Skip to main content

Soil and Water Dynamics

  • Chapter
  • First Online:
Mediterranean Oak Woodland Working Landscapes

Part of the book series: Landscape Series ((LAEC,volume 16))

Abstract

Soil properties and water dynamics play a crucial role in the function of oak woodland ranches and dehesas. They are largely controlled by climate conditions, terrain morphology and parent material, but also by land use and management. We review results obtained from research carried out in California and Spain on topics related to soil quality, soil degradation, and water dynamics. Of particular interest is gaining understanding of the influence of land-use and management practices. The distribution of vegetation produces spatial and temporal variation in soil properties that are described in detail. The influence of trees on soil water content is discussed and the dynamics of catchment hydrology is presented, for both California and Spanish cases. An important characteristic is high variability in precipitation, with the occurrence of prolonged dry periods (droughts) that affect water availability for plants. On ranches the effects are two-fold, influencing pasture productivity and water resources for livestock rearing. Soils in the Spanish dehesas have been subject to degradational processes as a consequence of centuries of agricultural use. Water erosion resulting in the reduction of organic matter and physical degradation is the most important phenomena. For California, with a much shorter history of plowing and livestock grazing, we present results from studies on water quality and the effects of vegetation conversion on water yield, soil stability and erosion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahearn DS, Sheibley RW, Dahlgren RA, Keller KE (2004) Temporal dynamics of stream water chemistry in the last free-flowing river draining the Sierra Nevada, California. J Hydrol 295:47–63

    Article  CAS  Google Scholar 

  • Barnes P, Wilson WP, Trotter MG, Lamb DW, Reid N, Koen T, Bayerlein L (2011) The patterns of grazed pasture associated with scattered trees across an Australian temperature landscape: an investigation of pasture quantity and quality. Rangel J 33:121–130

    Article  Google Scholar 

  • Blum WH (1998) Basic concepts: degradation, resilience and rehabilitation. In: Lal R, Blum WH, Valentine C, Stewart BA (eds) Methods for assessment of soil degradation. CRC Press, Boca Ratón, pp 1–16

    Google Scholar 

  • Burgy RH (1968) Hydrological studies and watershed management on brushlands. Annual Report No 8 to California Department of Water Resources and UC Water Resources Ctr

    Google Scholar 

  • Burgy RH, Papazifiriou ZG (1971a) Effects of vegetation management on slope stability, Hopland experimental watershed II at Hopland field station. Abstract for water resources center advance council meeting

    Google Scholar 

  • Burgy RH, Papazifiriou ZG (1971b) Vegetative management and water yield relationships. In: Proceedings of 3rd international seminar for hydrology professors, Purdue University, pp 315–331

    Google Scholar 

  • Burgy RH, Pomeroy CR (1958) Interception losses in grassy vegetation. Trans Am Geophys Union 39:1095–1100

    Article  Google Scholar 

  • Callaway RM, Nadkarni NM, Mahall BE (1991) Facilitation and interference of Quercus Douglasii on understory productivity in central California. Ecol 72:1484–1499

    Article  Google Scholar 

  • Camping TJ, Dahlgren RA, Tate KW, Horwath WR (2002) Changes in soil quality due to grazing and oak tree removal in California oak woodlands. In: Oaks in California’s changing landscape. USDA Forest Service Gen. Tech. Rep. PSW–GTR–184, Berkeley, CA, pp 75–85

    Google Scholar 

  • Ceballos A, Schnabel S (1998) Hydrological behaviour of a small catchment in the dehesa landuse system (extremadura, SW Spain). J Hydrol 210:146–160

    Article  Google Scholar 

  • Ceballos A, Cerdà A, Schnabel S (2002) Runoff production and erosion processes on a dehesa in Western Spain. Geogr Rev 92:333–353

    Article  Google Scholar 

  • Cerdà A, Schnabel S, Ceballos A, Gómez Amelia D (1998) Soil hydrological response under simulated rainfall in the dehesa land system (extremadura, SW Spain) under drought conditions. Earth Surf Proces 23:195–209

    Article  Google Scholar 

  • Coelho COA, Ferreira AJD, Laouina A, Hamza A, Chaker M, Naafa R, Regaya K, Boulet AK, Keizer JJ, Carvalho TMM (2004) Changes in land use and land management practices affecting land degradation within forest and grazing ecosystems in the Western Mediterranean. In: Schnabel S, Ferreira A (eds) Sustainability of agrosilvopastoral systems. Adv GeoEcology vol 37. Catena Verlag, Reiskirchen, Germany, pp 137–153

    Google Scholar 

  • CSIC [Consejo Superior de Investigaciones Científicas] (1970) Suelos, estudio agrobiológico de la provincia de Cáceres. Centro de Edafología y Biología Aplicada de Salamanca, Salamanca

    Google Scholar 

  • Cubera E, Moreno G (2007) Effect of single Quercus ilex trees upon spatial and seasonal changes in soil water content in dehesas of Central Western Spain. Ann For Sci 64:355–364

    Article  Google Scholar 

  • Dahlgren, RA, Singer MJ (1994) Nutrient cycling in managed and non-managed oak woodland-grass ecosystems. Final report: integrated hardwood range management program. Land, air and water resources paper–100028. UC Davis, Davis, CA

    Google Scholar 

  • Dahlgren RA, Boettinger JL, Huntington GL, Amundson RG (1997) Soil development along an elevational transect in the western Sierra Nevada, California. Geoderma 78:207–236

    Article  Google Scholar 

  • Dahlgren RA, Tate KW, Lewis DJ, Atwill ER, Harper JM, Allen-Diaz BH (2001) Watershed research examines rangeland management effects on water quality. Cal Agric 55:64–71

    Article  Google Scholar 

  • Dahlgren RA, Horwath WR, Tate KW, Camping TJ (2003) Blue oak enhance soil quality in California oak woodlands. Cal Agric 57:42–47

    Article  Google Scholar 

  • Dahlgren RA, Tate KW, Ahearn DS (2004) Watershed scale, water quality monitoring—water sample collection. In: Down RD, Lehr JH (eds) Environmental instrumentation and analysis handbook. Wiley, New York, pp 547–564

    Google Scholar 

  • Dorronsoro Fernández C (1992) Suelos. In: Gómez Gutiérrez JM, El libro de las dehesas salmantinas, Junta de Castilla y Leon, Salamanca, pp 71–121

    Google Scholar 

  • Escudero A (1985) Efectos de árboles aislados sobre las propiedades químicas del suelo. Rev Ecol Biol Sol 22(2):149–159

    Google Scholar 

  • Escudero A (1992) Intervención del arbolado en los ciclos de los nutrientes. In: Gómez Gutiérrez JM (ed): El libro de las dehesas salmantinas, Junta de Castilla y León. Salamanca, Spain, pp 241–257

    Google Scholar 

  • Escudero A, García B, Luis E (1985) The nutrient cycling in Quercus rotundifolia and Q. pyrenaica ecosystems (“dehesas”) of Spain. Oecol Plant 6:73–86

    CAS  Google Scholar 

  • FAO (2006) World reference base for soil resources. World Soil Resources Reports No. 103. FAO, Rome

    Google Scholar 

  • Gallardo A (2003) Effect of tree canopy on the spatial distribution of soil nutrients in a Mediterranean dehesa. Pedobiol 47:117–125

    Article  CAS  Google Scholar 

  • Gallardo A, Rodríguez-Saucedo JJ, Covelo F, Fernández-Alés R (2000) Soil nitrogen heterogeneity in a dehesa ecosystem. Plant Soil 222:71–82

    Article  CAS  Google Scholar 

  • García Navarro, A, López Piñeiro A (2002) Mapa de suelos de la provincia de Cáceres, escala 1:300.000, Universidad de Extremadura, Cáceres, Spain

    Google Scholar 

  • GLASOD (1990) World map of the status of human-induced soil degradation. ISRIC/UNEP, Wageningen

    Google Scholar 

  • Gómez Gutiérrez Á, Schnabel S, Lavado Contador F (2009a) Gully erosion, land use and topographical thresholds during the last 60 years in a small rangeland catchment in SW Spain. Land Degrad Dev 20:535–550

    Article  Google Scholar 

  • Gómez Gutiérrez Á, Schnabel S, Lavado Contador F (2009b) Modelling the occurrence of gullies in rangelands of SW Spain. Earth Surf Proces 34:1893–1902

    Google Scholar 

  • Gómez Gutiérrez Á, Schnabel S, de Sanjosé JJ, Lavado Contador F (2012) Exploring the relationships between gully erosion and hydrology in rangelands of SW Spain. Z Geomorphol 56(suppl 1):27–44

    Article  Google Scholar 

  • González-Bernáldez F, Morey M, Velasco F (1969) Influences of Quercus ilex rotundifolia on the herb layer at El Pardo woodland. Bol Soc Esp Hist Nat 67:265–284

    Google Scholar 

  • Holloway JM, Dahlgren RA (2001) Seasonal and event-scale variations in solute chemistry for four Sierra Nevada catchments. J Hydrol 250:106–121

    Article  CAS  Google Scholar 

  • Imeson AC (1988) Una vía de ataque eco-geomorfológica al problema de la degradación y erosión del suelo. In: MOPU (ed) Desertificación en Europa, MOPU, Madrid, pp 161–181

    Google Scholar 

  • Infante JM, Domingo F, Fernández-Aléz R, Joffre R, Rambal S (2003) Quercus ilex transpiration as affected by a prolonged drought period. Biol Plant 46:49–55

    Article  Google Scholar 

  • IPCC (2007) Climate change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Cambridge University Press, Cambridge

    Google Scholar 

  • Jackson LE, Strauss RB, Firestone MK, Bartolome JW (1990) Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agr Ecosyst Environ 32:89–105

    Article  Google Scholar 

  • Jobbágy EG, Jackson RB (2001) The distribution of soil nutrients with depth: global patterns and the imprint of plants. Biogeochem 53:51–77

    Article  Google Scholar 

  • Joffre R, Rambal S (1988) Soil water improvement by trees in the rangelands of Southern Spain. Acta Oecol 9:405–422

    Google Scholar 

  • Joffre R, Rambal S (1993) How tree cover influences the water balance of Mediterranean rangelands. Ecology 74:570–582

    Article  Google Scholar 

  • Kirkby MJ (1980) The problem. In: Kirkby MJ, Morgan RPC (eds) Soil erosion. Wiley, Chichester, pp 1–16

    Google Scholar 

  • Lagar Timón D, Schnabel S, Gómez Gutiérrez A, Sánchez-Lorenzo A (2006) Efectos de los factores físicos y químicos del suelo sobre la estabilidad estructural en espacios adehesados de Extremadura. In Espejo Díaz M, Martín Bellido M, Matos C, Mesías Díaz (eds) Gestión ambiental y económica del ecosistema dehesa en la Península Ibérica, Junta de Extremadura, Mérida, pp 81–87

    Google Scholar 

  • Lewis D, Singer MJ, Dahlgren RA, Tate KW (2000) Hydrology in a California oak woodland watershed: a 17-year study. J Hydrol 240:106–117

    Article  Google Scholar 

  • Lewis DJ, Singer MJ, Dahlgren RA, Tate KW (2006) Nutrient and sediment fluxes from a California rangeland watershed. J Environ Qual 35:2202–2211

    Article  PubMed  CAS  Google Scholar 

  • Luis-Calabuig E (1992) Bioclima. In: Gómez-Gutiérrez JM (ed) El libro de las dehesas salmantinas, Junta de Castilla-León, Salamanaca, pp 241–260

    Google Scholar 

  • Mateos B, Schnabel S (2002) Rainfall interception by holm oaks in mediterranean open woodland In: Garcia-Ruiz JM, Jones JAA, Arnaez J (eds) Environmental change and water sustainability, Consejo Superior de Investigaciones Científicas and University of La Rioja Press, La Rioja, Spain, pp 31–42

    Google Scholar 

  • McPherson GR (1997) Ecology and management of North American savannas. University of Arizona Press, Tucson

    Google Scholar 

  • Millikin CS, Bledsoe CS (1999) Biomass and distribution of fine and coarse roots from blue oak (Quercus douglasii) trees in northern Sierra Nevada foothills of California. Plant Soil 214:27–38

    Article  CAS  Google Scholar 

  • Montero G, San Miguel A, Cañellas I (1998) Sistemas de selvicultura mediterránea. La dehesa. In: Jiménez Diáz RM, Lamo de Espinosa J, Agricultura sostenible. Ediciones Mundi-Prensa, Madrid, pp 519–554

    Google Scholar 

  • Moreno G, Gallardo JF (2003) Atmospheric deposition in oligotrophic Quercus pyrenaica forest: implications for forest nutrition. Forest Ecol Manag 171:17–29

    Google Scholar 

  • Moreno G, Pulido (2009) The functioning, management, and persistence of dehesas. Adv Agroforest 6:127–160

    Article  Google Scholar 

  • Moreno G, Obrador JJ, Garcia-López E, Cubera E, Montero MJ, Pulido FJ, Dupraz C (2007) Competitive and facilitative interactions in dehesas of C-W Spain. Agrofor Syst 70:25–40

    Article  Google Scholar 

  • Moro MJ, Pugnaire FI, Haase P, Puigdefábregas J (1997) Effect of the canopy of Retama sphaerocarpa on its understorey in a semiarid environment. Funct Ecol 11:175–184

    Article  Google Scholar 

  • Nunes J, Madeira M, Gazarini L (2005) Some ecological impacts of Quercus rotundifolia trees on the understorey environment in the “montado” agrosilvopastoral system, Southern Portugal. In: Mosquera-Losada MR., Riguero-Rodriguez A, McAdam J (Eds.) Silvopastoralism and sustainable land management, CAB International, Oxfordshire, pp 275−277

    Google Scholar 

  • Obrador-Olán JJ, García-López E, Moreno G (2004) Consequences of dehesa land use on nutritional status of vegetation in Central-Western Spain. In: Schnabel S, Ferreira A (eds) Sustainability of agrosilvopastoral systems, Adv GeoEcology vol 37. Catena Verlag, Reiskirchen, Germany pp 327–340

    Google Scholar 

  • Puerto A (1992) Síntesis ecológica de los productores primarios. In Gómez-Gutiérrez JM (ed) El libro de las dehesas salmantinas, Junta de Castilla-León, Salamanaca, pp 583–632

    Google Scholar 

  • Rasmussen C, Matsuyama N, Dahlgren RA, Southard RJ, Brauer N (2007) Soil genesis and mineral transformation across an environmental gradient on andesitic lahar in California. Soil Sci Soc Am J 71:225–237

    Article  CAS  Google Scholar 

  • Rasmussen C, Dahlgren RA, Southard RJ (2010) Basalt weathering and pedogenesis across an environmental gradient in the southern cascade range, California USA. Geoderma 154:473–485

    Article  CAS  Google Scholar 

  • Rodier J (1975) Evaluation of annual runoff in tropical African Sahel. ORSTOM Document, p 145

    Google Scholar 

  • Rodriguez R, Puerto A, García JA, Saldaña A (1987) Algunas comunidades oligotróficas derivadas de la degradación de las dehesas. Pastos, pp 336–347

    Google Scholar 

  • Sala M (1988) Slope runoff and sediment production in two mediterranean mountain environments. Catena Suppl 12:13–29

    Google Scholar 

  • Schnabel S (1997) Soil erosion and runoff production in a small watershed under silvo-pastoral landuse (dehesas) in extremadura, Spain. Geoforma Ediciones, Logroño, Spain

    Google Scholar 

  • Schnabel S, Gómez-Amelia D (1993) Variability of gully erosion in a small catchment in South-West Spain. Acta Geológica Hispánica 28:27–35

    Google Scholar 

  • Schnabel S, González F, Murillo M, Moreno V (2001) Different techniques of pasture improvement and soil erosion in a wooded rangeland in SW Spain. Methodology and preliminary results. In: Conacher A (ed) Land Degradation. Kluwer Academic Publishers, The Netherlands, pp 241–256

    Google Scholar 

  • Schnabel S, Lavado Contador, Gómez Gutiérrez A, Lagar Timón (2006) La degradación del suelo en las dehesas de Extremadura. In: Espejo Díaz M, Martín Bellido M, Matos C, Mesías Díaz (eds) Gestión ambiental y económica del ecosistema dehesa en la Península Ibérica, Junta de Extremadura, Mérida, pp 63–71

    Google Scholar 

  • Schnabel S, Gómez Gutiérrez Á, Lavado Contador JF (2009) Grazing and soil erosion in dehesas of SW Spain. In: Romero Díaz A, Belmonte Serrato F, Alonso-Sarriá F, López Bermúdez F (eds) Advances in studies on desertification, Editum, Murcia, pp 725–728

    Google Scholar 

  • Scholes RJ, Archer SR (1997) Tree-grass interactions in savannas. Ann Rev Ecol Syst 28:517–544

    Article  Google Scholar 

  • Shakesby RA, Coelho COA, Schnabel S, Keizer JJ, Clarke MA, Lavado Contador JF, Walsh RPD, Ferreira AJD, Doerr SH (2002) A ranking methodology for assessing relative erosion risk and its application to dehesas and montados in Spain and Portugal. Land Degrad Dev 13:129–140

    Article  Google Scholar 

  • Swarowsky A, Dahlgren RA, Tate KW, Hopmans J, O’Geen AT (2011) Catchment-scale soil water dynamics in a mediterranean oak woodland. Vadose Zone J 10:800–815

    Article  Google Scholar 

  • Swarowsky A, Dahlgren RA, O’Geen AT (2012) Linking subsurface lateral flowpath activity with streamflow characteristics in a mediterranean headwater catchment. Soil Sci Soc Am J 76:532–547

    Article  CAS  Google Scholar 

  • Tate KW, Dahlgren RA, Singer MJ, Allen-Diaz B, Atwill ER (1999) Timing, frequency of sampling affect accuracy of water-quality monitoring. Cal Agric 53:44–48

    Article  Google Scholar 

  • Walpole SC (1999) Assessment of the economic and ecological impacts of remnant vegetation on pasture productivity. Pac Conserv Biol 5:28–35

    Google Scholar 

Download references

Acknowledgments

The investigation carried out in dehesas was made possible through funding offered by the Spanish Ministry of Science and Technology (AMB92–0580, AMB95–0986–C02–02, HID98–1056–C02–02, CGL2004–04919–C02–02, CGL2008–01215, CGL2011–23361). Special thanks to all the colleagues and graduate students who offered valuable contributions to the dehesa research, especially Antonio Ceballos Barbancho, Marco Maneta López, Álvaro Gómez Gutiérrez, Manuel Pulido Fernández, Francisco Lavado Contador and Silvia Nadal Chillemi.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Schnabel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schnabel, S., Dahlgren, R.A., Moreno-Marcos, G. (2013). Soil and Water Dynamics. In: Campos, P., et al. Mediterranean Oak Woodland Working Landscapes. Landscape Series, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6707-2_4

Download citation

Publish with us

Policies and ethics