Skip to main content

Life on the Edge and Astrobiology: Who Is Who in the Polyextremophiles World?

  • Chapter
  • First Online:
Polyextremophiles

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 27))

Abstract

Life exists in almost every ecological niche on Earth, and the majority of living organisms thrive in “normal” or “common” conditions. These are the environments that we are familiar with from our daily life. The organisms distributed under those conditions are at moderate temperature (5 to ~40 °C), 1 atm sea level pressure, with our known gas compositions, and oxygen rich atmosphere, close to neutral pH level. We consider these conditions as benign ambient habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Altenbach AV, Bernhard JM, Seckbach J (eds) (2012) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht

    Google Scholar 

  • Baross JA, Deming JN (1983) Growth of “black smoker” bacteria at temperature of at least 250°C. Nature 303:423–426

    Article  CAS  Google Scholar 

  • Bianciardi G, Miller JD, Straat PA, Levin GV (2012) Complexity analysis of the Viking labeled release experiments. Int J Aeronaut Space Sci 13:14–26

    Google Scholar 

  • Borgonie G, Garcia-Moyano A, Litthaur D, Bert W, Bester A, van Heerden E, Möller C, Erasmus M, Onstottt TC (2011) Nematoda from the terrestrial deep subsurface of South Africa. Nature 474:79–82

    Article  PubMed  CAS  Google Scholar 

  • Brack A, Pillinger CT (1998) Life on Mars: chemical arguments and clues from Martian meteorites. Extremophiles 2:313–319

    Article  PubMed  CAS  Google Scholar 

  • Castenholz RW, McDermott TR (2010) The Cyanidiales ecology, biodiversity, and biogeography. In: Seckach J, Chapman DJ (eds) Red algae in genome age. Springer, Dordrecht, pp 357–371

    Chapter  Google Scholar 

  • Chela-Flores J (2011) The science of astrobiology: a personal view on learning to read the book of life. Springer, Dordrecht

    Google Scholar 

  • Chela-Flores J, Seckbach J (2011) The Dry Valley Lakes, Antarctica: from sulfur stains on earth to sulfur stains in the Jovian System. In: Hoover R, Davies PCW, Levin GV, Rozanov AY (eds) Proceedings of the SPIE, instruments, methods, and missions for astrobiology XIV, vol 8152, pp 81520R–81520R-8. doi: 10.1117/12.898763. http://users.ictp.it/~chelaf/SD_Astrobiol_XIV_3.pdf. August 2011

  • Chyba CF, Phillips CB (2001) Possible ecosystems and the search for life on Europa. Proc Natl Acad Sci USA 98:801–804

    Article  PubMed  CAS  Google Scholar 

  • de los Ríos A, Wierzchos J, Sancho LG, Ascaso C (2003) Acid microenvironments in microbial biofilms of Antarctic endolithic microecosystems. Environ Microbiol 5:231–237

    Article  PubMed  Google Scholar 

  • de Vera J-P, Horneck G, Rettberg P, Ott S (2003) The potential of lichen symbiosis to cope with extreme conditions of outer space. I: Influence of UV radiation and space vacuum on the vitality of lichen symbiosis and germination capacity. Int J Astrobiol 1:285–293

    Article  Google Scholar 

  • de Vera J-P, Horneck G, Rettberg P, Ott S (2004) The potential of the lichen symbiosis to cope with the extreme conditions of outer space. II: Germination capacity of lichen ascospores in response to simulated space conditions. Adv Space Res 33:1236–1243

    Article  PubMed  Google Scholar 

  • Dougherty MK, Grasset O, Bunce E, Coustenis A, Titov DV, Erd Ch, Blanc M, Coates AJ, Coradini A, Drossart P, Fletcher L, Hussmann H, Jaumann R, Krupp N, Prieto-Ballesteros O, Tortora P, Tosi F, van Hoolst T, Lebreton J-P (2011) JUICE (JUpiter ICy moon Explorer): a European-led mission to the Jupiter system. EPSC Abstracts 6, EPSC-DPS Joint meeting 2011, held 2-7 October 2011 in Nantes, France, p. 1343. http://meetings.copernicus.org/epsc-dps2011. Division for Planetary Sciences of the American Astronomical Society Joint Meeting, Nantes

  • Friedmann EI, Ocampo-Friedmann R (1995) A primitive cyanobacterium as pioneer microorganism for terraforming Mars. Adv Space Res 15:243–246

    Article  PubMed  CAS  Google Scholar 

  • Gerday C, Glandorf N (eds) (2007) Physiology and biochemistry of extremophiles. ASM Press, Washington, DC

    Google Scholar 

  • Giordano M, Beardall J (2009) Impact of environmental conditions on photosynthesis, growth and carbon allocation strategies of hypersaline species of Dunaliella. Glob NEST J 11:79–85

    Google Scholar 

  • Golubic S, Friedmann EI, Schneider J (1981) The lithobiontic ecological niche, with special reference to microorganisms. J Sediment Res 51:475–478

    Google Scholar 

  • Gowen RA, Smith A, Fortes AD, Barber S, Brown P, Church P, Collinson G, Coates AJ, Collins G, Crawford IA, Dehant V, Chela-Flores J, Griffiths AD, Grindrod PM, Gurvits LI, Hagermann A, Hussmann H, Jaumann R, Jones AP, Joy KH, Karatekin O, Miljkovic K, Palomba E, Pike WT, Prieto-Ballesteros O, Raulin F, Sephton A, Sheridan S, Sims M, Storrie-Lombardi MC, Ambrosi R, Fielding J, Fraser G, Gao Y, Jones GH, Kargl G, Karl WJ, Macagnano A, Mukherjee A, Muller JP, Phipps A, Pullan D, Richter L, Sohl F, Snape J, Sykes J, Wells N (2011) Micro-penetrators for in situ sub-surface investigations of Europa. Adv Space Res 48:725–742

    Article  CAS  Google Scholar 

  • Greenberg R (2005) Europa – the ocean Moon-search for an Alien biosphere. Springer in association with Praxis Publishing, Chichester

    Google Scholar 

  • Greenberg R (2010) Transport rates of radiolytic substances into Europa’s ocean: implications for the potential origin and maintenance of life. Astrobiology 10:275–283

    Article  PubMed  CAS  Google Scholar 

  • Horikawa D (2011) Survival of tardigrades in extreme environments: a model animal for astrobiology. In: Altenbach AV, Bernhard JM, Seckbach J (eds) Anoxia: evidence for eukaryote survival and paleontological strategies. Springer, Dordrecht, pp 205–217

    Google Scholar 

  • Horikawa D, Yamaguchi A, Sakashita T, Tanaka D, Hamada N, Yukuhiro F, Kuwahara H, Kunieda T, Watanabe M, Nakahara Y, Wada S, Funayama T, Katagiri C, Higashi S, Yokobori S-I, Kuwabara M, Rothschild LJ, Okuda T, Hashimoto H, Kobayashi Y (2012) Tolerance of anhydrobiotic eggs of the tardigrade Ramazzottius varieornatus to extreme environments. Astrobiology 12:283–289

    Article  PubMed  CAS  Google Scholar 

  • Horikoshi K, Grant WD (eds) (1998) Extremophiles: microbial life in extreme environments. Wiley-Liss, Wiley, New York

    Google Scholar 

  • Houtkooper JM, Schulze-Makuch D (2007) A possible biogenic origin for hydrogen peroxide on Mars: the Viking results reinterpreted. Int J Astrobiol 6:147–152

    Article  CAS  Google Scholar 

  • Ishigaki Y, Nakamura Y, Oikawa Y, Yano Y, Kuwabata S, Nakagawa H, Tomosugi N, Takegami T (2012) Observation of live ticks (Haemaphysalis flava) by scanning electron microscopy under high vacuum pressure. PLoS One 7:e32676

    Article  PubMed  CAS  Google Scholar 

  • Islam MR, Schulze-Makuch D (2007) Adaptation to environmental extremes by multicellular organisms. Int J Astrobiol 6:1–17

    Article  Google Scholar 

  • Kargel JS (2004) Mars: a warmer wetter planet. Springer in association with Praxis Publishing, Chichester

    Google Scholar 

  • Kasting JF (1993) Earth’s early atmosphere. Science 259:920–929

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak J, Kempe S (2003) Modern terrestrial analogues for the carbonate globules in Martian meteorite ALH84001. Naturwissenschaften 90:167–172

    PubMed  CAS  Google Scholar 

  • Kerr RA (2012) Cassini spies an ocean inside Saturn’s icy, gassy moon Titan. Science 336:1629

    Article  PubMed  CAS  Google Scholar 

  • Korablev O, Gerasimov M, Brad Dalton J, Hand K, Lebreton JP, Webster C (2011) Methods and measurements to assess physical and geochemical conditions at the surface of Europa. Adv Space Res 48:702–717

    Article  CAS  Google Scholar 

  • Levin GV (2011) The search for life on Mars – and Earth. J Cosmol 16:2011

    Google Scholar 

  • Lomb N (2012) Transit of Venus: 1631 to the present. Workman Publishing, New York

    Google Scholar 

  • Loveland-Curtze J, Miteva VI, Brenchley JE (2009) Herminiimonas glaciei sp. nov., a novel ultramicrobacterium from 3042 m deep Greenland glacial ice. Int J Syst Evol Microbiol 59:1272–1277

    Article  PubMed  CAS  Google Scholar 

  • Martin W, Baross J, Kelley D, Russell J (2008) Hydrothermal vents and the origin of life. Nat Rev Microbiol 6:805–814

    PubMed  CAS  Google Scholar 

  • McKay CP (1982) Terraforming Mars. J Br Interplanet Soc 35:427–433

    Google Scholar 

  • McKay DS, Gibson Everett K Jr, Thomas-Keprta KL, Vali H, Romanek CS, Clemett SJ, Chillier XDF, Maechling CR, Zare RN (1996) Search for past life on Mars: possible relic biogenic activity in Martian meteorite ALH84001. Science 273:924–930

    Article  PubMed  CAS  Google Scholar 

  • McKay CP, Mykytczuk NCS, Whyte LG (2012) Life in ice on other worlds. In: Miller RV, Whyte LG (eds) Polar microbiology: life in deep freeze. ASM Press, Washington, DC, pp 290–304

    Google Scholar 

  • McNichol J, Gordon R (2012) Are we from outer space? A critical review of the panspermia hypothesis. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 591–619

    Google Scholar 

  • Miller RV, Whyte LG (eds) (2012) Polar microbiology: life in the deep freeze. ASM Press, Washington, DC

    Google Scholar 

  • Mitchell FJ, Ellis WL (1971) Surveyor III: bacterium isolated from lunar retrieved TV camera. In: Levinson AA (ed) Proceedings of the second lunar science conference. MIT Press, Cambridge, MA

    Google Scholar 

  • Morowitz H, Sagan C (1967) Life in the clouds of Venus? Nature 215:1259–1260

    Article  Google Scholar 

  • Navarro-González R, Vargas E, de la Rosa J, Raga AC, McKay CP (2010) Reanalysis of the Viking results suggests perchlorate and organics at midlatitudes on Mars. J Geophys Res 115:E12010 (p 11)

    Google Scholar 

  • Oren A, Seckbach J (2001) Oxygenic photosynthetic microorganisms in extreme environments. In: Elster J, Seckbach J, Vincent WF, Lhotsky O (eds) Algae and extreme environments: ecology and physiology. Proceeding of the international conference, Trebon, Czech Republic, 11–16 September 2000. J. Cramer in der Gebr. Borntraeger Verlagsbuchhandlung, Berlin/Stuttgart, pp 13–31

    Google Scholar 

  • Pappalardo RT, Belton MJS, Breneman HH, Carr MH, Chapman CR, Collins GC, Denk T, Fagents S, Geissler PE, Giese B, Greeley R, Greenberg R, Head JW, Helfenstein P, Hoppa G, Kadel SD, Klaasen KP, Klemaszewski JE, Magee K, McEwen AS, Moore JM, Moore WB, Neukum G, Phillips CB, Prockter LM, Schubert G, Senske DA, Sullivan RJ, Tufts BR, Turtle EP, Wagner R, Williams KK (1999) Does Europa have a subsurface ocean? Evaluation of the geological evidence. J Geophys Res 104:24015–24055

    Article  CAS  Google Scholar 

  • Raggio J, Pintado A, Ascaso C, De La Torre R, De Los Ríos A, Wierzchos J, Horneck G, Sancho LG (2011) Whole lichen thalli survive exposure to space conditions: results of lithopanspermia experiment with Aspicilia fruticulosa. Astrobiology 11:281–292

    Article  PubMed  CAS  Google Scholar 

  • Rainey FA, Oren A (eds) (2006) Extremophiles; methods in microbiology, vol 35. Academic Press/Elsevier, London

    Google Scholar 

  • Raulin F (2012) Potential for life in the Saturn system. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 817–833

    Google Scholar 

  • Raulin F, Libreton J-P, Owen T (2004) Titan: current status and expected exobiological return of the Cassini-Huygens mission. In: Seckbach J, Chela-Flores J, Owen T, Raulin F (eds) Life in the universe: from the Miller experiment to the search for life on other worlds. Kluwer Academic, Dordrecht, pp 275–280

    Google Scholar 

  • Reitner J (2004) Organomineralization: a clue to the understanding of meteorite-related “bacteria-shaped” carbonate particles. In: Seckbach J (ed) Origins: genesis, evolution, and diversity of life. Kluwer Academic, Dordrecht, pp 195–212

    Google Scholar 

  • Roberts D (1998) Eukaryotes in extreme environments. National History Museum, London. See: http://www.nhm.ac.uk/research-curation/research/projects/euk-extreme/

  • Rothschild LJ (2007) Extremophiles: defining the envelope for the search for life in the universe. In: Pudritz R, Higgs P, Stone JR (eds) Planetary systems and the origin of life. Cambridge University Press, Cambridge, pp 123–146

    Google Scholar 

  • Rothschild LJ, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  PubMed  CAS  Google Scholar 

  • Sagan C (1961) The planet Venus. Science 133:849–858

    Article  PubMed  CAS  Google Scholar 

  • Sagan C (1967) Life on the surface of Venus? Nature 216:1198–1199

    Article  Google Scholar 

  • Sagan C (1973) Planetary engineering on Mars. Icarus 20:513–514

    Article  Google Scholar 

  • Schulze-Makuch D, Irwin LN (2002) Hypothesis paper: reassessing the possibility of life on Venus: proposal for an astrobiology mission. Astrobiology 2:197–202

    Article  PubMed  CAS  Google Scholar 

  • Schulze-Makuch D, Grinspoon DH, Ousama A, Irwin L, Bullock M (2004) Hypothesis paper: a sulfur–based survival strategy for putative phototrophic life in the Venusian atmosphere. Astrobiology 4:1–8

    Article  Google Scholar 

  • Seckbach J (ed) (1994) Evolutionary pathways and enigmatic algae: Cyanidium caldarium (Rhodophyta) and related cells. Kluwer Academic, Dordrecht

    Google Scholar 

  • Seckbach J (ed) (1999) Enigmatic microorganisms and life in extreme environments. Kluwer Academic, Dordrecht

    Google Scholar 

  • Seckbach J (ed) (1999–2012) Cellular origin, life in extreme habitats (and astrobiology). Springer/Kluwer, Dordrecht. www.springer.com/series/5775

  • Seckbach J (ed) (2000) Journey to diverse microbial worlds. Kluwer Academic, Dordrecht

    Google Scholar 

  • Seckbach J (ed) (2007) Algae and cyanobacteria in extreme environments. Springer, Dordrecht

    Google Scholar 

  • Seckbach J (2010) Overview on cyanidian biology. In: Seckbach J, Chapman DJ (eds) Red algae in the genomic age. Springer, Dordrecht, pp 345–356

    Chapter  Google Scholar 

  • Seckbach J (2012) Divine genesis, evolution and astrobiology. In: Swan L, Gordon R, Seckbach J (eds) Origin(s) of design in nature. Springer, Dordrecht, pp 357–367

    Chapter  Google Scholar 

  • Seckbach J, Chela-Flores J (2012) Habitable environments by extremophiles on Earth. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 859–870

    Google Scholar 

  • Seckbach J, Libby WF (1970) Vegetative life on Venus? Or investigations with algae which grow under pure CO2 in hot acid media at elevated pressure. Orig Life Evol Biosph 2:121–143; and in Sagan C, Owen TC, Smith HJ (eds) Planetary atmospheres (1971) symposium no. 40, held in Marfa, TX, USA. D. Reidel Publishing Company, Dordrecht, pp 62–83

    Google Scholar 

  • Seckbach J, Oren A (2007) Oxygenic photosynthetic microorganisms in extreme environments: possibilities and limitations. In: Seckbach J (ed) Algae and Cyanobacteria in extreme environments. Springer, Dordrecht, pp 3–25

    Chapter  Google Scholar 

  • Seckbach J, Walsh M (eds) (2009) From fossils to astrobiology: records of life on Earth and search for extraterrestrial biosignatures. Springer, Dordrecht

    Google Scholar 

  • Seckbach J, Baker FA, Shugarman PM (1970) Algae thrive under pure CO2. Nature 227:744–745

    Article  PubMed  CAS  Google Scholar 

  • Shapiro R, Schulze-Makuch D (2009) The search for alien life in our solar system: strategies and priorities. Astrobiology 9:335–343

    Article  PubMed  CAS  Google Scholar 

  • Simakov M (2004) Exobiology of Titan. In: Seckbach J, Chela-Flores J, Owen T, Raulin F (eds) Life in the universe: from the Miller experiment to the search for life on other worlds. Kluwer Academic, Dordrecht, pp 293–296

    Google Scholar 

  • Singh OV, Gabani P (2011) Extremophiles: radiation resistance microbial reserves and therapeutic implications. J Appl Microbiol 111:851–861

    Article  Google Scholar 

  • Stan-Lotter H (2012) Physico-chemical boundaries of life. In: Stan-Lotter H, Fendrihan S (eds) Adaptation of microbial life to environmental extremes. Springer, Vienna, pp 1–19

    Chapter  Google Scholar 

  • Stetter KO (2006) Hyperthermophiles in the history of life. Philos Trans R Soc Lond B Biol Sci 361:1837–1843

    Article  PubMed  CAS  Google Scholar 

  • Stojanović DB, Fojkar OO, Drobac-Čik AV, Čajko KO, Dulić TI, Svirčev ZB (2008) Extremophiles – link between Earth and Astrobiology. Proc Natl Sci Matica Srpska Novi Sad 114:5–16

    Article  Google Scholar 

  • Takai K, Nakamura K, Toki T, Tsunogai U, Miyazaki M, Miyazaki J, Hirayama H, Nakagawa S, Nunoura T, Horikoshi K (2008) Cell proliferation at 122 °C and isotopically heavy CH4 production by a hyperthermophilic methanogen under high-pressure cultivation. Proc Natl Acad Sci USA 105:10949–10954

    Article  PubMed  CAS  Google Scholar 

  • Twiss MR (1990) Copper tolerance of Chlamydomonas acidophila (Chlorophyceae) isolated from acidic, copper-contaminated soils. J Phycol 26:655–659

    Article  CAS  Google Scholar 

  • Vreeland RH, Rosenzweig WD, Powers DW (2000) Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407:897–900

    Article  PubMed  CAS  Google Scholar 

  • Wickramasinghe C (2012) Origin of life and panspermia. In: Seckbach J (ed) Genesis – in the beginning: precursors of life, chemical models and early biological evolution. Springer, Dordrecht, pp 621–649

    Google Scholar 

  • Wolfe-Simon F, Switzer Blum J, Kulp TR, Gordon GW, Hoeft SE, Pett-Ridge J, Stolz JF, Webb SM, Weber PK, Davies PCW, Anbar AD, Oremland RS (2011) A bacterium that can grow by using arsenic instead of phosphorus. Science 332:1163–1166

    Article  PubMed  CAS  Google Scholar 

  • Zelenyi LM, Korablev O, Martynov M, Popov GA, Blanc M, Lebreton JP, Pappalardo R, Clark K, Fedorova A, Akim EL, Simonov AA, Lomakin IV, Sukhanov A, Eismont N (2011) Europa Lander mission and the context of international cooperation. Adv Space Res 48:615–628

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author thanks his colleagues for reviewing parts of the manuscript and for suggesting constructive improvements to the above chapter. Among them are (in alphabetical order) Professors Aharon Oren (The Hebrew University of Jerusalem, Israel), Julian Chela-Flores (ICTP, Trieste IT), David Chapman (UCSB, USA), and Dr. Jean-Pierre de Vera (DLR-Berlin) and Professors Stephan Kempe (University Darmstadt, Germany), François Raulin (University of Paris), Dirk Schulze-Makuch (Washington State University, Pullman, WA, USA), and Helga Stan-Lotter (University of Salzburg, AT). Last and most of all, the author expresses gratitude to his wife Fern Seckbach for her proofreading and spell checking of the original draft and improving previous chapters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Seckbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seckbach, J. (2013). Life on the Edge and Astrobiology: Who Is Who in the Polyextremophiles World?. In: Seckbach, J., Oren, A., Stan-Lotter, H. (eds) Polyextremophiles. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6488-0_2

Download citation

Publish with us

Policies and ethics