Skip to main content

Abstract

The provision of hydrologic ecosystem services (HES) is critical for both human well-being and environmental sustainability. A key component in addressing current and future challenges in water resource management is the development of a comprehensive understanding of the complex relationships between soil properties, land use/management, and the hydrologic cycle. The soil-water interface is critical in determining the relative distribution of “blue” (i.e., irrigation, municipal supplies, aquatic ecosystems) and “green” (i.e., evapotranspiration) water usage for a given region, and therefore must be considered in the assessment of HES provisioning. The relationship between water security and food security plays a crucial role, since the agricultural sector consumes approximately 70 % of global water supply. In addition, it is projected that global agricultural yields will have to be doubled over the next 25–35 years to meet increasing demand, and that about 90 % of this increase will have to be produced on existing cultivated land. This can only be achieved with a more efficient use of the water resources and a substantial improvement and extension of water management systems.

The hydrologic functioning of soils is primarily a function of their physical, chemical, and biological properties, and in particular the amount and quality of organic carbon (C) present element. The partitioning of hydrologic fluxes into blue and green water is mainly a function of soil factors and processes that control the storage and transport of water, with soil organic matter (SOM) representing a key element. The amount of soil organic C (SOC) present will increase with specific land-cover/use changes (e.g., conservation tillage, mulching, agroforestry), and will be reduced or even eliminated by others (e.g., erosion, high-intensity fires), making proper land management crucial for sustaining beneficial soil properties. The SOM quality is decisive for the filtering, buffering, and transformation function capacities of soils. It also controls the mobilization of dissolved organic C (DOC) which has implications on the quality of water supply. Given the increased calls for management actions to address climate change which will impact soil functioning (e.g., C sequestration, afforestation), it is important to also consider how these changes will impact individual HES and water security, and what conflicts and tradeoffs will need to be addressed. Thus, provisioning of HES must be integrated in coordinated actions of resource planning and land management on the appropriate landscape scale (i.e., the watershed). Such a process may benefit from information resulting from integrated catchment modelling that systematically assesses land management/soil-feedback scenarios

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

C:

Carbon

CEC:

Cation Exchange Capacity

DOC:

Dissolved Organic Carbon

DOM:

Dissolved Organic Matter

ES:

Ecosystem Services

HES:

Hydrologic Ecosystem Services

OM:

Organic Matter

SOC:

Soil Organic Carbon

SOM:

Soil Organic Matter

WWP:

Working for Water Program

References

  • Aitkenhead JA, Hope D, Billett MF (1999) The relationship between dissolved organic carbon in stream water and soil organic carbon pools at different spatial scales. Hydrol Process 13:1289–1302. doi:10.1002/(SICI)1099-1085

    Article  Google Scholar 

  • Allan DL, Adriano DC, Bezdicek DF et al (1995) SSSA statement on soil quality. ASA, Madison

    Google Scholar 

  • Baldock JA, Nelson PN (2000) Soil organic matter. In: Sumner ME (ed) Handbook of soil science, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  • Blum WEH (2008) Characterisation of soil degradation risk: an overview. In: Tóth G, Montanerella L, Rusco E (eds) Threats to soil quality in Europe. European Commission, Joint Research Centre, Ispra, pp 5–10

    Google Scholar 

  • Blum WEH, Warkentin BP, Frossard E (2006) Soil, human society and the environment. Geol Soc, Lond, Spec Publ 266:1–8. doi:10.1144/GSL.SP.2006.266.01.01

    Article  Google Scholar 

  • Brady NC, Weil RR (2001) The nature and properties of soils, 13th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Brauman KA, Daily GC, Duarte TK, Mooney HA (2007) The nature and value of ecosystem services: an overview highlighting hydrologic services. Annu Rev Environ Resour 32:67–98. doi:10.1146/annurev.energy.32.031306.102758

    Article  Google Scholar 

  • Calder IR (2005) Blue revolution: integrated land and water resource management. Earthscan, London

    Google Scholar 

  • Carpenter SR (2005) Eutrophication of aquatic ecosystems: bistability and soil phosphorus. Proc Natl Acad Sci U S A 102:10002–10005. doi:10.1073/pnas.0503959102

    Article  PubMed  CAS  Google Scholar 

  • Council of the European Union (1998) Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for human consumption. Rue de la Loi 175, B-1048 Brussels.

    Google Scholar 

  • Cronan CS, Aiken GR (1985) Chemistry and transport of soluble humic substances in forested watersheds of the Adirondack Park, New York. Geochim Cosmochim Acta 49:1697–1705. doi:10.1016/0016-7037(85)90140-1

    Article  CAS  Google Scholar 

  • Dawson JJC, Billett MF, Hope D et al (2004) Sources and sinks of aquatic carbon in a peatland stream continuum. Biogeochemistry 70:71–92. doi:10.1023/B:BIOG.0000049337.66150.f1

    Article  CAS  Google Scholar 

  • DeBano L (2000) The role of fire and soil heating on water repellency in wildland environments: a review. J Hydrol 231–232:195–206. doi:10.1016/S0022-1694(00)00194-3

    Article  Google Scholar 

  • DeBano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, New York

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks – a meta-analysis. Glob Change Biol 17:1658–1670. doi:10.1111/j.1365-2486.2010.02336.x

    Article  Google Scholar 

  • Driscoll CT, Driscoll KM, Roy KM, Mitchell MJ (2003) Chemical response of lakes in the Adirondack region of New York to declines in acidic deposition. Environ Sci Technol 37:2036–2042. doi:10.1021/es020924h

    Article  PubMed  CAS  Google Scholar 

  • Ehlers W, Goss M (2004) Water dynamics in plant production. CABI, Wallingford

    Google Scholar 

  • European Commission (2006a) Communication from the commission to the council, the European Parliament, the European Economic and Social Committee and the Committee of the Regions – thematic strategy for soil protection, Brussels

    Google Scholar 

  • European Commission (2006b) Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC, Brussels

    Google Scholar 

  • Evans CD, Monteith DT, Cooper DM (2005) Long-term increases in surface water dissolved organic carbon: observations, possible causes and environmental impacts. Environ Pollut 137:55–71. doi:10.1016/j.envpol.2004.12.031

    Article  PubMed  CAS  Google Scholar 

  • Falkenmark M (2002) Human interaction with land and water: a hydrologist’s conception. UNESCO, Paris

    Google Scholar 

  • Falkenmark M, Lundqvist J (1997) World freshwater problems: call for a new realism. Stockholm Environment Institute, Stockholm

    Google Scholar 

  • Falkenmark M, Rockström J (2004) Balancing water for humans and nature: the new approach in ecohydrology. Earthscan, London

    Google Scholar 

  • Falkenmark M, Rockström J, Karlberg L (2009) Present and future water requirements for feeding humanity. Food Secur 1:59–69. doi:10.1007/s12571-008-0003-x

    Article  Google Scholar 

  • Feger KH (1993) Influence of soil development and management practices on freshwater acidification in Central European forest ecosystems. In: Steinberg CEW, Wright RF (eds) Acidification of freshwater ecosystems: implications for the future. Wiley, New York, pp 67–82

    Google Scholar 

  • Feger KH, Brahmer G (1986) Factors affecting snowmelt streamwater chemistry in the black forest (West Germany). Water Air Soil Pollut 31:257–265. doi:10.1007/BF00630841

    Article  CAS  Google Scholar 

  • Finkel E (2009) Making every drop count in the buildup to a blue revolution. Science 323:1004–1005. doi:10.1126/science.323.5917.1004

    Article  PubMed  CAS  Google Scholar 

  • Foley JA, DeFries R, Asner GP et al (2005) Global consequences of land use. Science 309:570–574. doi:10.1126/science.1111772

    Article  PubMed  CAS  Google Scholar 

  • Fraterrigo J, Downing J (2008) The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems 11:1021–1034. doi:10.1007/s10021-008-9176-6

    Article  CAS  Google Scholar 

  • Freeman C, Evans CD, Monteith DT et al (2001) Export of organic carbon from peat soils. Nature 412:785. doi:10.1038/35090628

    Article  PubMed  CAS  Google Scholar 

  • Henry M, Valentini R, Bernoux M (2009) Soil carbon stocks in ecoregions of Africa. Biogeo Discuss 6:797–823. doi:10.5194/bgd-6-797-2009

    Article  Google Scholar 

  • Hillel D (1998) Environmental soil physics. Academic, San Diego

    Google Scholar 

  • Hobbs RJ (2004) The working for water programme in South Africa: the science behind the success. Divers Distrib 10:501–503. doi:10.1111/j.1366-9516.2004.00115.x

    Article  Google Scholar 

  • Hongve D (1999) Production of dissolved organic carbon in forested catchments. J Hydrol 224:91–99. doi:10.1016/S0022-1694(99)00132-8

    Article  CAS  Google Scholar 

  • Janzen HH, Campbell CA, Ellert BH, Bremer E (1997) Soil organic matter dynamics and their relationship to soil quality. In: Gregorich EG, Carter MR (eds) Soil quality for crop production and ecosystem health. Elsevier, Amsterdam, pp 277–291

    Chapter  Google Scholar 

  • Joosten H (2009) The global peatland CO2 picture: peatland status and drainage related emissions in all countries of the world, Wetlands International, The Netherlands

    Google Scholar 

  • Joosten H, Tapio-Biström M-L, Tol S (2012) Peatlands – guidance for climate change mitigation by conservation, rehabilitation and sustainable use. FAO, Rome

    Google Scholar 

  • Kalbitz K, Geyer S (2002) Different effects of peat degradation on dissolved organic carbon and nitrogen. Org Geochem 33:319–326. doi:10.1016/S0146-6380(01)00163-2

    Article  CAS  Google Scholar 

  • Kalbitz K, Solinger S, Park JH et al (2000) Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci 165:277304

    Google Scholar 

  • Kreutzer K (1995) Effects of forest liming on soil processes. Plant Soil 168–169:447–470. doi:10.1007/BF00029358

    Article  Google Scholar 

  • Lal R (2009) Ten tenets of sustainable soil management. J Soil Water Conserv 64:20A–21A. doi:10.2489/jswc.64.1.20A

    Article  Google Scholar 

  • Lal R (2010) Managing soils for a warming earth in a food-insecure and energy-starved world. J Pl Nutr Soil Sci 173:4–15. doi:10.1002/jpln.200900290

    Article  CAS  Google Scholar 

  • Le Maitre DC, Versfeld DB, Chapman RA (2000) The impact of invading alien plants on surface water resources in South Africa: a preliminary assessment. WaterSA 26:397–408

    Google Scholar 

  • L’vovich MI (1979) World water resources and their future. Spec Publ 13:1–415. doi:10.1029/SP013

    Google Scholar 

  • McDowell W, Wood T (1984) Podzolization: soil processes control dissolved organic carbon concentrations in stream water. Soil Sci 137:23–32

    Article  CAS  Google Scholar 

  • MEA (2005) Millennium ecosystem assessment. Island Press, Washington, D.C

    Google Scholar 

  • Monteith DT, Stoddard JL, Evans CD et al (2007) Dissolved organic carbon trends resulting from changes in atmospheric deposition chemistry. Nature 450:537–540. doi:10.1038/nature06316

    Article  PubMed  CAS  Google Scholar 

  • Nair PK, Mohan Kumar B, Nair VD (2009) Agroforestry as a strategy for carbon sequestration. J Pl Nutr Soil Sci 172:10–23. doi:10.1002/jpln.200800030

    Article  CAS  Google Scholar 

  • Neal C, Reynolds B, Wilkinson J et al (1998) The impacts of conifer harvesting on runoff water quality: a regional survey for Wales. Hydrol Earth Syst Sci 2:323–344

    Article  Google Scholar 

  • Neary DG, Klopatek CC, DeBano LF, Ffolliott PF (1999) Fire effects on belowground sustainability: a review and synthesis. For Ecol Manage 122:51–71. doi:10.1016/S0378-1127(99)00032-8

    Article  Google Scholar 

  • Novák V (2012) Evapotranspiration in the soil-plant-atmosphere system. Springer, Dordrecht/New York

    Book  Google Scholar 

  • Parson A, Robichaud PR, Lewis SA, Napper C, Clark JT (2010) Field guide for mapping post-fire soil burn severity. General technical report RMRS-GTR-243. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fort Collins, 49 p

    Google Scholar 

  • Pilaš I, Feger KH, Vilhar U, Wahren A (2011) Multidimensionality of scales and approaches for forest–water interactions. In: Bredemeier M, Cohen S, Godbold DL et al (eds) Forest management and the water cycle. Springer, Dordrecht, pp 351–380

    Google Scholar 

  • Postel SL (1998) Water for food production: will there be enough in 2025? Bioscience 48(8):629–637

    Article  Google Scholar 

  • Ripl W (2003) Water: the bloodstream of the biosphere. Philos Trans R Soc B 358:1921–1934. doi:10.1098/rstb.2003.1378

    Article  Google Scholar 

  • Rockström J (2003) Resilience building and water demand management for drought mitigation. Phys Chem Earth 28:869–877. doi:10.1016/j.pce.2003.08.009

    Article  Google Scholar 

  • Rockström J, Steffen W, Noone K et al (2009) Planetary boundaries: exploring the safe operating space for humanity. Ecol Soc 14:32

    Google Scholar 

  • Rockström J, Falkenmark M, Lannerstad M, Karlberg L (2012) The planetary water drama: dual task of feeding humanity and curbing climate change. Geophys Res Lett 39:L15401. doi:10.1029/2012GL051688

    Article  Google Scholar 

  • Shakesby RA, Doerr SH (2006) Wildfire as a hydrological and geomorphological agent. Earth-Sci Rev 74:269–307. doi:10.1016/j.earscirev.2005.10.006

    Article  Google Scholar 

  • Sharp EL, Parsons SA, Jefferson B (2006) Seasonal variations in natural organic matter and its impact on coagulation in water treatment. Sci Total Environ 363:183–194. doi:10.1016/j.scitotenv.2005.05.032

    Article  PubMed  CAS  Google Scholar 

  • Steinberg C (2003) Ecology of humic substances in freshwaters: determinants from geochemistry to ecological niches. Springer, Berlin/New York

    Google Scholar 

  • Sucker C, Krause K (2010) Increasing dissolved organic carbon concentrations in freshwaters: what is the actual driver? iFor – Biogeo For 3:106–108. doi:10.3832/ifor0546-003

    Article  Google Scholar 

  • Tóth G, Stolbovoy V, Montanarella L (2007) Soil quality and sustainability evaluation – an integrated approach to support soil-related policies of the European Union. Institute for Environment and Sustainability, Ispra

    Google Scholar 

  • Tóth G, Montanerella L, Rusco E (2008) Threats to soil quality in Europe. Institute for Environment and Sustainability, Ispra

    Google Scholar 

  • UNEP (2009) Water security and ecosystem services – the critical connection. A Contribution to the United Nations World Water Assessment Programme. UNEP, Nairobi

    Google Scholar 

  • UNEP (2012) UNEP year book 2012: emerging issues in our global environment. United Nations Environment Programme, Nairobi

    Google Scholar 

  • van Hofwegen PJM, Svendsen M (2000) A vision of water for food and rural development. World Water Forum, The Hague

    Google Scholar 

  • Vereecken H, Maes J, Feyen J, Darius P (1989) Estimating the soil moisture retention characteristic from texture, bulk density, and carbon content. Soil Sci 148:389–403

    Article  Google Scholar 

  • Vörösmarty CJ (2009) The earth’s natural water cycles. In: The United Nations world water development report 3: water in a changing world. UNESCO/Earthscan, Paris/London

    Google Scholar 

  • Wahren A, Feger KH (2010) Model-based assessment of forest land management on water dynamics at various hydrological scales – a case study. In: Bredemeier M, Cohen S, Godbold DL et al (eds) Forest management and the water cycle. Springer, Dordrecht, pp 453–469

    Chapter  Google Scholar 

  • Wahren A, Feger KH, Schwärzel K, Münch A (2009) Land-use effects on flood generation –considering soil hydraulic measurements in modelling. Adv Geosci 21:99–107

    Article  Google Scholar 

  • Walter H, Breckle S-W (2002) Walter’s vegetation of the earth: the ecological systems of the geo-biosphere. Springer, Berlin/New York

    Google Scholar 

  • Wang Y, Yu P, Feger KH et al (2011) Annual runoff and evapotranspiration of forestlands and non-forestlands in selected basins of the Loess Plateau of China. Ecohydrology 4:277–287

    Article  CAS  Google Scholar 

  • Wang Y, Bonell M, Feger KH et al (2012) Changing forestry policy by integrating water aspects into forest/vegetation restoration in dryland areas in China. Bull Chin Acad Sci 26:59–67

    Google Scholar 

  • Wösten JHM, Pachepsky YA, Rawls WJ (2001) Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics. J Hydrol 251:123–150. doi:10.1016/S0022-1694(01)00464-4

    Article  Google Scholar 

  • WWAP (2012) The United Nations World Water Development Report: managing water under uncertainty and risk. UNESCO, Paris

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karl-Heinz Feger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Feger, KH., Hawtree, D. (2013). Soil Carbon and Water Security. In: Lal, R., Lorenz, K., Hüttl, R., Schneider, B., von Braun, J. (eds) Ecosystem Services and Carbon Sequestration in the Biosphere. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6455-2_5

Download citation

Publish with us

Policies and ethics