Skip to main content

High Resolution Macromolecular Crystallography

  • Conference paper
  • First Online:
Advancing Methods for Biomolecular Crystallography

Abstract

Atomic resolution is achieved when diffraction data extend beyond 1.2 Å. Structure refinement at this resolution allows anisotropic ADPs, reliable interpretation of static disorder, solvent structure and H atoms. Stereochemical restraints can be relaxed or removed, providing unbiased high-quality information about macromolecular stereochemistry, which in turn can be used to define improved conformation-dependent libraries. The surplus of data allows estimating least-squares uncertainties in the derived parameters, analogously to small-molecule standards. Atomic resolution data provide the most reliable information about macromolecular structure, especially important for validating new discoveries or resolving subtle issues of molecular mechanisms. At ultrahigh resolution it is possible to study charge density distribution by multipolar refinement of electrons in non-spherical orbitals. The current limit for macromolecular crystal X-ray diffraction is 0.55 Å for nucleic acids (Z-DNA) and 0.48 Å for proteins (crambin).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Adams PD, Grosse-Kunstleve RW, Hung L-W, Ioerger TR, McCoy AJ, Moriarty NW, Read RJ, Sacchettini JC, Sauter NK, Terwilliger TC (2002) PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr D 58:1948–1954

    Article  Google Scholar 

  2. Addlagatta A, Czapinska H, Krzywda S, Otlewski J, Jaskolski M (2001) Ultrahigh-resolution structure of a BPTI mutant. Acta Crystallogr D 57:649–663

    Article  CAS  Google Scholar 

  3. Afonine PV, Grosse-Kunstleve RW, Adams PD, Lunin VY, Urzhumtsev AG (2007) On macromolecular refinement at subatomic resolution with interatomic scatterers. Acta Crystallogr D 63:1194–1197

    Article  Google Scholar 

  4. Allen FH (1986) A systematic pairwise comparison of geometric parameters obtained by X-ray and neutron diffraction. Acta Crystallogr B 42:515–522

    Article  Google Scholar 

  5. Allen FH (2002) The Cambridge Structural Database: a quarter of a million crystal structures and rising. Acta Crystallogr B 58:380–388

    Article  Google Scholar 

  6. Berkholz DS, Shapovalov MV, Dunbrack RLJ, Karplus PA (2009) Conformation dependence of backbone geometry in proteins. Structure 17:1316–1325

    Article  CAS  Google Scholar 

  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, Bourne PE (2000) The protein data bank. Nucleic Acids Res 28:235–242

    Article  CAS  Google Scholar 

  8. Bricogne G, Morris RJ (2003) Sheldrick’s 1.2 Å rule and beyond. Acta Crystallogr D 59:615–617

    Article  Google Scholar 

  9. Brünger AT (1992) Free R-value: a novel statistical quantity for assessing the accuracy of the crystal structures. Nature 335:472–475

    Article  Google Scholar 

  10. Brzezinski K, Brzuszkiewicz A, Dauter M, Kubicki M, Jaskolski M, Dauter Z (2011) High regularity of Z-DNA revealed by ultra high-resolution crystal structure at 0.55 Å. Nucleic Acids Res 39:6238–6248

    Article  CAS  Google Scholar 

  11. Czapinska H, Otlewski J, Krzywda S, Sheldrick GM, Jaskolski M (2000) High resolution structure of bovine pancreatic trypsin inhibitor with altered binding loop sequence. J Mol Biol 295:1237–1249

    Article  CAS  Google Scholar 

  12. Dauter Z, Lamzin V, Wilson K (1997) The benefits of atomic resolution. Curr Opin Struct Biol 7:681–688

    Article  CAS  Google Scholar 

  13. Diederichs K, Karplus PA (1997) Improved R-factors for diffraction data analysis in macromolecular crystallography. Nature Struct Biol 4:269–274

    Article  CAS  Google Scholar 

  14. Engh RA, Huber R (1991) Accurate bond and angle parameters for X-ray protein structure refinement. Acta Crystallogr A 47:392–400

    Article  Google Scholar 

  15. Evans P (2012) Resolving some old problems in protein crystallography. Science 336:986–987

    Article  CAS  Google Scholar 

  16. Guillot B, Jelsch C, Podjarny A, Lecomte C (2008) Charge-density analysis of a protein structure at subatomic resolution: the human aldose reductase case. Acta Crystallogr D 64:567–588

    Article  Google Scholar 

  17. Hansen NK, Coppens P (1978) Testing aspherical atom refinements on small-molecule data sets. Acta Crystallogr A 34:909–921

    Article  Google Scholar 

  18. Howard ER, Sanishvili R, Cachau RE, Mitschler A, Chevrier B, Barth P, Lamour V, Van Zandt M, Sibley E, Bon C, Moras D, Schneider TR, Joachimiak A, Podjarny A (2004) Ultrahigh resolution drug design I: details of interactions in human aldose reductase-inhibitor complex at 0.66 Å. Proteins 55:792–804

    Article  CAS  Google Scholar 

  19. Jaskolski M, Gilski M, Dauter Z, Wlodawer A (2007) Stereochemical restraints revisited: how accurate are refinement targets and how much should protein structures be allowed to deviate from them? Acta Crystallogr D 63:611–620

    Article  Google Scholar 

  20. Jelsch C, Guillot B, Lagoutte A, Lecomte C (2005) Advances in protein and small-molecule charge-density refinement methods using MoPro. J Appl Crystallogr 38:38–54

    Article  Google Scholar 

  21. Karplus PA, Diederichs K (2012) Linking crystallographic model and data quality. Science 336:1030–1033

    Article  CAS  Google Scholar 

  22. Koritsanszky T, Volkov A, Coppens P (2002) Aspherical-atom scattering factors from molecular wave functions. 1. Transferability and conformation dependence of atomic electron densities of peptides within the nultipole formalism. Acta Crystallogr A 58:464–472

    Article  Google Scholar 

  23. Lamzin VS, Wilson KS (1997) Automated refinement for protein crystallography. Methods Enzymol 277:269–305

    Article  CAS  Google Scholar 

  24. Matthews BW (1968) Solvent content of protein crystals. J Mol Biol 33:491–497

    Article  CAS  Google Scholar 

  25. Mooers BHM, Matthews BW (2004) Use of an ion-binding site to bypass the 1000-atom limit to structure determination by direct methods. Acta Crystallogr D 60:1726–1737

    Article  Google Scholar 

  26. Murshudov GN, Vagin AA, Dodson EJ (1997) Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr D 53:240–255

    Article  CAS  Google Scholar 

  27. Parkinson G, Vojtechovsky J, Clowney L, Brünger AT, Berman HM (1996) New parameters for the refinement of nucleic acid-containing structures. Acta Crystallogr D 52:57–64

    Article  CAS  Google Scholar 

  28. Read RJ (1997) Model phases: probabilities and bias. Methods Enzymol 277:110–128

    Article  CAS  Google Scholar 

  29. Schmidt A, Teeter M, Weckert E, Lamzin VS (2011) Crystal structure of small protein crambin at 0.48 Å resolution. Acta Crystallogr F 67:424–428

    Article  Google Scholar 

  30. Schröder GF, Levitt M, Brünger AT (2010) Super-resolution biomolecular crystallography with low-resolution data. Nature 417:806–807

    Google Scholar 

  31. Sheldrick GM (1990) Phase annealing in SHELX-90: direct methods for larger structures. Acta Crystallogr A 46:467–473

    Article  Google Scholar 

  32. Sheldrick GM (2008) A short history of SHELX. Acta Crystallogr A 64:112–122

    Article  Google Scholar 

  33. Thaimattam R, Jaskolski M (2004) Synchrotron radiation in atomic-resolution studies of protein structure. J Alloys Comp 362:12–20

    Article  CAS  Google Scholar 

  34. Thaimattam R, Tykarska E, Bierzynski A, Sheldrick GM, Jaskolski M (2002) Atomic resolution structure of squash trypsin inhibitor: unexpected metal coordination. Acta Crystallogr D 58:1448–1461

    Article  Google Scholar 

  35. Tronrund DE, Karplus PA (2011) A conformation-dependent stereochemical library improves crystallographic refinement even at atomic resolution. Acta Crystallogr D 67:699–706

    Article  Google Scholar 

  36. Vaguine AA, Richelle J, Wodak SJ (1999) SFCHECK: a unified set of procedures for evaluating the quality of macromolecular structure-factor data and their agreement with the atomic model. Acta Crystallogr D 55:191–205

    Article  CAS  Google Scholar 

  37. Weiss M (2001) Global indicators of X-ray data quality. J Appl Crystallogr 34:130–135

    Article  CAS  Google Scholar 

  38. Weiss M, Hilgenfeld R (1997) On the use of the merging R factor as a quality indicator for X-ray data. J Appl Crystallogr 30:203–205

    Article  CAS  Google Scholar 

  39. Wlodawer A, Walter J, Huber R, Sjolin L (1984) Structure of bovine pancreatic trypsin inhibitor. Results of joint neutron and X-ray refinement of crystal form II. J Mol Biol 180:301–329

    Article  CAS  Google Scholar 

  40. Wlodawer A, Li M, Gustchina A, Dauter Z, Uchida K, Oyama H, Goldfarb NE, Dunn BM, Oda K (2001) Inhibitor complexes of the Pseudomonas serine-carboxyl proteinase. Biochemistry 40:15602–15611

    Article  CAS  Google Scholar 

  41. Wlodawer A, Minor W, Dauter Z, Jaskolski M (2008) Protein crystallography for non-crystallographers, or how to get the best (but not more) from published macromolecular structures. FEBS J 275:1–21

    Article  CAS  Google Scholar 

  42. Wlodawer A, Lubkowski J, Minor W, Jaskolski M (2010) Is too ‘creative’ language acceptable in crystallography? Acta Crystallogr D 66:1041–1042

    Article  Google Scholar 

  43. Zarychta B, Pichon-Pesme V, Guillot B, Lecomte C, Jelsch C (2007) On the application of an experimental multipolar pseudo-atom library for accurate refinement of small-molecule and protein crystal structures. Acta Crystellagr A 63:108–125

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mariusz Jaskolski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Jaskolski, M. (2013). High Resolution Macromolecular Crystallography. In: Read, R., Urzhumtsev, A., Lunin, V. (eds) Advancing Methods for Biomolecular Crystallography. NATO Science for Peace and Security Series A: Chemistry and Biology. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6232-9_23

Download citation

Publish with us

Policies and ethics