PubMed  CAS  Google Scholar 

  16. Grant MB, May WS, Caballero S, Brown GA, Guthrie SM, Mames RN, Byrne BJ, Vaught T, Spoerri PE, Peck AB, Scott EW (2002) Adult hematopoietic stem cells provide functional hemangioblast activity during retinal neovascularization. Nat Med 8:607–612

    PubMed  CAS  Google Scholar 

  17. Shi Q, Rafii S, Wu MH, Wijelath ES, Yu C, Ishida A, Fujita Y, Kothari S, Mohle R, Sauvage LR, Moore MA, Storb RF, Hammond WP (1998) Evidence for circulating bone marrow-­derived endothelial cells. Blood 92:362–367

    PubMed  CAS  Google Scholar 

  18. Fernandez Pujol B, Lucibello FC, Gehling UM, Lindemann K, Weidner N, Zuzarte ML, Adamkiewicz J, Elsässer HP, Müller R, Havemann K (2000) Endothelial-like cells derived from human CD14 positive monocytes. Differentiation 65:287–300

    PubMed  CAS  Google Scholar 

  19. Eggermann J, Kliche S, Jarmy G, Hoffmann K, Mayr-Beyrle U, Debatin KM, Waltenberger J, Beltinger C (2003) Endothelial progenitor cell culture and differentiation in vitro: a metho-dological comparison using human umbilical cord blood. Cardiovasc Res 58:478–486

    PubMed  CAS  Google Scholar 

  20. Hur J, Yoon CH, Kim HS, Choi JH, Kang HJ, Hwang KK, Oh BH, Lee MM, Park YB (2004) Characterization of two types of endothelial progenitor cells and their different contributions to neovasculogenesis. Arterioscler Thromb Vasc Biol 24:288–293

    PubMed  CAS  Google Scholar 

  21. Delorme B, Basire A, Gentile C, Sabatier F, Monsonis F, Desouches C, Blot-Chabaud M, Uzan G, Sampol J, Dignat-George F (2005) Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells. Thromb Haemost 94:1270–1279

    PubMed  CAS  Google Scholar 

  22. Gehling UM, Ergun S, Schumacher U, Wagener C, Pantel K, Otte M, Schuch G, Schafhausen P, Mende T, Kilic N, Kluge K, Schäfer B, Hossfeld DK, Fiedler W (2000) In vitro differentiation of endothelial cells from AC133-positive progenitor cells. Blood 95:3106–3112

    PubMed  CAS  Google Scholar 

  23. Case J, Mead LE, Bessler WK, Prater D, White HA, Saadatzadeh MR, Bhavsar JR, Yoder MC, Haneline LS, Ingram DA (2007) Human CD34 + AC133 + VEGFR-2+ cells are not endothelial progenitor cells but distinct, primitive hematopoietic progenitors. Exp Hematol 35:1109–1118

    PubMed  CAS  Google Scholar 

  24. Yoon CH, Hur J, Park KW, Kim JH, Lee CS, Oh IY, Kim TY, Cho HJ, Kang HJ, Chae IH, Yang HK, Oh BH, Park YB, Kim HS (2005) Synergistic neovascularization by mixed transplantation of early endothelial progenitor cells and late outgrowth endothelial cells: the role of angiogenic cytokines and matrix metalloproteinases. Circulation 112:1618–1627

    PubMed  Google Scholar 

  25. Gulati R, Jevremovic D, Peterson TE, Chatterjee S, Shah V, Vile RG, Simari RD (2003) Diverse origin and function of cells with endothelial phenotype obtained from adult human blood. Circ Res 93:1023–1025

    PubMed  CAS  Google Scholar 

  26. Crosby JR, Kaminski WE, Schatteman G, Martin PJ, Raines EW, Seifert RA, Bowen-Pope DF (2000) Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ Res 87:728–730

    PubMed  CAS  Google Scholar 

  27. Kalka C, Masuda H, Takahashi T, Gordon R, Tepper O, Gravereaux E, Pieczek A, Iwaguro H, Hayashi SI, Isner JM, Asahara T (2000) Vascular endothelial growth factor(165) gene transfer augments circulating endothelial progenitor cells in human subjects. Circ Res 86:1198–1202

    PubMed  CAS  Google Scholar 

  28. Harraz M, Jiao C, Hanlon HD, Hartley RS, Schatteman GC (2001) CD34- blood-derived human endothelial cell progenitors. Stem Cells 19:304–312

    PubMed  CAS  Google Scholar 

  29. Rohde E, Malischnik C, Thaler D, Maierhofer T, Linkesch W, Lanzer G, Guelly C, Strunk D (2006) Blood monocytes mimic endothelial progenitor cells. Stem Cells 24:357–367

    PubMed  Google Scholar 

  30. Schmeisser A, Garlichs CD, Zhang H, Eskafi S, Graffy C, Ludwig J, Strasser RH, Daniel WG (2001) Monocytes coexpress endothelial and macrophagocytic lineage markers and form cord-like structures in Matrigel under angiogenic conditions. Cardiovasc Res 49:671–680

    PubMed  CAS  Google Scholar 

  31. Schmeisser A, Strasser RH (2002) Phenotypic overlap between hematopoietic cells with suggested angioblastic potential and vascular endothelial cells. J Hematother Stem Cell Res 11:69–79

    PubMed  CAS  Google Scholar 

  32. Romagnani P, Annunziato F, Liotta F, Lazzeri E, Mazzinghi B, Frosali F, Cosmi L, Maggi L, Lasagni L, Scheffold A, Kruger M, Dimmeler S, Marra F, Gensini G, Maggi E, Romagnani S (2005) CD14 + CD34low cells with stem cell phenotypic and functional features are the major source of circulating endothelial progenitors. Circ Res 97:314–322

    PubMed  CAS  Google Scholar 

  33. George J, Herz I, Goldstein E, Abashidze S, Deutch V, Finkelstein A, Michowitz Y, Miller H, Keren G (2003) Number and adhesive properties of circulating endothelial progenitor cells in patients with in-stent restenosis. Arterioscler Thromb Vasc Biol 23:e57–e60

    PubMed  Google Scholar 

  34. Ghani U, Shuaib A, Salam A, Nasir A, Shuaib U, Jeerakathil T, Sher F, O’Rourke F, Nasser AM, Schwindt B, Todd K (2005) Endothelial progenitor cells during cerebrovascular disease. Stroke 36:151–153

    PubMed  Google Scholar 

  35. Loomans CJ, Wan H, de Crom R, van Haperen R, de Boer HC, Leenen PJ, Drexhage HA, Rabelink TJ, van Zonneveld AJ, Staal FJ (2006) Angiogenic murine endothelial progenitor cells are derived from a myeloid bone marrow fraction and can be identified by endothelial NO synthase expression. Arterioscler Thromb Vasc Biol 26:1760–1767

    PubMed  CAS  Google Scholar 

  36. Loomans CJ, van Haperen R, Duijs JM, Verseyden C, de Crom R, Leenen PJ, Drexhage HA, de Boer HC, de Koning EJ, Rabelink TJ, Staal FJ, van Zonneveld AJ (2009) Differentiation of bone marrow-derived endothelial progenitor cells is shifted into a proinflammatory phenotype by hyperglycemia. Mol Med 15:152–159

    PubMed  CAS  Google Scholar 

  37. Donato AJ, Eskurza I, Silver AE, Levy AS, Pierce GL, Gates PE, Seals DR (2007) Direct evidence of endothelial oxidative stress with aging in humans: relation to impaired endothelium-­dependent dilation and upregulation of nuclear factor-kappaB. Circ Res 100:1659–1666

    PubMed  CAS  Google Scholar 

  38. Imanishi T, Hano T, Sawamura T, Nishio I (2004) Oxidized low-density lipoprotein induces endothelial progenitor cell senescence, leading to cellular dysfunction. Clin Exp Pharmacol Physiol 31:407–413

    PubMed  CAS  Google Scholar 

  39. Loomans CJ, de Koning EJ, Staal FJ, Rookmaaker MB, Verseyden C, de Boer HC, Verhaar MC, Braam B, Rabelink TJ, van Zonneveld AJ (2004) Endothelial progenitor cell dysfunction: a novel concept in the pathogenesis of vascular complications of type 1 diabetes. Diabetes 53:195–199

    PubMed  CAS  Google Scholar 

  40. Zhu J, Xu ZK, Miao Y, Liu XL, Zhang H (2006) Changes of inducible protein-10 and regulated upon activation, normal T cell expressed and secreted protein in acute rejection of pancreas transplantation in rats. World J Gastroenterol 12:4156–4160

    PubMed  CAS  Google Scholar 

  41. Tamarat R, Silvestre JS, Le Ricousse-Roussanne S, Barateau V, Lecomte-Raclet L, Clergue M, Duriez M, Tobelem G, Lévy BI (2004) Impairment in ischemia-induced neovascularization in diabetes: bone marrow mononuclear cell dysfunction and therapeutic potential of placenta growth factor treatment. Am J Pathol 164:457–466

    PubMed  CAS  Google Scholar 

  42. Kielczewski JL, Jarajapu YP, McFarland EL, Cai J, Afzal A, Li Calzi S, Chang KH, Lydic T, Shaw LC, Busik J, Hughes J, Cardounel AJ, Wilson K, Lyons TJ, Boulton ME, Mames RN, Chan-Ling T, Grant MB (2009) Insulin-like growth factor binding protein-3 mediates vascular repair by enhancing nitric oxide generation. Circ Res 105:897–905

    PubMed  CAS  Google Scholar 

  43. Ma FX, Zhou B, Chen Z, Ren Q, Lu SH, Sawamura T, Han ZC (2006) Oxidized low density lipoprotein impairs endothelial progenitor cells by regulation of endothelial nitric oxide synthase. J Lipid Res 47:1227–1237

    PubMed  CAS  Google Scholar 

  44. Sobrevia L, Mann GE (1997) Dysfunction of the endothelial nitric oxide signalling pathway in diabetes and hyperglycaemia. Exp Physiol 82:423–452

    PubMed  CAS  Google Scholar 

  45. Weyrich AS, Ma XL, Lefer AM (1992) The role of L-arginine in ameliorating reperfusion injury after myocardial ischemia in the cat. Circulation 86:279–288

    PubMed  CAS  Google Scholar 

  46. Kaesemeyer WH, Ogonowski AA, Jin L, Caldwell RB, Caldwell RW (2000) Endothelial nitric oxide synthase is a site of superoxide synthesis in endothelial cells treated with glyceryl trinitrate. Br J Pharmacol 131:1019–1023

    PubMed  CAS  Google Scholar 

  47. Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JM (2003) Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 108:2000–2006

    PubMed  CAS  Google Scholar 

  48. Jean C, Fromentin G, Tome D, Larue-Achagiotis C (2002) Wistar rats allowed to self-select macronutrients from weaning to maturity choose a high-protein, high-lipid diet. Physiol Behav 76:65–73

    PubMed  CAS  Google Scholar 

  49. Ellis EA, Guberski DL, Hutson B, Grant MB (2002) Time course of NADH oxidase, inducible nitric oxide synthase and peroxynitrite in diabetic retinopathy in the BBZ/WOR rat. Nitric Oxide 6:295–304

    PubMed  CAS  Google Scholar 

  50. Camici GG, Schiavoni M, Francia P, Bachschmid M, Martin-Padura I, Hersberger M, Tanner FC, Pelicci P, Volpe M, Anversa P, Lüscher TF, Cosentino F (2007) Genetic deletion of p66(Shc) adaptor protein prevents hyperglycemia-induced endothelial dysfunction and oxidative stress. Proc Natl Acad Sci U S A 104:5217–5222

    PubMed  CAS  Google Scholar 

  51. Kobayashi T, Taguchi K, Takenouchi Y, Matsumoto T, Kamata K (2007) Insulin-induced impairment via peroxynitrite production of endothelium-dependent relaxation and sarco/endoplasmic reticulum Ca(2+)-ATPase function in aortas from diabetic rats. Free Radic Biol Med 43:431–443

    PubMed  CAS  Google Scholar 

  52. Szabo C, Mabley JG, Moeller SM, Shimanovich R, Pacher P, Virag L, Soriano FG, Van Duzer JH, Williams W, Salzman AL, Groves JT (2002) Part I: pathogenetic role of peroxynitrite in the development of diabetes and diabetic vascular complications: studies with FP15, a novel potent peroxynitrite decomposition catalyst. Mol Med 8:571–580

    PubMed  CAS  Google Scholar 

  53. Munzel T, Sayegh H, Freeman BA, Tarpey MM, Harrison DG (1995) Evidence for enhanced vascular superoxide anion production in nitrate tolerance. A novel mechanism underlying tolerance and cross-tolerance. J Clin Invest 95:187–194

    PubMed  CAS  Google Scholar 

  54. Bucala R, Tracey KJ, Cerami A (1991) Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes. J Clin Invest 87:432–438

    PubMed  CAS  Google Scholar 

  55. Leal EC, Manivannan A, Hosoya K, Terasaki T, Cunha-Vaz J, Ambrósio AF, Forrester JV (2007) Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-­retinal barrier breakdown in diabetic retinopathy. Invest Ophthalmol Vis Sci 48:5257–5265

    PubMed  Google Scholar 

  56. Stadler K, Bonini MG, Dallas S, Duma D, Mason RP, Kadiiska MB (2008) Direct evidence of iNOS-mediated in vivo free radical production and protein oxidation in acetone-induced ketosis. Am J Physiol Endocrinol Metab 295:E456–E462

    PubMed  CAS  Google Scholar 

  57. Nagareddy PR, Xia Z, McNeill JH, MacLeod KM (2005) Increased expression of iNOS is associated with endothelial dysfunction and impaired pressor responsiveness in streptozotocin-­induced diabetes. Am J Physiol Heart Circ Physiol 289:H2144–H2152

    PubMed  CAS  Google Scholar 

  58. Cheng X, Cheng XS, Kuo KH, Pang CC (2004) Inhibition of iNOS augments cardiovascular action of noradrenaline in streptozotocin-induced diabetes. Cardiovasc Res 64:298–307

    PubMed  CAS  Google Scholar 

  59. Aicher A, Zeiher AM, Dimmeler S (2005) Mobilizing endothelial progenitor cells. Hypertension 45:321–325

    PubMed  CAS  Google Scholar 

  60. Heissig B, Hattori K, Dias S, Friedrich M, Ferris B, Hackett NR, Crystal RG, Besmer P, Lyden D, Moore MA, Werb Z, Rafii S (2002) Recruitment of stem and progenitor cells from the bone marrow niche requires MMP-9 mediated release of kit-ligand. Cell 109:625–637

    PubMed  CAS  Google Scholar 

  61. Heissig B, Werb Z, Rafii S, Hattori K (2003) Role of c-kit/Kit ligand signaling in regulating vasculogenesis. Thromb Haemost 90:570–576

    PubMed  CAS  Google Scholar 

  62. Shintani S, Murohara T, Ikeda H, Ueno T, Sasaki K, Duan J, Imaizumi T (2001) Augmentation of postnatal neovascularization with autologous bone marrow transplantation. Circulation 103:897–903

    PubMed  CAS  Google Scholar 

  63. Dimmeler S, Fleming I, Fisslthaler B, Hermann C, Busse R, Zeiher AM (1999) Activation of nitric oxide synthase in endothelial cells by Akt- dependent phosphorylation. Nature 399:601–605

    PubMed  CAS  Google Scholar 

  64. Sorrentino SA, Bahlmann FH, Besler C, Müller M, Schulz S, Kirchhoff N, Doerries C, Horváth T, Limbourg A, Limbourg F, Fliser D, Haller H, Drexler H, Landmesser U (2007) Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-­activated receptor-gamma agonist rosiglitazone. Circulation 116:163–173

    PubMed  CAS  Google Scholar 

  65. Thum T, Fraccarollo D, Schultheiss M, Froese S, Galuppo P, Widder JD, Tsikas D, Ertl G, Bauersachs J (2007) Endothelial nitric oxide synthase uncoupling impairs endothelial progenitor cell mobilization and function in diabetes. Diabetes 56:666–674

    PubMed  CAS  Google Scholar 

  66. Vasa M, Breitschopf K, Zeiher AM, Dimmeler S (2000) Nitric oxide activates telomerase and delays endothelial cell senescence. Circ Res 87:540–542

    PubMed  CAS  Google Scholar 

  67. Li Calzi S, Purich DL, Chang KH, Afzal A, Nakagawa T, Busik JV, Agarwal A, Segal MS, Grant MB (2008) Carbon monoxide and nitric oxide mediate cytoskeletal reorganization in microvascular cells via vasodilator-stimulated phosphoprotein (VASP) phosphorylation: evidence for blunted responsiveness in diabetes. Diabetes 57:2488–2494

    PubMed  CAS  Google Scholar 

  68. Segal MS, Shah R, Afzal A, Perrault CM, Chang K, Schuler A, Beem E, Shaw LC, Li Calzi S, Harrison JK, Tran-Son-Tay R, Grant MB (2006) Nitric oxide cytoskeletal-induced alterations reverse the endothelial progenitor cell migratory defect associated with diabetes. Diabetes 55:102–109

    PubMed  CAS  Google Scholar 

  69. Grunewald M, Avraham I, Dor Y, Bachar-Lustig E, Itin A, Jung S, Chimenti S, Landsman L, Abramovitch R, Keshet E (2006) VEGF-induced adult neovascularization: recruitment, retention, and role of accessory cells. Cell 124:175–189

    PubMed  CAS  Google Scholar 

  70. Jarajapu YP, Thampi P, Caballero S, Boulton ME, Grant MB (2009) Differential paracrine dysfunction and hypoxic desensitization in diabetic CD34+ and CD14+ bone marrow derived cells (BMDC). Circulation 120:S1124

    Google Scholar 

  71. Gao J, Zhao WX, Zhou LJ, Zeng BX, Yao SL, Liu D, Chen ZQ (2006) Protective effects of propofol on lipopolysaccharide-activated endothelial cell barrier dysfunction. Inflamm Res 55:385–392

    PubMed  CAS  Google Scholar 

  72. Luo T, Xia Z, Ansley DM, Ouyang J, Granville DJ, Li Y, Xia ZY, Zhou QS, Liu XY (2005) Propofol dose-dependently reduces tumor necrosis factor-alpha-induced human umbilical vein endothelial cell apoptosis: effects on Bcl-2 and Bax expression and nitric oxide generation. Anesth Analg 100:1653–1659

    PubMed  CAS  Google Scholar 

  73. Chen YS, Chen KH, Liu CC, Lee CT, Yang CH, Chuang KC, Lin CR (2007) Propofol-­induced vascular permeability change is related to the nitric oxide signaling pathway and occludin phosphorylation. J Biomed Sci 14:629–636

    PubMed  CAS  Google Scholar 

  74. Dimmeler S, Aicher A, Vasa M, Mildner-Rihm C, Adler K, Tiemann M, Rütten H, Fichtlscherer S, Martin H, Zeiher AM (2001) HMG-CoA reductase inhibitors (statins) increase endothelial progenitor cells via the PI 3-kinase/Akt pathway. J Clin Invest 108:391–397

    PubMed  CAS  Google Scholar 

  75. Landmesser U, Engberding N, Bahlmann FH, Schaefer A, Wiencke A, Heineke A, Spiekermann S, Hilfiker-Kleiner D, Templin C, Kotlarz D, Mueller M, Fuchs M, Hornig B, Haller H, Drexler H (2004) Statin-induced improvement of endothelial progenitor cell mobilization, myocardial neovascularization, left ventricular function, and survival after experimental myocardial infarction requires endothelial nitric oxide synthase. Circulation 110:1933–1939

    PubMed  CAS  Google Scholar 

  76. Verma S, Szmitko PE, Anderson TJ (2004) Endothelial function: ready for prime time? Can J Cardiol 20:1335–1339

    PubMed  Google Scholar 

  77. Thum T, Fraccarollo D, Galuppo P, Tsikas D, Frantz S, Ertl G, Bauersachs J (2006) Bone marrow molecular alterations after myocardial infarction: impact on endothelial progenitor cells. Cardiovasc Res 70:50–60

    PubMed  CAS  Google Scholar 

  78. Achan V, Broadhead M, Malaki M, Whitley G, Leiper J, MacAllister R, Vallance P (2003) Asymmetric dimethylarginine causes hypertension and cardiac dysfunction in humans and is actively metabolized by dimethylarginine dimethylaminohydrolase. Arterioscler Thromb Vasc Biol 23:1455–1459

    PubMed  CAS  Google Scholar 

  79. Dayoub H, Achan V, Adimoolam S, Jacobi J, Stuehlinger MC, Wang BY, Tsao PS, Kimoto M, Vallance P, Patterson AJ, Cooke JP (2003) Dimethylarginine dimethylaminohydrolase regulates nitric oxide synthesis: genetic and physiological evidence. Circulation 108:3042–3047

    PubMed  CAS  Google Scholar 

  80. Busik J, Tikhonenko M, Bhatwadekar A, Opreanu M, Yakubova N, Caballero S, Player D, Nakagawa T, Afzal A, Kielczewski J, Sochacki A, Hasty S, Li Calzi S, Kim S, Duclas SK, Segal MS, Guberski DL, Esselman WJ, Boulton ME, Grant MB (2009) Diabetic retinopahty is associated with bone marrow neuropathy and a depressed peripheral clock. J Exp Med 206:2897–2906

    PubMed  CAS  Google Scholar 

  81. Naveiras O, Nardi V, Wenzel PL, Hauschka PV, Fahey F, Daley GQ (2009) Bone-marrow adipocytes as negative regulators of the haematopoietic microenvironment. Nature 460:259–263

    PubMed  CAS  Google Scholar 

  82. Berria R, Glass L, Mahankali A, Miyazaki Y, Monroy A, De Filippis E, Cusi K, Cersosimo E, Defronzo RA, Gastaldelli A (2007) Reduction in hematocrit and hemoglobin following pioglitazone treatment is not hemodilutional in Type II diabetes mellitus. Clin Pharmacol Ther 82:275–281

    PubMed  CAS  Google Scholar 

  83. Digman C, Borto D, Nasraway SA Jr (2005) Hyperglycemia in the critically ill. Nutr Clin Care 8:93–101

    PubMed  Google Scholar 

  84. Maaravi Y, Stessman J (2005) Mild, reversible pancytopenia induced by rosiglitazone. Diabetes Care 28:1536

    PubMed  Google Scholar 

  85. Lazarenko OP, Rzonca SO, Hogue WR, Swain FL, Suva LJ, Lecka-Czernik B (2007) Rosiglitazone induces decreases in bone mass and strength that are reminiscent of aged bone. Endocrinology 148:2669–2680

    PubMed  CAS  Google Scholar 

  86. Corre J, Barreau C, Cousin B, Chavoin JP, Caton D, Fournial G, Penicaud L, Casteilla L, Laharrague P (2006) Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol 208:282–288

    PubMed  CAS  Google Scholar 

  87. Nishikawa S, Kumar PK, Jeoung YH, Kawakami J, Nishikawa F, Suh Y, Ohtsuka E, Taira K (1993) Chemical probing studies of the hepatitis delta virus (HDV) genomic ribozyme. Nucleic Acids Symp Ser 29:119–120

    PubMed  CAS  Google Scholar 

  88. Belaid-Choucair Z, Lepelletier Y, Poncin G, Thiry A, Humblet C, Maachi M, Beaulieu A, Schneider E, Briquet A, Mineur P, Lambert C, Mendes-Da-Cruz D, Ahui ML, Asnafi V, Dy M, Boniver J, Nusgens BV, Hermine O, Defresne MP (2008) Human bone marrow adipocytes block granulopoiesis through neuropilin-1-induced granulocyte colony-stimulating factor inhibition. Stem Cells 26:1556–1564

    PubMed  CAS  Google Scholar 

  89. Miharada K, Hiroyama T, Sudo K, Danjo I, Nagasawa T, Nakamura Y (2008) Lipocalin 2-mediated growth suppression is evident in human erythroid and monocyte/macrophage lineage cells. J Cell Physiol 215:526–537

    PubMed  CAS  Google Scholar 

  90. Yan QW, Yang Q, Mody N, Graham TE, Hsu CH, Xu Z, Houstis NE, Kahn BB, Rosen ED (2007) The adipokine lipocalin 2 is regulated by obesity and promotes insulin resistance. Diabetes 56:2533–2540

    PubMed  CAS  Google Scholar 

  91. Yokota T, Oritani K, Takahashi I, Ishikawa J, Matsuyama A, Ouchi N, Kihara S, Funahashi T, Tenner AJ, Tomiyama Y, Matsuzawa Y (2000) Adiponectin, a new member of the family of soluble defense collagens, negatively regulates the growth of myelomonocytic progenitors and the functions of macrophages. Blood 96:1723–1732

    PubMed  CAS  Google Scholar 

  92. Zhang Y, Harada A, Bluethmann H, Wang JB, Nakao S, Mukaida N, Matsushima K (1995) Tumor necrosis factor (TNF) is a physiologic regulator of hematopoietic progenitor cells: increase of early hematopoietic progenitor cells in TNF receptor p55-deficient mice in vivo and potent inhibition of progenitor cell proliferation by TNF alpha in vitro. Blood 86:2930–2937

    PubMed  CAS  Google Scholar 

  93. DiMascio L, Voermans C, Uqoezwa M, Duncan A, Lu D, Wu J, Sankar U, Reya T (2007) Identification of adiponectin as a novel hemopoietic stem cell growth factor. J Immunol 178:3511–3520

    PubMed  CAS  Google Scholar 

  94. Awad O, Jiao C, Ma N, Dunnwald M, Schatteman GC (2005) Obese diabetic mouse environment differentially affects primitive and monocytic endothelial cell progenitors. Stem Cells 23:575–583

    PubMed  CAS  Google Scholar 

  95. Klein R, Knudtson MD, Lee KE, Gangnon R, Klein BE (2008) The Wisconsin Epidemiologic Study of Diabetic Retinopathy: XXII the twenty-five-year progression of retinopathy in persons with type 1 diabetes. Ophthalmology 115:1859–1868

    PubMed  Google Scholar 

  96. Fadini GP, Miorin M, Facco M, Bonamico S, Baesso I, Grego F, Menegolo M, de Kreutzenberg SV, Tiengo A, Agostini C, Avogaro A (2005) Circulating endothelial progenitor cells are reduced in peripheral vascular complications of type 2 diabetes mellitus. J Am Coll Cardiol 45:1449–1457

    PubMed  CAS  Google Scholar 

  97. Kusuyama T, Omura T, Nishiya D, Enomoto S, Matsumoto R, Takeuchi K, Yoshikawa J, Yoshiyama M (2006) Effects of treatment for diabetes mellitus on circulating vascular progenitor cells. J Pharmacol Sci 102:96–102

    PubMed  CAS  Google Scholar 

  98. Lee IG, Chae SL, Kim JC (2006) Involvement of circulating endothelial progenitor cells and vasculogenic factors in the pathogenesis of diabetic retinopathy. Eye (Lond) 20:546–552

    CAS  Google Scholar 

  99. Brunner S, Schernthaner GH, Satler M, Elhenicky M, Hoellerl F, Schmid-Kubista KE, Zeiler F, Binder S, Schernthaner G (2009) Correlation of different circulating endothelial progenitor cells to stages of diabetic retinopathy: first in vivo data. Invest Ophthalmol Vis Sci 50:392–398

    PubMed  Google Scholar 

  100. Otani A, Kinder K, Ewalt K, Otero FJ, Schimmel P, Friedlander M (2002) Bone marrow-­derived stem cells target retinal astrocytes and can promote or inhibit retinal angiogenesis. Nat Med 8:1004–1010

    PubMed  CAS  Google Scholar 

  101. Dorrell MI, Otani A, Aguilar E, Moreno SK, Friedlander M (2004) Adult bone marrow-­derived stem cells use R-cadherin to target sites of neovascularization in the developing retina. Blood 103:3420–3427

    PubMed  CAS  Google Scholar 

  102. Dorrell MI, Friedlander M (2006) Mechanisms of endothelial cell guidance and vascular patterning in the developing mouse retina. Prog Retin Eye Res 25:277–295

    PubMed  Google Scholar 

  103. Thill M, Strunnikova NV, Berna MJ, Gordiyenko N, Schmid K, Cousins SW, Thompson DJ, Csaky KG (2008) Late outgrowth endothelial progenitor cells in patients with age-related macular degeneration. Invest Ophthalmol Vis Sci 49:2696–2708

    PubMed  Google Scholar 

  104. Livrea MA, Tesoriere L, Pintaudi AM, Calabrese A, Maggio A, Freisleben HJ, D’Arpa D, D’Anna R, Bongiorno A (1996) Oxidative stress and antioxidant status in beta-thalassemia major: iron overload and depletion of lipid-soluble antioxidants. Blood 88:3608–3614

    PubMed  CAS  Google Scholar 

  105. Van Beem RT, Nur E, Zwaginga JJ, Landburg PP, van Beers EJ, Duits AJ, Brandjes DP, Lommerse I, de Boer HC, van der Schoot CE, Schnog JJ, Biemond BJ, CURAMA Study Group (2009) Elevated endothelial progenitor cells during painful sickle cell crisis. Exp Hematol 37:1054–1059

    PubMed  Google Scholar 

  106. Boyle JP, Thompson TJ, Gregg EW, Barker LE, Williamson DF (2010) Projection of the year 2050 burden of diabetes in the US adult population: dynamic modeling of incidence, mortality, and prediabetes prevalence. Popul Health Metr 8:29

    PubMed  Google Scholar 

  107. Cardoso CR, Saller GF (2008) Predictors of development and progression of microvascular complications in a cholort of Brazilian type 2 diabetic patients. J Diabetes Complications 22:167–170

    Google Scholar 

  108. Conway BN, Miller RG, Klein R, Orchard TJ (2009) Prediction of prolilferative diabetic retinopathy with hemoglobin level. Arch Ophthalmol 127:1494–1499

    PubMed  Google Scholar 

  109. Massin P, Lange C, Tichet J, Vol S, Erginay A, Cailleau M, Eschwège E, Balkau B, DESIR (Data From an Epidemiological Study on the Insulin Resistance Syndrome) Study Group (2011) Hemoglobin A1c and fasting plasma glucose levels as predictors of retinopathy at 10 years: the French DESIR study. Arch Ophthalmol 129:188–195

    PubMed  CAS  Google Scholar 

  110. Heydari B, Yaghoubi G, Yaghoubi MA, Miri MR (2012) Prevalence and risk factors for diabetic retinopathy: an Iranian eye study. Eur J Ophthalmol 22:393–397

    PubMed  Google Scholar 

  111. Hadjadj S, Duly-Bouhanick B, Bekherraz A, Br Idoux F, Gallois Y, Mauco G, Ebran J, Marre M (2004) Serum triglycerides are a predictive factor for the development and the progression of renal and retinal complications in patients with type 1 diabetes. Diabetes Metab 30:43–51

    PubMed  CAS  Google Scholar 

  112. Simo R, Hernandez C (2012) Prevention and treatment of diabetic retinopathy: evidence from large. Randomized trials. The emerging role of fenofibrate. Rev Recent Clin Trials 7:71–80

    PubMed  CAS  Google Scholar 

  113. Patel SA, King CC, Lim PK, Habiba U, Dave M, Porecha R, Rameshwar P (2010) Personalizing stem cell research and therapy: the arduous road ahead or missed opportunity? Curr Pharmacogenomics Person Med 8:25–36

    PubMed  CAS  Google Scholar 

  114. Tibbetts MD, Samuel MA, Chang TS, Ho AC (2012) Stem cell therapy for retinal disease. Curr Opin Ophthalmol 23:226–234

    PubMed  Google Scholar 

  115. Masui S, Nakatake Y, Toyooka Y, Shimosato D, Yagi R, Takahashi K, Okochi H, Okuda A, Matoba R, Sharov AA, Ko MS, Niwa H (2007) Pluripotency governed by Sox2 via regulation of Oct3/4 expression in mouse embryonic stem cells. Nat Cell Biol 9:625–635

    PubMed  CAS  Google Scholar 

  116. Nakatake Y, Fukui N, Iwamatsu Y, Masui S, Takahashi K, Yagi R, Yagi K, Miyazaki J, Matoba R, Ko MS, Niwa H (2006) Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 26:7772–7782

    PubMed  CAS  Google Scholar 

  117. Seeger FH, Haendeler J, Walter DH, Rochwalsky U, Reinhold J, Urbich C, Rössig L, Corbaz A, Chvatchko Y, Zeiher AM, Dimmeler S (2005) p38 mitogen-activated protein kinase downregulates endothelial progenitor cells. Circulation 111:1184–1191

    PubMed  CAS  Google Scholar 

  118. Zhao T, Zhang ZN, Rong Z, Xu Y (2012) Immunogenicity of induced pluripotent stem cells. Nature 474:212–215

    Google Scholar 

  119. Kalka C, Masuda H, Takahashi T, Kalka-Moll WM, Silver M, Kearney M, Li T, Isner JM, Asahara T (2000) Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc Natl Acad Sci U S A 97:3422–3427

    PubMed  CAS  Google Scholar 

  120. Senegaglia AC, Barboza LA, Dallagiovanna B, Aita CA, Hansen P, Rebelatto CL, Aguiar AM, Miyague NI, Shigunov P, Barchiki F, Correa A, Olandoski M, Krieger MA, Brofman PR (2010) Are purified or expanded cord blood-derived CD133+ cells better at improving cardiac function? Exp Biol Med (Maywood) 235:119–129

    CAS  Google Scholar 

  121. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ (1990) Autologous transplantation of bone marrow cells improves damaged heart function. Circulation 100:II247–II256

    Google Scholar 

  122. Strauer BE, Brehm M, Zeus T, Gattermann N, Hernandez A, Sorg RV, Kögler G, Wernet P (2001) Intracoronary, human autologous stem cell transplantation for myocardial regeneration following myocardial infarction. Dtsch Med Wochenschr 126:932–938

    PubMed  CAS  Google Scholar 

  123. Emerson CP, Geng YT, James TW (2003) Adults stem cell therapy in perspective. Circulation 107:935–938

    Google Scholar 

  124. Jarajapu YP, Caballero S, Verma A, Nakagawa T, Lo MC, Li Q, Grant MB (2011) Blockade of NADPH oxidase restores vasoreparative function in diabetic CD34+ cells. Invest Ophthalmol Vis Sci 52:5093–5104

    PubMed  Google Scholar 

  125. Sasaki K, Heeschen C, Aicher A, Ziebart T, Honold J, Urbich C, Rossig L, Koehl U, Koyanagi M, Mohamed A, Brandes RP, Martin H, Zeiher AM, Dimmeler S (2006) Ex vivo pretreatment of bone marrow mononuclear cells with endothelial NO synthase enhancer AVE9488 enhances their functional activity for cell therapy. Proc Natl Acad Sci U S A 103:14537–14541

    PubMed  CAS  Google Scholar 

  126. Li Calzi S, Kent DL, Chang KH, Padgett KR, Afzal A, Chandra SB, Caballero S, English D, Garlington W, Hiscott PS, Sheridan CM, Grant MB, Forder JR (2009) Labeling of stem cells with monocrystalline iron oxide for tracking and localization by magnetic resonance imaging. Microvasc Res 78:132–139

    PubMed  CAS  Google Scholar 

  127. Yao Y, Li Y, Ma G, Liu N, Ju S, Jin J, Chen Z, Shen C, Teng G (2011) In vivo magnetic resonance imaging of injected endothelial progenitor cells after myocardial infarction in rats. Mol Imaging Biol 13:303–313

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Institutes of Health (NIH1R01 EY07739, NIH R01EY12601), American Heart Association (Beginning Grant-in-Aid # 0865213E to S. L.C.) and the Juvenile Diabetes Research Foundation (Grant 4-2000-847).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria B. Grant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Calzi, S.L., Neu, M., Shaw, L.C., Grant, M.B. (2013). Correction of Diabetes-Induced Endothelial Progenitor Dysfunction to Promote Retinal Vascular Repair. In: Mozaffari, M. (eds) New Strategies to Advance Pre/Diabetes Care: Integrative Approach by PPPM. Advances in Predictive, Preventive and Personalised Medicine, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-5971-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-5971-8_6

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-5970-1

  • Online ISBN: 978-94-007-5971-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics