Skip to main content

Two Dimensional (2D) Damage Percolation with Stress State

  • Chapter
  • First Online:
Micromechanics Modelling of Ductile Fracture

Part of the book series: Solid Mechanics and Its Applications ((SMIA,volume 195))

  • 2174 Accesses

Abstract

Butcher and Chen (2009a, b, c) extended the 2-D damage percolation model used by Chen (2004) to directly incorporate the stress state, material softening and a coalescence model linking the void geometry with the stress state via the plastic limit-load criterion. Unlike the prior percolation model, the stress state is directly determined from the GT yield surface by performing a dynamic homogenization at each time step to calculate the equivalent void in the material to account for softening. In the previous damage percolation models (Worswick et al. 2001; Chen 2004; Chen et al. 2005), void nucleation and coalescence were modeled using only geometric considerations and the effect of stress state was not considered. Void growth and shape evolution are strain-controlled and were reasonably well represented in the percolation model for well-defined stress states but a simplified coalescence rule was employed that did not account for the stress state. In addition, the fracture predictions of the percolation model are extremely sensitive to the void nucleation rule. In continuum modeling, void nucleation is often represented using a bulk averaged criterion. Obviously, this averaged criterion is unsuitable for percolation modeling since nucleation occurs at the individual particle scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Barsoum, I., & Faleskog, J. (2007a). Rupture mechanisms in combined tension and shear – Experiments. International Journal of Solids and Structures, 44, 1768–1786.

    Article  MATH  Google Scholar 

  • Barsoum, I., & Faleskog, J. (2007b). Rupture mechanism in combined tension and shear – Micromechanics. International Journal of Fracture, 44, 5481–5498.

    MATH  Google Scholar 

  • Brown, L. M., & Embury, J. D. (1973). The initiation and growth of voids at second phase particles. In Proceedings of the 3rd international conference on the strength of metals and alloys (pp. 164–169). London: Institute of Metals.

    Google Scholar 

  • Butcher, C., & Chen, Z. T. (2009a). A void coalescence model for combined tension and shear. Modeling and Simulation in Materials Science and Engineering, 17, 1–15.

    Google Scholar 

  • Butcher, C., & Chen, Z. T. (2009b). Damage percolation modeling of void nucleation within heterogeneous particle distributions. Modeling and Simulation in Materials Science and Engineering, 17, 075003.

    Article  Google Scholar 

  • Butcher, C., & Chen, Z. T. (2009c). A continuum void nucleation model for an Al-Mg alloy sheet based on measured particle distribution. Acta Mechanica Solida Sinica, 22, 391–398.

    Google Scholar 

  • Chen, Z. T. (2004). The role of heterogeneous particle distribution in the prediction of ductile fracture. Ph.D. thesis, University of Waterloo, Canada.

    Google Scholar 

  • Chen, Z. T., Worswick, M. J., Pilkey, A. K., & Lloyd, D. J. (2005). Damage percolation during stretch flanging forming of aluminium alloy sheet. Journal of the Mechanics and Physics of Solids, 53, 2692–2717.

    Article  Google Scholar 

  • Chu, C. C., & Needleman, A. (1980). Void nucleation effects in biaxially stretched sheets. Journal Engineering Materials Technology, 102, 249–256.

    Article  Google Scholar 

  • Dighe, M. D., Gokhale, A. M., & Horstemeyer, M. F. (2002). Effect of loading condition and stress state on damage evolution of silicon particles in an Al-Si-Mg base cast alloy. Metallurgical and Materials Transactions-A, 33A, 555–565.

    Article  Google Scholar 

  • Embury, J. D. (1985). Plastic flow in dispersion hardened materials. Metallurgical Transactions A, 16, 2191–2200.

    Article  Google Scholar 

  • Gangalee, A., & Gurland, J. (1967). On the fracture of silicon particles in aluminum–silicon alloys. Transactions of the Metallurgical Society of AIME, 239, 269–272.

    Google Scholar 

  • Hadianfard, M. J., Smerd, R., Winkler, S., & Worswick, M. (2008). Effects of strain rate on mechanical properties and failure mechanism of structural Al-Mg alloys. Materials Science and Engineering A, 492(2008), 283–292.

    Article  Google Scholar 

  • Horstemeyer, M. F., & Gokhale, A. M. (1999). A void-crack nucleation model for ductile metals. International Journal of Solids and Structures, 36, 5029–5055.

    Article  MATH  Google Scholar 

  • Horstemeyer, M. F., Ramaswamy, S., & Negrete, M. (2003). Using a micromechanical finite element parametric study to motivate a phenomenological macroscale model for void/crack nucleation in aluminum with a hard second phase. Mechanics of Materials, 35, 675–687.

    Article  Google Scholar 

  • Lievers, W. B., Pilkey, A. K., & Lloyd, D. J. (2004). Using incremental forming to calibrate a void nucleation model for automotive aluminum sheet alloys. Acta Materialia, 52, 3001–3007. doi:10.1016/j.actamat.2004.03.002.

    Article  Google Scholar 

  • Marciniak, Z., & Kuczynski, K. (1967). Limit strains in the processes of stretch-forming sheet metal. International Journal of Mechanical Science, 9, 609–620.

    Article  Google Scholar 

  • Mazinani, M., & Poole, W. J. (2007). Effect of plasticity on the deformation behavior of a low-carbon dual phase steel. Metallurgical and Materials Transactions A, 38, 328–339.

    Article  Google Scholar 

  • Orlov, O. (2006). A three-dimensional damage percolation model. Ph.D. thesis, University of Waterloo, Waterloo, Ontario, Canada.

    Google Scholar 

  • Scheyvaerts, F., Onck, P. R., Tekoglu, C., & Pardoen, T. (2011). The growth and coalescence of ellipsoidal voids in plane strain under combined shear and tension. Journal of Mechanics and Physics of Solids, 59, 373–397.

    Article  Google Scholar 

  • Shabrov, M., & Needleman, A. (2002). An analysis of inclusion morphology effects on void nucleation. Modeling and Simulation in Materials Science and Engineering, 10, 63–183.

    Article  Google Scholar 

  • Thomason, P. F. (1990). Ductile fracture of metals. Oxford: Pergamon Press.

    Google Scholar 

  • Worswick, M. J., Chen, Z. T., Pilkey, A. K., Lloyd, D., & Court, S. (2001). Damage characterization and damage percolation modeling in aluminum alloy sheet. Acta Materialia, 49, 2791–2803.

    Article  Google Scholar 

  • Wu, P. D., Jain, M., Savoie, J., MacEwon, S. R., Tugcu, P., & Neale, K. W. (2003). Evaluation of anisotropic yield function for aluminum sheets. International Journal of Plasticity, 19, 121–138.

    Article  Google Scholar 

  • Xue, L. (2007). Damage accumulation and fracture initiation in uncracked ductile solids subject to triaxial loading. International Journal of Solids and Structures, 44, 5163–5181.

    Article  MATH  Google Scholar 

  • Xue, L. (2008). Constitutive modeling of void shearing effect in ductile fracture of porous materials. Engineering Fracture Mechanics, 75, 3343–3366.

    Article  Google Scholar 

  • Zhang, K. S., Bai, J. B., & Francois, D. (2001). Numerical analysis of the influence of the Lode parameter on the void growth. International Journal of Solids and Structures, 38, 5847–5856.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, Z., Butcher, C. (2013). Two Dimensional (2D) Damage Percolation with Stress State. In: Micromechanics Modelling of Ductile Fracture. Solid Mechanics and Its Applications, vol 195. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6098-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-007-6098-1_7

  • Published:

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-007-6097-4

  • Online ISBN: 978-94-007-6098-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics