Skip to main content

Lectins of Marine Origin and Their Clinical Applications

  • Chapter
  • First Online:
Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds

Abstract

During the past several decades, intensive investigations have been conducted to clarify the biochemical and physiological properties of lectins from marine organisms, including cyanobacteria, algae, and invertebrates and fish. These investigations have revealed that lectins are highly diversified in terms of not only structural aspects but also functional aspects, including unique carbohydrate-binding specificities. Lectins are still being intensively investigated to understand their biological roles in cell recognition and biodefense as well as to employ them as valuable tools for studying complex carbohydrates in solution and on cell surfaces. Here, we review the structures and activities of lectins from marine organisms and their applications as carbohydrate recognition molecules and medicinal agents with antitumor and antiviral activities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ogawa T, Watanabe M, Naganuma T, Muramoto K (2011) Diversified carbohydrate-binding lectins from marine resources. J Amino Acids. doi:10.4061/2011/838914

    PubMed  Google Scholar 

  2. Sharon N, Lis H (2003) Lectins. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  3. Zelensky AN, Gready JE (2005) The C-type lectin-like domain superfamily. FEBS J 272:6179–6217

    Article  PubMed  CAS  Google Scholar 

  4. Wei J, Xu D, Zhou J, Cui H, Yan Y, Ouyang Z, Gong J, Huang Y, Huang X, Qin Q (2010) Molecular cloning, characterization and expression analysis of a C-type lectin (Ec-CTL) in orange-spotted grouper Epinephelus coioides. Fish Shellfish Immunol 28:178–186

    Article  PubMed  CAS  Google Scholar 

  5. Wei X, Liu X, Yang J, Fang J, Qiao H, Zhang Y, Yang J (2012) Two C-type lectins from shrimp Litopeneaeus vannamei that might be involved in immune response against bacteria and virus. Fish Shellfish Immunol 32:132–140

    Article  PubMed  CAS  Google Scholar 

  6. Hosono M, Sugawara S, Ogawa Y, Kohno T, Takayanagi M, Nitta K (2005) Purification, characterization, cDNA cloning, and expression of asialofetuin-binding C-type lectin from eggs of shishamo smelt (Osmerus lanceolatus). Biochim Biophys Acta 1725:160–173

    Article  PubMed  CAS  Google Scholar 

  7. Yu Y, Yu Y, Huang H, Feng K, Pan M, Yuan S, Huang S, Wu T, Guo L, Dong M, Chen S, Xu A (2007) A short-form C-type lectin from amphioxus acts as a direct microbial killing protein via interaction with peptidoglycan and glucan. J Immunol 179:8425–8434

    PubMed  CAS  Google Scholar 

  8. Tsutsui S, Iwamoto K, Nakamura O, Watanabe T (2007) Yeast-binding C-type lectin with opsonic activity from conger eel (Conger myriaster) skin mucus. Mol Immunol 44:691–702

    Article  PubMed  CAS  Google Scholar 

  9. Russell S, Hayes MA, Lumsden JS (2009) Immunohistochemical localization of rainbow trout ladderlectin and intelectin in healthy and infected rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 26:154–163

    Article  PubMed  CAS  Google Scholar 

  10. Vasta GR (2009) Roles of galectins in infection. Nat Rev Microbiol 7:424–438

    Article  PubMed  CAS  Google Scholar 

  11. Nakamura O, Matsuoka H, Ogawa O, Muramoto K, Kamiya H, Watanabe T (2006) Opsonic effect of congerin, a mucosal galectin of the Japanese conger, Conger myriaster (Brevoort). Fish Shellfish Immunol 20:433–435

    Article  PubMed  CAS  Google Scholar 

  12. Konno A, Yonemaru S, Kitagawa A, Muramoto K, Shirai T, Ogawa T (2010) Protein engineering of conger eel galectins by tracing of molecular evolution using probable ancestral mutants. BMC Evol Biol 10. article 43. doi:10.1186/1471-2148-10-43

  13. Shirai T, Shionyu-Mitsuyama C, Ogawa T, Muramoto K (2006) Structure based studies of the adaptive diversification process of congerins. Mol Div 10:567–573

    Article  CAS  Google Scholar 

  14. Watanabe M, Nakamura O, Muramoto K, Ogawa T (2012) Allosteric regulation of the carbohydrate-binding ability of a novel conger eel galectin by D-mannoside. J Biol Chem 287:31061–31072

    Google Scholar 

  15. Vizzini A, Parrinello D, Sanfratello MA, Salerno G, Cammarata M, Parrinello N (2012) Inducible galectins are expressed in the inflamed pharynx of the ascidian Ciona intestinalis. Fish Shellfish Immunol 32:101–109

    Article  PubMed  CAS  Google Scholar 

  16. Tasumi S, Vasta GR (2007) A galectin of unique domain organization from hemocytes of the eastern oyster (Crassostrea virginica) is a receptor for the protistan parasite Perkinsus marinus. J Immunol 179:3086–3098

    PubMed  CAS  Google Scholar 

  17. Hwang JS, Takaku Y, Momose T, Adamcyk P, Ozbek S, Ikeo K, Khaturin K, Hemmrich G, Bosch TCG, Holstein TW, David CN, Gojobori T (2010) Nematogalectin, a nematocyst protein with GlyXY and galectin domains, demonstrates nematocyte-specific alternative splicing in Hydra. Proc Nat Aca Sci U S A 107:18539–18544

    Article  CAS  Google Scholar 

  18. Park HJ, Kim JW, Kim EG, Kim HN, Chae YS, Jeong JM, Kim DH, Park CI (2012) Molecular cloning and expression analysis of two distinct F-type lectins from the rock bream Oplegnathus fasciatus. Dev Comp immunol 36:230–235

    Article  PubMed  CAS  Google Scholar 

  19. Salerno G, Parisi MG, Parrinello D, Benenati G, Vizzini A, Vazzana M, Vasta GR, Cammarata M (2009) F-type lectin from the sea bass (Dicentrarchus labrax): purification, cDNA cloning, tissue expression and localization, and opsonic activity. Fish Shellfish Immunol 27:143–153

    Article  PubMed  CAS  Google Scholar 

  20. Shiina N, Tateno H, Ogawa T, Muramoto K, Saneyoshi M, Kamiya H (2002) Isolation and characterization of L-rhamnose-binding lectins from chum salmon (Oncorhynchus keta) eggs. Fish Sci 68:1352–1366

    Article  CAS  Google Scholar 

  21. Shirai T, Watanabe Y, Lee MS, Ogawa T, Muramoto K (2009) Structure of rhamnose-binding lectin CSL3: unique pseudo-tetrameric architecture of a pattern recognition protein. J Mol Biol 391:390–403

    Article  PubMed  CAS  Google Scholar 

  22. Watanabe Y, Tateno H, Nakamura-Tsuruta S, Kominami J, Hirabayashi J, Nakamura O, Watanabe T, Kamiya H, Naganuma T, Ogawa T, Naudé RJ, Muramoto K (2009) The function of rhamnose-binding lectin in innate immunity by restricted binding to Gb3. Dev Comp Immunol 33:187–197

    Article  PubMed  CAS  Google Scholar 

  23. Ng TB, Lam YW, Woo NYS (2003) The immunostimulatory activity and stability of grass carp (Ctenopharyngodon idellus) roe lectin. Vet Immunol Immunopathol 94:105–112

    Article  PubMed  CAS  Google Scholar 

  24. Schwarz RS, Hodes-Villamar L, Fitzpatrick KA, Fain MG, Hughes AL, Cadavid LF (2007) A gene family of putative immune recognition molecules in the hydroid Hydractinia. Immunogenet 59:233–246

    Article  CAS  Google Scholar 

  25. Zhang H, Peatman E, Liu H, Feng H, Chen L, Liu Z (2012) Molecular characterization of three L-type lectin genes from channel catfish, Ictalurus punctatus and their responses to Edwardsiella ictaluri challenge. Fish Shellfish Immunol 32:598–608

    Article  PubMed  CAS  Google Scholar 

  26. Suzuki Y, Tasumi S, Tsutsui S, Okamoto M, Suetake H (2003) Molecular diversity of skin mucus lectins in fish. Comp Biochem Physiol Pt B 136:723–730

    Article  Google Scholar 

  27. Tsutsui S, Okamoto M, Ono M, Suetake H, Kikuchi K, Nakamura O, Suzuki Y, Watanabe T (2011) A new type of lectin discovered in a fish, flathead (Platycephalus indicus), suggests an alternative functional role for mammalian plasma kallilrein. Glycobiol 21:1580–1587

    Article  CAS  Google Scholar 

  28. Hori K, Sato Y, Ito K, Fujiwara Y, Iwamoto Y, Makino H, Kawakubo A (2007) Strict specificity for high-mannose type N-glycan and primary structure of a red alga Eucheuma serra lectin. Glycobiol 17:479–491

    Article  CAS  Google Scholar 

  29. Tateno H, Ogawa T, Muramoto K, Kamiya H, Saneyoshi M (2002) Rhamnose-binding lectins from steelhead trout (Oncorhynchus mykiss) eggs recognize bacterial lipopolysaccharides and lipoteichoic acid. Biosci Biotechnol Biochem 66:604–612

    Article  PubMed  CAS  Google Scholar 

  30. Watanabe Y, Shiina N, Shinozaki F, Yokoyama H, Kominami J, Nakamura-Tsuruta S, Hirabayashi J, Sugahara K, Kamiya H, Matsubara H, Ogawa T, Muramoto K (2008) Isolation and characterization of L-rhamnose-binding lectin, which binds to microsporidian Glugea plecoglossi, from ayu (Plecoglossus altivelis) eggs. Dev Comp Immunol 32:487–499

    Article  PubMed  CAS  Google Scholar 

  31. Ghazarian H, Idoni B, Oppenheimer SB (2011) A glycobiology review: carbohydrates, lectins and implications in cancer therapeutics. Acta Histochem 113:236–247

    Article  PubMed  CAS  Google Scholar 

  32. Yamazaki M, Esumi-Kurisu M, Mizuno D, Ogata K, Kamiya H (1983) Marine animal lectin-dependent tumor recognition by macrophages. Gann 74:405–411

    PubMed  CAS  Google Scholar 

  33. Kawano T, Sugawara S, Hosono M, Tatsuta T, Ogawa Y, Fujimura T, Taka H, Murayama K, Nitta K (2009) Globotriaosylceramido-expressing Burkitt’s lymphoma cells are committed to early apoptotic status by rhamnose-binding lectin from catfish eggs. Biol Pharm Bull 32:345–353

    Article  PubMed  CAS  Google Scholar 

  34. Bies C, Lehr CM, Woodley JF (2004) Lectin-mediated drug targeting: history and applications. Adv Drug Deliv Rev 56:425–435

    Article  PubMed  CAS  Google Scholar 

  35. Molchanova V, Chikalovets I, Chernikov O, Belogortseva N, Li W, Wang JH, Yang DYO, Zheng YT, Lukyanov P (2007) A new lectin from the sea worm Serpula vermicularis:isolation, characterization and anti-HIV activity. Comp Biochem Physiol Pt C 145:184–193

    Google Scholar 

  36. Mori T, O’Keefe BR, Sowder BC, Bringans S, Gardella R, Berg S, Cochran P, Turpin JA, Buckheit RW, McMahon JB, Boyd MR (2005) Isolation and characterization of griffithsin, a novel HIV-inactivating protein, from the red alga Griffithsia sp. J Biol Chem 280:9345–9353

    Article  PubMed  CAS  Google Scholar 

  37. Sato Y, Hirayama M, Morimoto K, Yamamoto N, Okuyama S, Hori K (2011) High mannose-binding lectin with preference for the cluster of α1-2-mannose from the green alga Boodlea coacta is a potent entry inhibitor of HIV-1 and influenza viruses. J Biol Chem 285:19446–19458

    Article  Google Scholar 

  38. Boyd MR, Gustafson KR, McMahon JB, Shoemaker RH, O’Keefe BR, Mori T et al (1997) Discovery of cyanovirin-N, a novel human immunodeficiency virus-inactivating protein that binds viral surface envelope glycoprotein gp120: potential applications to microbicide development. Antimicrob Agents Chemother 41:1521–1530

    PubMed  CAS  Google Scholar 

  39. Keeffe JR, Gnanapragasam PNP, Gillespie SK, Yong J, Bjorkman PJ, Mayo SL (2011) Designed oligomers of cyanovirin-N show enhanced HIV neutralization. Proc Natl Acad Sci U S A 108:14079–14084

    Article  PubMed  CAS  Google Scholar 

  40. Patsalo V, Raleigh DP, Green DF (2011) Rational and computational design of stabilized variants of cyanovirin-N that retain affinity and specificity for glycan ligands. Biochemistry 50:10698–10712

    Article  PubMed  CAS  Google Scholar 

  41. Wang N, Lee YH, Lee J (2008) Recombinant perlucin nucleates the growth of calcium carbonate crystals: molecular cloning and characterization of perlucin from disk abalone, Haliotis discus discus. Comp Biochem Physiol Pt B 149:354–361

    Article  Google Scholar 

  42. Matsubara H, Hayashi T, Ogawa T, Muramoto K, Jimbo M, Kamiya H (2008) Modulating effect of acorn barnacle C-type lectins on the crystallization of calcium carbonate. Fish Sci 74:418–424

    Article  CAS  Google Scholar 

  43. Kamiya H, Jimbo M, Yako H, Muramoto K, Nakamura O, Kado R, Watanabe T (2002) Participation of the C-type hemolymph lectin in mineralization of the acorn barnacle Megabalanus rosa. Mar Biol 140:1235–1240

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Grants-in-Aid for Scientific Research (23380121) from the Ministry of Education, Science, Sports, and Culture of Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Koji Muramoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Watanabe, Y., Naganuma, T., Ogawa, T., Muramoto, K. (2013). Lectins of Marine Origin and Their Clinical Applications. In: Fang, E., Ng, T. (eds) Antitumor Potential and other Emerging Medicinal Properties of Natural Compounds. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6214-5_4

Download citation

Publish with us

Policies and ethics