Skip to main content

Phasing Through Location of Small Fragments and Density Modification with ARCIMBOLDO

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography

Abstract

The International School of Crystallography held a course at the Ettore Majorana Centre in Erice in 1997 on “Direct methods for solving macromolecular structures”. In those days, Dual Space recycling methods, introduced by Hauptman and Weeks had allowed the breakthrough of extending atomic resolution phasing to macromolecules. The largest previously unknown macromolecule to have been phased by such methods was hirustasin at 1.2 Å resolution, with 400 independent atoms. At the time of the meeting, triclinic lysozyme at 1.0 Å, with 1,001 equal atoms was solved with SHELXD. Fifteen years later, ab Initio phasing has pushed the size and resolution limits of the problems it can tackle. Macromolecules with several thousands of atoms in the asymmetric unit can be solved from medium resolution data. One of the successful approaches is the combination of fragment location with the program PHASER and density modification with the program SHELXE in a supercomputing frame. The method is implemented in the program ARCIMBOLDO, described in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Artola-Recolons C, Carrasco-López C, Llarrull LI, Kumarasiri M, Lastochkin E, Martínez de Ilarduya I, Meindl K, Usón I, Mobashery S, Hermoso JA (2011) High resolution crystal structure of MltE, an outer membrane-anchored endolytic peptidoglycan lytic transglycosylase from Escherichia coli. Biochemistry 50:2384–2386

    Article  CAS  Google Scholar 

  2. Burla MC, Caliandro R, Cammalli M, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Polidori G, Siliqi D, Spagna R (2007) IL MILIONE: a suite of computer programs for crystal structure solution of proteins. J Appl Crystallogr 40:609–613

    Article  CAS  Google Scholar 

  3. Burla MC, Giacovazzo C, Polidori G (2010) From a random to the correct structure: the VLD algorithm. J Appl Crystallogr 43:825–836

    Article  CAS  Google Scholar 

  4. Burla MC, Carrozzini B, Cascarano GL, Giacovazzo C, Polidori G (2011) Advances in the VLD algorithm. J Appl Crystallogr 44:1143–1151

    Article  CAS  Google Scholar 

  5. Caliandro R, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Siliqi D (2005) Phasing at a resolution higher than the experimental resolution. Acta Crystallogr D 61:556–565

    Article  Google Scholar 

  6. Caliandro R, Carrozzini B, Cascarano GL, De Caro L, Giacovazzo C, Mazzone A, Siliqi D (2008) Ab initio phasing of proteins with heavy atoms at non-atomic resolution: pushing the size limit of solvable structures up to 7890 non-H atoms in the asymmetric unit. J Appl Crystallogr 41:548–553

    Article  CAS  Google Scholar 

  7. DiMaio F, Terwilliger TC, Read RJ, Wlodawer A, Oberdorfer G, Wagner U, Valkov E, Alon A, Fass D, Axelrod HL, Das D, Vorbiev SM, Iwaï H, Pokkuluri PR, Baker D (2011) Improved molecular replacement by density- and energy-guided protein structure optimization. Nature 473:540–543

    Article  CAS  Google Scholar 

  8. Fujinaga M, Read RJ (1987) Experiences with a new translation function program. J Appl Crystallogr 20:517–521

    Article  Google Scholar 

  9. Hauptman H and Karle J (1953) Solution of the phase problem I. The centrosymmetric crystal. Am Crystallogr Assoc Monograph No. 3 Dayton, Ohio: Polycrystal Book Service

    Google Scholar 

  10. Karle J, Hauptman H (1956) A theory of phase determination for the four types of non-centrosymmetric spacegroups 1P222, 2P22, 3P12, 3P22. Acta Crystallogr 9:635–651

    Article  CAS  Google Scholar 

  11. McCoy AJ, Grosse-Kunstleve RW, Adams PD, Winn MD, Storoni LC, Read RJ (2007) Phaser crystallographic software. J Appl Crystallogr 40:658–674

    Article  CAS  Google Scholar 

  12. Miller R, DeTitta GT, Jones R, Langs DA, Weeks CM, Hauptman HA (1993) On the application of the minimal principle to solve unknown structures. Science 259:1430–1433

    Article  CAS  Google Scholar 

  13. Morris RJ, Bricogne G (2003) Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr D 59:615–617

    Article  Google Scholar 

  14. Rodríguez DD, Grosse C, Himmel S, González C, de Ilarduya MI, Becker S, Sheldrick GM, Usón I (2009) Crystallographic ab initio protein structure solution below atomic resolution. Nat Methods 6:651–653

    Article  Google Scholar 

  15. Rodríguez DD, Sammito M, Meindl K, de Ilarduya MI, Potratz M, Sheldrick GM, Usón I (2012) Practical structure solution with ARCIMBOLDO. Acta Crystallogr D 68:336–343

    Article  Google Scholar 

  16. Rossmann MG (1990) The molecular replacement method. Acta Crystallogr A 46:73–82

    Article  Google Scholar 

  17. Schneider TR, Sheldrick GM (2002) Substructure solution with SHELXD. Acta Crystallogr D 58:1772–1779

    Article  Google Scholar 

  18. Sheldrick GM (2002) Macromolecular phasing with SHELXE. Z Kristallogr 217:644–650

    Article  CAS  Google Scholar 

  19. Sheldrick GM (2010) Experimental phasing with SHELXC/D/E: combining chain tracing with density modification. Acta Crystallogr D 66:479–485

    Article  Google Scholar 

  20. Sheldrick GM, Hauptman H, Weeks CM, Miller R, Usón I (2001) Ab initio phasing. In: Rossman MG, Arnold E (eds) International tables for crystallography, vol F. Crystallography of biological macromolecules. Kluwer Academic Publishers, Dordrecht, pp 333–351

    Google Scholar 

  21. Sheldrick GM, Gilmore C, Hauptman H, Weeks CM, Miller R, Usón I (2011) Ab initio phasing. In: Arnold E, Himmel DM, Rossman MG (eds) International tables for crystallography, vol F. Crystallography of biological macromolecules. Kluwer Academic Publishers, Dordrecht, pp 413–432

    Google Scholar 

  22. Summers EL, Meindl K, Usón I, Mitra AK, Radjainia M, Colangeli R, Alland D, Arcus VL (2012) The structure of the oligomerization domain of Lsr2 from Mycobacterium tuberculosis reveals a mechanism for chromosome organization and protection. PLoS One 7:e38542

    Article  CAS  Google Scholar 

  23. Tannenbaum T, Wright D, Miller K, Livny M (2002) Condor – a distributed Job scheduler. In: Sterling T (ed) Beowulf cluster computing with Linux. The MIT Press, Cambridge. ISBN 0-262-69274-0

    Google Scholar 

  24. Usón I, Sheldrick GM (1999) Advances in direct methods for protein crystallography. Curr Opinion in Struc Biol 9:643–648

    Article  Google Scholar 

  25. Usón I, Stevenson CE, Lawson DM, Sheldrick GM (2007) Structure determination of the O-methyltransferase NovP using the ‘free lunch algorithm’ as implemented in SHELXE. Acta Crystallogr D 63:1069–1074

    Article  Google Scholar 

  26. Usón I, Patzer SI, Rodríguez DD, Braun V, Zeth K (2012) The crystal structure of the dimeric colicin M immunity protein displays a 3D domain swap. J Struct Biol 178:45–53

    Article  Google Scholar 

  27. Weeks CM, Adams PD, Berendzen J, Brünger AT, Dodson EJ, Grosse-Kunstleve RW, Schneider TR, Sheldrick GM, Terwilliger TC, Turkenburg MG, Usón I (2003) Automatic solution of heavy-atom substructures. Meth in Enzymol 374:37–83

    Article  CAS  Google Scholar 

  28. Yao JX, Dodson EJ, Wilson KS, Woolfson MM (2006) ACORN: a review. Acta Crystallogr D 62:901–908

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Our work is supported by the Spanish MICINN, CDTI and CSIC (Grants BIO2009-10576; IDC-20101173; predoctoral grants DR, IDM, IMdI; JdC to KM), Generalitat de Catalunya (2009SGR-1036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Isabel Usón .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Usón, I. et al. (2013). Phasing Through Location of Small Fragments and Density Modification with ARCIMBOLDO. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_12

Download citation

Publish with us

Policies and ethics