Skip to main content

Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events

  • Chapter
  • First Online:
Thermal Infrared Remote Sensing

Abstract

Thermal remote sensing is widely used in the detection, study, and management of biomass burning occurring in open vegetation fires. Such fires may be planned for land management purposes, may occur as a result of a malicious or accidental ignition by humans, or may result from lightning or other natural phenomena. Under suitable conditions, fires may spread rapidly and extensively, affecting the land cover properties of large areas, and releasing a wide variety of gases and particulates directly into Earth’s troposphere. On average, around 3.4 % of the Earth’s terrestrially vegetated area burns annually in this way. Vegetation fires inevitably involve high temperatures, so thermal remote sensing is well suited to its identification and study. Here we review the theoretical basis of the key approaches used to (1) detect actively burning fires; (2) characterize sub-pixel fires; and (3) estimate fuel consumption and smoke emissions. We describe the types of airborne and spaceborne systems that deliver data for use with these active fire thermal remote sensing methods, and provide some examples of how operational fire management and fire research have both benefited from the resulting information. We commence with a brief review of the significance and magnitude of biomass burning, both within the ‘whole Earth’ system and in more regional situations, aiming to highlight why thermal remote sensing has become so important to the study and management of open vegetation burning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Àgueda A, Pastor E, Perez Y, Planas E (2010) Experimental study of the emissivity of flames resulting from the combustion of forest fuels. Int J Therm Sci 49(3):543–554

    Google Scholar 

  • Akagi SK, Yokelson RJ, Wiedinmyer C, Alvarado MJ, Reid JS, Karl T, Crounse JD, Wennberg PO (2011) Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos Chem Phys 11(9):4039–4072

    Google Scholar 

  • Alexander ME (1982) Calculating and interpreting forest fire intensities. Can J Bot 60(4):349–357

    Google Scholar 

  • Ambrosia VG, Brass JA, Allen JB, Hildum EA, Higgins RG (1994) AIRDAS, development of a unique four channelscanner for natural disaster assessment. In: Proceedings of the first international airborne remote sensing conference, Strasbourg, 11–15 Sept 1994, pp 129–141

    Google Scholar 

  • Ambrosia VG, Wegener SS, Sullivan DV, Buechel SW, Dunagan SE, Brass JA, Stoneburner J, Schoenung SM (2003) Demonstrating UAV-acquired real-time thermal data over fires. Photogramm Eng Remote Sens 69(4):391–402

    Google Scholar 

  • Amici S, Wooster MJ, Piscini A (2011) Multi-resolution spectral analysis of wildfire potassium emission signatures using laboratory, airborne and spaceborne remote sensing. Remote Sens Environ 115(8):1811–1823

    Google Scholar 

  • Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Glob Biogeochem Cycle 15(4):955–966. doi:10.1029/2000GB001382

    Google Scholar 

  • Barbosa PM, Grégoire J-M, Pereira JMC (1999) An algorithm for extracting burned areas from time series of AVHRR GAC data applied at a continental scale. Remote Sens Environ 69(3):253–263. doi:10.1016/S0034-4257(99)00026-7

    Google Scholar 

  • Baum BA, Trepte Q (1999) A grouped threshold approach for scene identification in AVHRR imagery. J Atmos Ocean Technol 16(6):793–800

    Google Scholar 

  • Becker F, Li Z (1990) Temperature independent spectral indices in thermal infrared bands. Remote Sens Environ 32(1):17–33

    Google Scholar 

  • Bond WJ, Keeley JE (2005) Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems. Trends Ecol Evol 20(7):387–394. doi:10.1016/j.tree.2005.04.025

    Google Scholar 

  • Bond WJ, van Wilgen BW (1996) Fire and plants. Chapman & Hall, New York

    Google Scholar 

  • Bond WJ, Woodward FI, Midgley GF (2005) The global distribution of ecosystems in a world without fire. New Phytol 165(2):525–538. doi:10.1111/j.1469-8137.2004.01252.x

    Google Scholar 

  • Boschetti L, Roy DP (2009) Strategies for the fusion of satellite fire radiative power with burned area data for fire radiative energy derivation. J Geophys Res 114:D20302. doi:10.1029/2008JD011645

    Google Scholar 

  • Boulet P, Parent G, Acem Z, Collin A, Séro-Guillaume O (2011) On the emission of radiation by flames and corresponding absorption by vegetation in forest fires. Fire Saf J 46(1–2):21–26

    Google Scholar 

  • Bowman DMJS, Balch JK, Artaxo P, Bond WJ, Carlson JM, Cochrane MA, D’Antonio CM, DeFries RS, Doyle JC, Harrison SP, Johnston FH, Keeley JE, Krawchuk MA, Kull CA, Marston JB, Moritz MA, Prentice IC, Roos CI, Scott AC, Swetnam TW, van der Werf GR, Pyne SJ (2009) Fire in the earth system. Science 324(5926):481–484. doi:10.1126/science.1163886

    Google Scholar 

  • Boyd DS, Petitcolin F (2004) Remote sensing of the terrestrial environment using middle infrared radiation (3.0–5.0 μm). Int J Remote Sens 25(17):3343–3368. doi:10.1080/01431160310001654356

    Google Scholar 

  • Brönnimann S, Volken E, Lehmann K, Wooster MJ (2009) Biomass burning aerosols and climate – a 19th century perspective. Meteorol Z 18:349–353

    Google Scholar 

  • Budd GM, Brotherhood JR, Hendrie AL, Jeffery SE, Beasley FA, Costin BP, Zhien W, Baker MM, Cheney NP, Dawson MP (1997) Project Aquarius 4. Experimental bushfires, suppression procedures, and measurements. Int J Wildland Fire 7(2):99–104. doi:10.1071/WF9970099

    Google Scholar 

  • Byram M (1959) Combustion of forest fuels. In: Davis KP (ed) Forest fire: control and use. McGraw-Hill, New York, pp 61–89

    Google Scholar 

  • Cahoon DR, Stocks BJ, Levine JS, Cofer WR, Pierson JM (1994) Satellite analysis of the severe 1987 forest fires in northern China and southeastern Siberia. J Geophys Res 99(D9):18627–18638

    Google Scholar 

  • Cheney P, Sullivan A (2008) Grassfires: fuel, weather and fire behaviour. CSIRO Publishing, Melbourne, 150 p

    Google Scholar 

  • Cochrane MA (2003) Fire science for rainforests. Nature 421:913–919. doi:10.1038/nature01437

    Google Scholar 

  • Coheur PF, Clarisse L, Turquety S, Hurtmans D, Clerbaux C (2009) IASI measurements of reactive trace species in biomass burning plumes. Atmos Chem Phys 9:5655–5667

    Google Scholar 

  • Crutzen PJ, Andreae MO (1990) Biomass burning in the tropics: impact on atmospheric chemistry and biogeochemical cycles. Science 250:1669–1678

    Google Scholar 

  • Davies DK, Ilavajhala S, Wong MM, Justice CO (2009) Fire information for resource management system: archiving and distributing MODIS active fire data. IEEE Trans Geosci Remote Sens 47(1):72–79

    Google Scholar 

  • De Bano LF, Neary DG, Ffolliott PF (1998) Fire’s effects on ecosystems. Wiley, Chichester

    Google Scholar 

  • Dennison PE, Charoensiri K, Roberts DA, Peterson SH, Green RO (2006) Wildfire temperature and land cover modeling using hyperspectral data. Remote Sens Environ 100:212–222. doi:10.1016/j.rse.2005.10.007

    Google Scholar 

  • Di Bella CM, Jobbágy EG, Paruelo JM, Pinnock S (2006) Continental fire density patterns in South America. Glob Ecol Biogeogr 15:192–199. doi:10.1111/j.1466-822x.2006.00225.x

    Google Scholar 

  • Dietenberger M (2002) Update for combustion properties of wood components. Fire Mater 26(6):255–267

    Google Scholar 

  • Dipert D, Warren JR (1988) Mapping fires with the FIRE MOUSE TRAP. Fire Manag Note US Dep Agric 49(2):28–30

    Google Scholar 

  • Dozier J (1981) A method for satellite identification of surface temperature fields of subpixel resolution. Remote Sens Environ 11:221–229

    Google Scholar 

  • Eckmann TC, Roberts DA, Still CJ (2008) Using multiple endmember spectral mixture analysis to retrieve subpixel fire properties from MODIS. Remote Sens Environ 112(10):3773–3783

    Google Scholar 

  • Ellicott E, Vermote E, Giglio L, Roberts G (2009) Estimating biomass consumed from fire using MODIS FRE. Geophys Res Lett 36(13):1–5

    Google Scholar 

  • Elvidge CD, Kroehl HW, Kihn EA, Baugh KE, Davis ER, Hao WM (1996) Algorithm for retrieval of fire pixels from DMSP operational linescan system data. In: Levine JS (ed) Biomass burning and global change, vol 1, Remote sensing, modeling and inventory development, and biomass burning in Africa. MIT Press, Cambridge, MA, pp 73–85

    Google Scholar 

  • Eva H, Lambin EF (1998) Burnt area mapping in Central Africa using ATSR data. Int J Remote Sens 19(18):3473–3497. doi:10.1080/014311698213768

    Google Scholar 

  • Flannigan MD, Vonder Haar TH (1986) Forest fire monitoring using NOAA satellite AVHRR. Can J For Res 16:975–982

    Google Scholar 

  • Flasse SP, Ceccato P (1996) A contextual algorithm for advanced very high resolution radiometer (AVHRR fire detection). Int J Remote Sens 17(2):419–424. doi:10.1080/01431169608949018

    Google Scholar 

  • Francis P, Rothery DA (2000) Remote sensing of active volcanoes. Annu Rev Earth Planet Sci 28:81–106

    Google Scholar 

  • Fraser RH, Li Z, Cihlar J (2000) Hotspot and NDVI differencing synergy (HANDS): a new technique for burned area mapping over boreal forest. Remote Sens Environ 74:362–376. doi:10.1016/S0034-4257(00)00078-X

    Google Scholar 

  • Freeborn P, Wooster MJ, Hao WM, Ryan CA, Nordgren BL, Baker SP, Ichoku C (2008) Relationships between energy release, fuel mass loss, and trace gas and aerosol emissions during laboratory biomass fires. J Geophys Res 113:D01301. doi:10.1029/2007JD008679

    Google Scholar 

  • Freeborn PH, Wooster MJ, Roberts G, Malamud BD, Xu W (2009) Development of a virtual active fire product for Africa through a synthesis of geostationary and polar orbiting satellite data. Remote Sens Environ 113(8):1700–1711

    Google Scholar 

  • Freeborn PH, Wooster MJ, Roberts G (2010) Addressing the spatiotemporal sampling design of MODIS to provide estimates of the fire radiative energy emitted from Africa. Remote Sens Environ 115(2):45–489

    Google Scholar 

  • Freitas SR, Longo KM, Chatfield R, Latham D, Silva Dias MAF, Andreae MO, Prins E, Santos JC, Gielow R, Carvalho JA Jr (2007) Including the sub-grid scale plume rise of vegetation fires in low resolution atmospheric transport models. Atmos Chem Phys 7:3385–3398

    Google Scholar 

  • Giglio L (2007) Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations. Remote Sens Environ 108(4):407–421. doi:10.1016/j.rse.2006.11.018

    Google Scholar 

  • Giglio L (2010) MODIS collection 5 active fire product user’s guide, version 2.4. Department of Geography, University of Maryland

    Google Scholar 

  • Giglio L, Justice CO (2003) Effect of wavelength selection on characterization of fire size and temperature. Int J Remote Sens 24(17):3515–3520

    Google Scholar 

  • Giglio L, Kendall JD (2001) Application of the Dozier retrieval to wildfire characterization: a sensitivity analysis. Remote Sens Environ 77:34–49

    Google Scholar 

  • Giglio L, Kendall JD, Justice CO (1999) Evaluation of global fire detection algorithms using simulated AVHRR infrared data. Int J Remote Sens 20(10):1947–1985. doi:10.1080/014311699212290

    Google Scholar 

  • Giglio L, Kendall JD, Tucker CJ (2000) Remote sensing of fires with the TRMM VIRS. Int J Remote Sens 21(1):203–207

    Google Scholar 

  • Giglio L, Descloitres J, Justice CO, Kaufman YJ (2003) An enhanced contextual fire detection algorithm for MODIS. Remote Sens Environ 87:273–282. doi:10.1016/S0034-4257(03)00184-6

    Google Scholar 

  • Giglio L, van der Werf GR, Randerson JT, Collatz GJ, Kasibhatla P (2006) Global estimation of burned area using MODIS active fire observations. Atmos Chem Phys 6:957–974

    Google Scholar 

  • Giglio L, Randerson JT, van der Werf GR, Kasibhatla PS, Collatz GJ, Morton DC, DeFries RS (2010) Assessing variability and long-term trends in burned area by merging multiple satellite fire products. Biogeosciences 7:1171–1186

    Google Scholar 

  • Giglio L, Loboda T, Roy DP, Quayle B, Justice CO (2009) An active-fire based burned area mapping algorithm for the MODIS sensor. Remote Sens Environ 113(2):408–420

    Google Scholar 

  • Giriraj A, Babar S, Jentsch A, Sudhakar S, Murthy M (2010) Tracking fires in India using Advanced Along Track Scanning Radiometer (AATSR) data. Remote Sens 2:591–610

    Google Scholar 

  • Green RO (1996) Estimation of biomass fire temperature and areal extent from calibrated AVIRIS spectra. Summ Sixth Annu JPL Airborne Earth Sci Workshop JPL Publ 96(4):105–113

    Google Scholar 

  • Hanley ME, Fenner M (1998) Pre-germination temperature and the survivorship and onward growth of Mediterranean fire-following plant species. Acta Oecol 19:181–187

    Google Scholar 

  • Hirsch SN, Madden FH (1969) Airborne infrared line scanners for forest fire surveillance. In: 14th SPIE Annual technical symposium proceedings, vol 2, pp 51–57

    Google Scholar 

  • Holden Z, Smith AMS, Morgan P, Rollins MG, Gessler PE (2005) Evaluation of novel thermally enhanced spectral indices for mapping fire perimeters and comparisons with fire atlas data. Int J Remote Sens 26(21):4801–4808

    Google Scholar 

  • Hook SJ, Myers JJ, Thome KJ, Fitzgerald M, Kahle AB (2001) The (MASTER) – a new instrument for earth science studies. Remote Sens Environ 76(1):93–102

    Google Scholar 

  • Ichoku C, Kaufman YJ (2005) A method to derive smoke emission rates from MODIS fire radiative energy measurements. IEEE Trans Geosci Remote Sens 43(11):2636–2649. doi:10.1109/TGRS.2005.857328

    Google Scholar 

  • Jacobson MC, Hansson H-C, Noone KJ, Charlson RJ (2000) Organic atmospheric aerosols: review and state of the science. Rev Geophys 38(2):267–294

    Google Scholar 

  • Jenkins BM, Baxter LL, Miles TR Jr, Miles TR (1998) Combustion properties of biomass. Fuel Proc Technol 5491:17–46

    Google Scholar 

  • Justice CO, Kendall JD, Dowty PR, Scholes RJ (1996) Satellite remote sensing of fires during the SAFARI campaign using NOAA AVHRR data. J Geophys Res 101:23851–23863

    Google Scholar 

  • Kaiser JW, Heil A, Andreae MO, Benedetti A, Chubarova N, Jones L, Morcrette J-J, Razinger M, Schultz MG, Suttie M, van der Werf GR (2012) Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. Biogeosciences 9:527–554. doi:10.5194/bg-9-527-2012

    Google Scholar 

  • Kaufman YJ, Remer LA (1994) Detection of forests using MID-IR reflectance – an application for aerosol studies. IEEE Trans Geosci Remote Sens 32(3):672–683

    Google Scholar 

  • Kaufman Y, Justice C, Flynn L, Kendall J, Prins E, Giglio L, Ward D, Menzel W, Setzer A (1998a) Potential global fire monitoring from EOS-MODIS. J Geophys Res 103(D24):32215–32238

    Google Scholar 

  • Kaufman Y, Kleidmann RG, King MD (1998b) SCAR-B fires in the tropics: properties and remote sensing from EOS-MODIS. J Geophys Res 103(D24):31955–31968

    Google Scholar 

  • Kaufman YJ, Tanre D, Boucher O (2002) A satellite view of aerosols in the climate system. Nature 419(6903):215–223

    Google Scholar 

  • Knorr W, Lehsten V, Arneth A (2012) Determinants and predictability of global wildfire emissions. Atmos Chem Phys Discuss 12:4243–4278. doi:10.5194/acpd-12-4243-2012

    Google Scholar 

  • Krawchuk MA, Moritz MA, Parisien M-A, Van Dorn J, Hayhoe K (2009) Global pyrogeography: the current and future distribution of wildfire. PLoS One 4(4):e5102. doi:10.1371/journal.pone.0005102

    Google Scholar 

  • Kunii O, Kanagawa S, Yajima I, Hisamatsu Y, Yamamura S, Amagai T, Ismail ITS (2002) The 1997 haze disaster in Indonesia: its air quality and health effects. Arch Environ Health 57(1):16–22

    Google Scholar 

  • Langaas S (1995) A critical review of sub-resolution fire detection techniques and principles using thermal satellite data. University of Oslo, Oslo

    Google Scholar 

  • Lavorel S, Flannigan MD, Lambin EF, Scholes MC (2007) Vulnerability of land systems to fire: interactions among humans, climate, the atmosphere, and ecosystems. Mitig Adapt Strat Glob Chang 12(1):33–53. doi:10.1007/s11027-006-9046-5

    Google Scholar 

  • Lentile LB, Holden ZA, Smith AMS, Falkowski MJ, Hudak AT, Morgan P, Lewis SA, Gessler PE, Benson NC (2006) Remote sensing techniques to assess active fire characteristics and post-fire effects. Int J Wildland Fire 15(3):319–345. doi:10.1071/WF05097

    Google Scholar 

  • Li Z, Kaufman YJ, Ichoku C, Fraser R, Trishchenko A, Giglio L, Jin J (2002) A review of AVHRR-based active fire detection algorithms: principles, limitations, and recommendations. In: Ahern FJ, Goldammer JG, Justice CO (eds) Global and regional vegetation fire monitoring from space: planning and coordinated international effort. SPB Academic Pub, The Hague, pp 199–225

    Google Scholar 

  • Libonati R, Pereira JMC, Setzer AW, de Faria Peres L (2009) Retrieval of middle-infrared reflectance using remote sensing data: the tropical point of view. In: Simpósio Brasileiro de Sensoriamento Remoto, 14 (SBSR) 2009, pp 5917–5924

    Google Scholar 

  • Lynch DL (2004) What do forest fires really cost? J For 102(6):42–49

    Google Scholar 

  • Mayaux P, Bartholomé E, Fritz S, Belward A (2004) A new land-cover map of Africa for the year 2000. J Biogeogr 31(6):861–877

    Google Scholar 

  • McMillan WW, McCourt WM, Revercomb HE, Knuteson RO, Christian TG, Doddridge BG, Hobbs PV et al (2003) Tropospheric carbon monoxide measurements from the scanning high-resolution interferometer sounder on 7 September 2000 in southern Africa during SAFARI 2000. J Geophys Res 108(D13):8492. doi:10.1029/2002JD002335

    Google Scholar 

  • Merino L, Caballero F, Martínez‐de Dios JR, Ferruz J, Ollero A (2006) A cooperative perception system for multiple UAVs: application to automatic detection of forest fires. J Field Robot 23(3–4):165–184

    Google Scholar 

  • Morisette JT, Giglio L, Csiszar I, Justice CO (2005) Validation of the MODIS active fire product over Southern Africa with ASTER data. Int J Remote Sens 26(19):4239–4264

    Google Scholar 

  • Mota BW, Pereira JMC, Oom D, Vasconcelos MJP, Schultz M (2006) Screening the ESA ATSR-2 World Fire Atlas (1997–2002). Atmos Chem Phys 6:1409–1424. doi:10.5194/acp-6-1409-2006

    Google Scholar 

  • Mott JA, Mannino DM, Alverson CJ, Kiyu A, Hashim J, Lee T, Falter K, Redd SC (2005) Cardiorespiratory hospitalizations associated with smoke exposure during the 1997 Southeast Asian forest fires. Int J Hyg Environ Health 208(1):75–85

    Google Scholar 

  • Naeher LP, Brauer M, Lipsett M, Zelikoff JT, Simpson CD, Koenig JQ, Smith KR (2007) Woodsmoke health effects: a review. Inhal Toxicol 19(1):67–106

    Google Scholar 

  • Nichols JD, Parks GS, Voss JM, Mortensen RA, Logan TL (1989) Designing an infrared system to map and detect wildland fires. In: 1989 Orlando symposium. International Society for Optics and Photonics, pp 7–14

    Google Scholar 

  • Page SE, Siegert F, Rieley JO, Boehm HDV, Jaya A, Limin S (2002) The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420:61–65. doi:10.1038/nature01131

    Google Scholar 

  • Pastor E, Rigueiro A, Zárate L, Giménez A, Arnaldos J, Planas E (2002) Experimental methodology for characterizing flame emissivity of small scale forest fires using infrared thermography techniques, Forest fire research & wildland fire safety. Millpress, Rotterdam

    Google Scholar 

  • Pausas JG, Keeley JE (2009) A burning story: the role of fire in the history of life. Bioscience 59(7):593–601. doi:10.1525/bio.2009.59.7.10

    Google Scholar 

  • Pereira JMC, Chuvieco E, Beudoin A, Desbois N (1997) Remote sensing of burned areas: a review. In: Chuvieco E (ed) A review of remote sensing methods for the study of large wildland fires. Departamento de Geografía, Universidad de Alcalá, Alcalá de Henares, pp 127–184

    Google Scholar 

  • Petitcolni F, Vermote E (2002) Land surface reflectance, emissivity and temperature from MODIS middle and thermal infrared data. Remote Sens Environ 83(1):112–134

    Google Scholar 

  • Prins EM, Menzel WP (1992) Geostationary satellite detection of biomass burning in South America. Int J Remote Sens 13:2783–2799. doi:10.1080/01431169208904081

    Google Scholar 

  • Prins EM, Feltz JM, Menzel WP, Ward DE (1998) An overview of GOES-8 diurnal fire and smoke results for SCAR-B and 1995 fire season in South America. J Geophys Res Atmos (1984–2012) 103(D24):31821–31835

    Google Scholar 

  • Pyne SJ (1984) Introduction to wildland fire: fire management in the United States. Wiley, New York

    Google Scholar 

  • Qian YG, Kong SX (2012) A method to retrieve subpixel fire temperature and fire area using MODIS data. Int J Remote Sens 33:5009–5025

    Google Scholar 

  • Ramsey MS, Harris AJL (2012) How will thermal remote sensing of volcanic surface activity evolve over the next decade. J Volcanol Geoth Res 249:217–233. doi:10.1016/j.jvolgeores.2012.05.011

    Google Scholar 

  • Reid JS, Hyer EJ, Prins EM, Westphal DL, Zhang J, Wang J, Christopher SA, Curtis CA, Schmidt CC, Eleuterio DP, Richardson KA, Hoffman JP (2009) Global monitoring and forecasting of biomass-burning smoke: description of and lessons from the Fire Locating and Modeling of Burning Emissions (FLAMBE) program. IEEE J Sel Top Appl Earth Obs Remote Sens 2(3):144–162. doi:10.1109/JSTARS.2009.2027443

    Google Scholar 

  • Riggan PJ, Tissell RG (2009) Airborne remote sensing of wildland fires. In: Bytnerowicz A, Arbaugh M, Andersen C, Riebau A (eds) Wildland fires and air pollution, vol 8, Developments in environmental science. Elsevier, Amsterdam, pp 139–168

    Google Scholar 

  • Riggan PJ, Tissell RG, Lockwood RN, Brass JA, Pereira JAR, Miranda HS, Miranda AC, Campos T, Higgins RG (2004) Remote measurement of energy and carbon flux from wildfires in Brazil. Ecol Appl 14(3):855–872

    Google Scholar 

  • Roberts G, Wooster MJ (2008) Fire detection and fire characterization over Africa using Meteosat SEVIRI. IEEE Trans Geosci Remote Sens 46:1200–1218. doi:10.1109TGRS.2008.915751

    Google Scholar 

  • Roberts G, Wooster MJ, Lagoudakis E (2009) Annual and diurnal African biomass burning temporal dynamics. Biogeosciences 6:849–866. doi:10.5194/bg-6-849-2009

    Google Scholar 

  • Roberts G, Wooster MJ, Freeborn P, Xu W (2011) Integration of geostationary FRP and polar-orbiter burned area datasets for an enhanced biomass burning inventory. Remote Sens Environ 115:2047–2061. doi:10.1016/j.rse.2011.04.006

    Google Scholar 

  • Robinson JM (1991) Fire from space: global fire evaluation using infrared remote sensing. Int J Remote Sens 12(1):3–24. doi:10.1080/01431169108929628

    Google Scholar 

  • Roemer S, Halle W (2010) TET-1 and BIROS a semi-operational fire recognition constellation, UN/Austria/ESA symposium on small satellite programs for sustainable development: payloads for small satellite programs, Graz, 21–24 Sept 2010

    Google Scholar 

  • Rothery DA, Francis PW, Wood CA (1988) Volcano monitoring using short wavelength infrared data from satellites. J Geophys Res 93:7993–8008

    Google Scholar 

  • Schroeder W, Prins E, Giglio L, Csiszar I, Schimdt C, Morisette J, Morton D (2008a) Validation of GOES and MODIS active fire detection products using ASTER and ETM+ data. Remote Sens Environ 112(5):2711–2726. doi:10.1016/j.rse.2008.01.005

    Google Scholar 

  • Schroeder W, Csiszar I, Morisette J (2008b) Quantifying the impact of cloud obscuration on remote sensing of active fires in the Brazilian Amazon. Remote Sens Environ 112(2):456–470. doi:10.1016/j.rse.2007.05.004

    Google Scholar 

  • Seiler W, Crutzen PJ (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang 2:207–247

    Google Scholar 

  • Shephard MW, Kennelly EJ (2003) Effect of band-to-band coregistration on fire property retrievals. IEEE Trans Geosci Remote Sens 41(11):2648–2661. doi:10.1109/TGRS.2003.814912

    Google Scholar 

  • Simmonds PG, Manning AJ, Derwent RG, Ciais P, Ramonet M, Kazan V, Ryall D (2005) A burning question. Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events? Atmos Environ 39(14):2513–2517. doi:10.1016/j.atmosenv.2005.02.018

    Google Scholar 

  • Smith AMS, Wooster MJ (2005) Remote classification of head and backfire types from MODIS fire radiative power observations. Int J Wildland Fire 14:249–254. doi:10.1071/WF05012

    Google Scholar 

  • Smith AMS, Drake N, Wooster MJ, Hudak A, Holden ZA, Gibbons CJ (2007) Production of Landsat ETM reference imagery of burned areas within Southern African savannahs: comparison of methods and application to MODIS. Int J Remote Sens 28:2753–2775

    Google Scholar 

  • Stroppiana D, Pinnock S, Gregoire J-M (2000) The global fire product: daily fire occurrence from April 1992 to December 1993 derived from NOAA AVHRR data. Int J Remote Sens 21(6–7):1279–1288

    Google Scholar 

  • Stocks BJ, Van Wilgen BW, Trollope WSW (1997) Fire behaviour and the dynamics of convection columns in African savannas. In: Van Wilgen BW, Andreae MO, Goldammer GJ, Lindesay JA (eds) Fire in southern African Savannas: ecological and atmospheric perspectives. Wits University Press, Johannesburg, pp 47–55

    Google Scholar 

  • Sullivan AL, Ellis PF, Knight IK (2003) A review of radiant heat flux models used in bushfire applications. Int J Wildland Fire 12(1):101–110. doi:10.1071/WF02052

    Google Scholar 

  • Swap RJ, Annegarn HJ, Suttles JT, Haywood J, Helmlinger MC, Hely C, Hobbs PV, Holben BN, Ji J, King MD, Landmann T, Maenhaut W, Otter L, Pak B, Piketh SJ, Platnick S, Privette J, Roy D, Thompson AM, Ward D, Yokelson R (2002) The Southern African regional science initiative (SAFARI 2000): overview of the dry season field campaign. S Afr J Sci 98:125–130

    Google Scholar 

  • Trigg S, Flasse S (2000) Characterizing the spectral-temporal response of burned savannah using in situ spectroradiometry and infrared thermometry. Int J Remote Sens 21(16):3161–3168. doi:10.1080/01431160050145045

    Google Scholar 

  • Trigg SN, Roy DP (2007) A focus group study of factors that promote and constrain the use of satellite derived fire products by resource managers in southern Africa. J Environ Manage 82:95–110

    Google Scholar 

  • Trollope WSW (2002) Fire behaviour a key factor in the fire ecology of African grasslands and savannas. In: Viegas DX (ed) Forest fire research and wildland fire safety: proceedings of IV international conference on forest fire research/2002 wildland fire safety summit, Coimbra. Millpress, Rotterdam, pp 1–17

    Google Scholar 

  • Turner MG, Hargrove WW, Gardner RH, Romme WH (1994) Effects of fire on landscape heterogeneity in Yellowstone National Park, Wyoming. J Veg Sci 5(5):731–742

    Google Scholar 

  • van der Werf GR, Randerson JT, Collatz GJ, Giglio L, Kasibhatla PS, Arellano AF Jr, Olsen SC, Kasischke ES (2004) Continental-scale partitioning of fire emissions during the 1997 to 2001 El Niño/La Niña period. Science 303(5654):73–76. doi:10.1126/science.1090753

    Google Scholar 

  • van der Werf GR, Morton DC, DeFries RS, Olivier JGJ, Kasibhatla PS, Jackson RB, Collatz GJ, Randerson JT (2009) CO2 emissions from forest loss. Nat Geosci 2:737–738. doi:10.1038/ngeo671

    Google Scholar 

  • van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735. doi:10.5194/acp-10-11707-2010

    Google Scholar 

  • Van Leeuwen TT, van der Werf GR (2011) Spatial and temporal variability in the ratio of trace gases emitted from biomass burning. Atmos Chem Phys 11:3611–3629

    Google Scholar 

  • Vermote E, Ellicott E, Dubovik O, Lapyonok T, Chin M, Giglio L, Roberts GJ (2009) An approach to estimate global biomass burning emissions of organic and black carbon from MODIS fire radiative power. J Geophys Res 114:D18205

    Google Scholar 

  • von Danckelman A (1884) Die Bewölkungsverhältnisse des südwestlichen Afrikas. Meteorol Z 1:301–311

    Google Scholar 

  • Wallace LL (2004) After the fires: the ecology of change in Yellowstone National Park. Yale University Press, New Haven

    Google Scholar 

  • Ward D (2001) Combustion chemistry and smoke. In: Johnson EA, Miyanishi K (eds) Forest fires: behavior and ecological effects. Academic Press, San Diego, pp 55–77

    Google Scholar 

  • Warren JR (1992) Advanced fire sensing and locating systems, remote sensing and natural resource management: proceedings of the fourth forest service remote sensing applications conference, 6–11 Apr, Orlando, FL, pp 212–220

    Google Scholar 

  • Warren JR, Celarier DN (1991) A salute to infrared systems in fire detection and mapping. Fire Manag Note US Dep Agric 52(3):3–18

    Google Scholar 

  • Wegener SS, Ambrosia VG, Stoneburner J, Sullivan DV, Brass JA, Buechel SW, Higgins RG, Hildum EA, Schoenung SM (2002) Demonstrating acquisition of real-time thermal data over fires utilizing UAVs. In: Proceedings of AIAA’s 1st technical conference and workshop on unmanned aerospace vehicles, systems, technologies, and operations, vol AIAA-2002-3406, Portsmouth, VA, 20–23 May 2002

    Google Scholar 

  • Wooster MJ, Strub N (2002) Borneo fires: quantitative analysis using global area coverage (GAC) satellite data. Glob Biogeochem Cycle 16(1):9. doi:10.1029/2000GB001357

    Google Scholar 

  • Wooster MJ, Richards T, Kidwell KB (1995) NOAA 11 AVHRR/2 – thermal channel calibration update. Int J Remote Sens 16(2):359–363. doi:10.1080/01431169508954401

    Google Scholar 

  • Wooster MJ, Zhukov B, Oertel D (2003) Fire radiative energy for quantitative study of biomass burning: derivation from the BIRD experimental satellite and comparison to MODIS fire products. Remote Sens Environ 86:83–107

    Google Scholar 

  • Wooster MJ, Roberts G, Perry GLW, Kaufman YJ (2005) Retrieval of biomass combustion rates and totals from fire radiative power observations: FRP derivation and calibration relationships between biomass consumption and fire radiative energy release. J Geophys Res 110:D24311. doi:10.1029/2005JD006318

    Google Scholar 

  • Wooster MJ, Freeborn PH, Archibald S, Oppenheimer C, Roberts GJ, Smith TEL, Govender N, Burton M, Palumbo I (2011) Field determination of biomass burning emission ratios and factors via open-path FTIR spectroscopy and fire radiative power assessment: headfire, backfire and residual smouldering combustion in African savannahs. Atmos Chem Phys 11:11591–11615

    Google Scholar 

  • Wooster MJ, Perry GLW, Zoumas A (2012) Fire, drought and El Niño relationships on Borneo (Southeast Asia) in the pre-MODIS era (1980–2000). Biogeosciences 9:317–340. doi:10.5194/bg-9-317-2012

    Google Scholar 

  • Wright R, Flynn LP (2003) On the retrieval of lava-flow surface temperatures from infrared satellite data. Geology 31(10):893–896

    Google Scholar 

  • Xu W, Wooster MJ, Roberts G, Freeborn PH (2011) New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. Remote Sens Environ 114:1876–1895

    Google Scholar 

  • Zhukov B, Lorenz E, Oertel D, Wooster MJ, Roberts G (2006) Spaceborne detection and characterization of fires during the bi-spectral infrared detection (BIRD) experimental small satellite mission (2001–2004). Remote Sens Environ 100(1):29–51. doi:10.1016/j.rse.2005.09.019

    Google Scholar 

  • URL1: http://earthdata.nasa.gov/firms

  • URL2: http://landsaf.meteo.pt/

  • URL3: http://lance.nasa.gov

  • URL4: http://cimss.ssec.wisc.edu/goes

  • URL5: http://wildfire.geog.kcl.ac.uk/wordpress

  • URL6: http://www.itres.com

  • URL7: http://viirsfire.geog.umd.edu

  • URL8: http://www.gmes-atmosphere.eu/

  • URL9: http://www.gmes-atmosphere.eu/fire

  • URL10: http://hyspiri.jpl.nasa.gov/

  • URL11: http://gofc-fire.umd.edu/objectives/index.php

Download references

Acknowledgements

The authors would like to thank everyone who provided figures for use in the chapter, the funding agencies who supported the work covered here, and the reviewers for their supportive and useful comments. Martin Wooster was partly supported by the NERC National Centre for Earth Observation (UK) and the European Union’s Seventh Framework Programme (FP7/2007–2013) under Grant Agreement no. 283576 (MACC-II project). Alistair Smith is partly supported by NASA under award number NNX11AO24G and the National Science Foundation under award number EPS-0814387.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Wooster .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Wooster, M.J. et al. (2013). Thermal Remote Sensing of Active Vegetation Fires and Biomass Burning Events. In: Kuenzer, C., Dech, S. (eds) Thermal Infrared Remote Sensing. Remote Sensing and Digital Image Processing, vol 17. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6639-6_18

Download citation

Publish with us

Policies and ethics