Skip to main content

Chemical Composition and Structure of Natural Lignocellulose

  • Chapter
  • First Online:
Biotechnology of Lignocellulose

Abstract

The wide variety of natural cellulosic materials has complex and uneven components. Cellulose, hemicellulose, and lignin comprise the main composition of cell walls of plants and are important components of natural lignocellulosic materials. Cellulose molecules determine the cell wall framework, and pectin is located between the cellulose microfilaments of the cell wall. In addition, cellulosic materials contain rich cell wall protein, pigment, and ash. Understanding of the chemical composition and structure of natural lignocellulosic materials, characteristics of each component, and interrelationships between various components would contribute to the research and development regarding natural cellulose materials. This chapter mainly describes the chemical composition and structure of natural cellulosic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen HZ. Ecological high value-added theory and application of crop straws. Beijing: Chemical Industry Press; 2006.

    Google Scholar 

  2. Yang SH. Plant fiber chemistry. Beijing: China Light Industry Press; 2008.

    Google Scholar 

  3. Zhang YZ, Liu J, Gao P. Scanning tunneling microscopy of the ultrastructure of native cellulose. Acta Biophys Sin. 1997;13(3):375–9.

    Google Scholar 

  4. Chen HQ, Gong Y, Fang Z. The situation and aspect of application for macromolecule (I)-cellulose, lignin and starch. Yunnan Chem Technol. 1996;11(1):41–6.

    Google Scholar 

  5. Li XB, Wu Q. Plant cell wall. Beijing: Peking University Press; 1993.

    Google Scholar 

  6. Song DL, Shen JH, Li LG. Cellulose synthesis in the cell walls of higher plants. Plant Physiol J. 2008;44(4):791–7.

    Google Scholar 

  7. Zhang JQ, Lin L, Sun Y, Mitchell G, Liu SJ. Advance of studies on structure and decrystallization of cellulose. Chem Ind For Prod. 2008;28(6):109–14.

    Google Scholar 

  8. Zugenmaier P. Conformation and packing of various crystalline cellulose fibers. Prog Polym Sci. 2001;26(9):1341–417.

    Article  Google Scholar 

  9. Zhan HY. Fiber chemistry and physics. Beijing: Science Press; 2005.

    Google Scholar 

  10. Gao J, Tang LG. Cellulose science. Beijing: Science Press; 1996.

    Google Scholar 

  11. Tai FJ, Li XB. Cellulose biosynthesis in plant and the enzymes involved in it. Chin J Cell Biol. 2004;26(5):490–4.

    Google Scholar 

  12. Mueller SC, Brown Jr RM, Scott TK. Cellulosic microfibrils: nascent stages of synthesis in a higher plant cell. Science. 1976;194(4268):949–51.

    Article  Google Scholar 

  13. Reiter WD. Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol. 2002;5(6):536–42.

    Article  Google Scholar 

  14. Arioli T, Peng L, Betzner AS, Burn J, Wittke W, Herth W, Camilleri C, Höfte H, Plazinski J, Birch R. Molecular analysis of cellulose biosynthesis in Arabidopsis. Science. 1998;279(5351):717–20.

    Article  Google Scholar 

  15. Kimura S, Laosinchai W, Itoh T, Cui X, Linder CR, Brown RM. Immunogold labeling of rosette terminal cellulose-synthesizing complexes in the vascular plant Vigna angularis. Plant Cell Online. 1999;11(11):2075–85.

    Article  Google Scholar 

  16. Wang YJ. Callose in plants. Bull Biol. 2005;40(1):18–9.

    Google Scholar 

  17. Bian HY, Zhou ZG, Chen BL, Jiang GH. Biological synthesis of cellulose during cotton fiber thickening process. Cotton Sci. 2004;16(6):374–8.

    Google Scholar 

  18. Zhong R, Burk DH, Ye ZH. Fibers. A model for studying cell differentiation, cell elongation, and cell wall biosynthesis. Plant Physiol. 2001;126(2):477–9.

    Article  Google Scholar 

  19. Kimura S, Kondo T. Recent progress in cellulose biosynthesis. J Plant Res. 2002;115:297–302.

    Article  Google Scholar 

  20. Schrick K, Fujioka S, Takatsuto S, Stierhof YD, Stransky H, Yoshida S, Jürgens G. A link between sterol biosynthesis, the cell wall, and cellulose in Arabidopsis. Plant J. 2004;38(2):227–43.

    Article  Google Scholar 

  21. Yan SP, Wang QY, Yang CP. Research advances in the plant cellulose biosynthesis. J Anhui Agric Sci. 2008;36(21):9049–51.

    Google Scholar 

  22. Pear JR, Kawagoe Y, Schreckengost WE, Delmer DP, Stalker DM. Higher plants contain homologs of the bacterial celA genes encoding the catalytic subunit of cellulose synthase. Proc Natl Acad Sci U S A. 1996;93(22):12637–42.

    Article  Google Scholar 

  23. Doblin MS, Kurek I, Jacob-Wilk D, Delmer DP. Cellulose biosynthesis in plants: from genes to rosettes. Plant Cell Physiol. 2002;43(12):1407–20.

    Article  Google Scholar 

  24. Richmond TA, Somerville CR. The cellulose synthase superfamily. Plant Physiol. 2000;124(2):495–8.

    Article  Google Scholar 

  25. Konishi T, Ohmiya Y, Hayashi T. Evidence that sucrose loaded into the phloem of a poplar leaf is used directly by sucrose synthase associated with various β-glucan synthases in the stem. Plant Physiol. 2004;134(3):1146–52.

    Article  Google Scholar 

  26. Zhang P, Hu HR, Shi SL. Application of hemicellulose. Tianjin Pap Mak. 2006;2:16–8.

    Google Scholar 

  27. Yin ZF, Fan RW. The research progress of plant cell wall. Bull Bot Res. 1999;19(4):407–14.

    Google Scholar 

  28. Xu F, Sun RC, Zhan HY. Progress in non-wood hemicellulose research. Trans Chin Pul Pap. 2003;18(1):145–52.

    Google Scholar 

  29. Jiang TD. Lignin. Beijing: Chemical Industry Press; 2001.

    Google Scholar 

  30. Wei JH, Song YR. Recent advances in study of lignin biosynthesis and manipulation. J Integr Plant Biol. 2001;43(8):771–9.

    Google Scholar 

  31. Lv WJ, Xue CY, Cao CY, Zhang Y. Lignin distribution in wood cell wall and its testing methods. J Beijing Univ. 2010;32(1):136–41.

    Google Scholar 

  32. Xu F, Zhong XC, Sun RC, Jones GLL. Lignin distribution and ultrastructure of Salix psammophila. Trans Chin Pul Pap. 2005;20(1):6–9.

    MATH  Google Scholar 

  33. Wu J, Fukazawa K, Ohtani J. Distribution of syringyl and guaiacyl lignins in hardwoods in relation to habitat and porosity form in wood. Holzforschung-Int J Biol Chem Phys Technol Wood. 1992;46(3):181–6.

    Google Scholar 

  34. Qiu WH, Chen HZ. Structure, function and higher value application of lignin. J Cellul Sci Technol. 2006;14(1):52–9.

    Google Scholar 

  35. Zheng DF, Qiu XQ, Lou HM. The structure of lignin and its chemical modification. Fine Chem. 2005;22(4):249–52.

    Google Scholar 

  36. Tao YZ, Guan YT. Study of chemical composition of lignin and its application. J Cellul Sci Technol. 2003;11(1):42–55.

    Google Scholar 

  37. Li W, Xiong J, Chen XY. Advances in the research of physiological significances and genetic regulation of lignin metabolism. Acta Bot Boreali-Occidentalia Sin. 2003;23(4):675–81.

    Google Scholar 

  38. Geng S, Xu CS, Li YC. Advance in biosynthesis of lignin and its regulation. Acta Bot Boreali-Occidentalia Sin. 2003;23(1):171–81.

    Google Scholar 

  39. Lin ZB, Ma QH, Xu YY. Lignin biosynthesis and its molecular regulation. Prog Nat Sci. 2003;13(5):455–61.

    Google Scholar 

  40. Yu MG, Yang HQ, Zhai H. Lignin and physiological function in plant. J Shandong Agric Univ. 2003;34(1):124–8.

    Google Scholar 

  41. Chen Y, Tan X, Clapham D. Lignin biosynthesis and genetic regulation. Acta Agric Univ Jiangxiensis. 2003;25(4):613–17.

    Google Scholar 

  42. Yu M. Lignin metabolism and its regulation in apple rootstock M. Hupehensis Rehd [dissertation]. Tai’an: Shandong Agricultural University; 2002.

    Google Scholar 

  43. Guo XF, Zhang YL, Liu H. Yearly changes of phenol content in Danxia apple tree. J Fruit Sci. 2004;21(6):606–8.

    MathSciNet  Google Scholar 

  44. Ju ZG, Yan SP. Laiyang pear phenolic substances synthetic regulation and its effect on the quality of fruit. Sci Agric Sin. 1993;26(4):44–8.

    Google Scholar 

  45. Cheng SW, Tang LZ, Xiao Y, Xu X. Pal activity and organic components in basal stem phloem of poplar clones under waterlogging and flooding condition. J Nanjing For Univ. 1997;21(1):51–5.

    Google Scholar 

  46. Chen HM, Liu JY, Ran B, Zhou J, Li T. Dynamics of some related enzymes of tobacco infected with brown spot. J Yunnan Agric Univ. 1995;10(1):1–6.

    Google Scholar 

  47. Zhou BL, Lin GR, Gao YX. The resistance of grafted eggplant to vertillium wilt and its function. J Shenyang Agric Univ. 2000;31(1):57–60.

    Google Scholar 

  48. Suzuki K, Itoh T. The changes in cell wall architecture during lignification of bamboo, Phyllostachys aurea Carr. Trees-Struct Func. 2001;15(3):137–47.

    Article  Google Scholar 

  49. Liu WG, Wang LQ, Bai YH. Research progress in the beneficial elements-silicon for plants. Acta Bot Boreali-Occidentalia Sin. 2003;23(12):2248–53.

    Google Scholar 

  50. Xu CX, Liu ZP, Liu YL. The physiological function of silicon in plants. Plant Physiol Commun. 2004;40(6):753–7.

    Google Scholar 

  51. Ma JF, Yamaji N. Silicon uptake and accumulation in higher plants. Trends Plant Sci. 2006;11(8):392–7.

    Article  Google Scholar 

  52. Wang LJ, Wang YH. Nanostructures SiO2 in plant body. Chin Sci Bull. 2001;46(8):625–32.

    Google Scholar 

  53. Ji XE, Zhang MS, Yu HQ, Bai BZ. Silicon nutrient of plants. Agric Technol. 1998;18(2):11–3.

    Google Scholar 

  54. Yu B, Chen HZ. Effects of steam-exploded fractionation on the structure and distribution of silicon dioxide in corn straw. Trans Chin Soc Agric Eng. 2008;24(10):190–4.

    Google Scholar 

  55. Chen HZ, Yu B. A preparation method of nano-silica by straw. China patent 200710062669. 2007.

    Google Scholar 

  56. Du JY, Bai L, Bai B. Chemical composition and basic characteristics of pectin. Agric Technol. 2002;22(5):72–6.

    Google Scholar 

  57. Hardell H, Leary G, Stoll M, Westermark U. Variations in lignin structure in defined morphological parts of birch [Betula verrucosa, middle lamella, primary wall, secondary wall, ray cells, vessels]. Svensk papperstidning. 1980;83(2):44–9.

    Google Scholar 

  58. Lu SM, Xi Y, Jin YF, Zhang Y. Structure and function of plant polygalacturonases. Acta Hortic Sin. 1999;26(6):369–75.

    Google Scholar 

  59. Xue CH, Zhang YQ, Li ZJ, Li ZJ. Recent development of pectin and pectolytic enzyme. J Food Sci Biotechnol. 2005;24(6):94–9.

    Google Scholar 

  60. Xi W, Li XP. An investigation to reaction properties of hydrogen peroxide with β-O-4 lignin quinoid chromophoric group. China Pulp Pap Ind. 2008;29(16):32–5.

    Google Scholar 

  61. Li XP, Wu S. Research development of the reaction characteristic between lignin quinonoid chromophoric group and hydrogen peroxide. J Cellul Sci Technol. 2006;14(4):52–6.

    Google Scholar 

  62. Han YJ, Chen HZ. Plant cell wall proteins & enzymatic hydrolysis of lignocellulose. Prog Chem. 2007;19(7/8):1153–8.

    Google Scholar 

  63. Li LC, Wang X, Jing JH. The existence of expansion and its properties in the hypocotyls of soybean seedlings. Acta Bot Sin. 1998;40(7):627–34.

    Google Scholar 

  64. Lee SJ, Saravanan RS, Damasceno C, Yamane H, Kim BD, Rose JKC. Digging deeper into the plant cell wall proteome. Plant Physiol Biochem. 2004;42(12):979–88.

    Article  Google Scholar 

  65. Li XB, Yang ZH. Structure, function, crossing linking and biosythesis of extensions. Plant Physiol Commun. 1990;3:7–13.

    Google Scholar 

  66. Sandgren M, Ståhlberg J, Mitchinson C. Structural and biochemical studies of GH family 12 cellulases: improved thermal stability, and ligand complexes. Prog Biophys Mol Biol. 2005;89(3):246–91.

    Article  Google Scholar 

  67. Jamet E, Canut H, Boudart G, Pont-Lezica RF. Cell wall proteins: a new insight through proteomics. Trends Plant Sci. 2006;11(1):33–9.

    Article  Google Scholar 

  68. Tong B, Rao JP, Ren XL, Li JR. Studying progress of plant cell wall proteins expansions. Chin Agric Sci Bull. 2005;21(9):112–15.

    Google Scholar 

  69. Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, Shieh M, Cosgrove DJ. Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. Proc Natl Acad Sci U S A. 1995;92(20):9245–9.

    Article  Google Scholar 

  70. Whitney SEC, Gidley MJ, McQueen‐Mason SJ. Probing expansin action using cellulose/hemicellulose composites. Plant J. 2001;22(4):327–34.

    Article  Google Scholar 

  71. Han YJ, Chen HZ. Characterization of β-glucosidase from corn stover and its application in simultaneous saccharification and fermentation. Bioresour Technol. 2008;99(14):6081–7.

    Article  Google Scholar 

  72. Lu D, Chen HZ, Ma RY. Effect of straw apoplast protein on cellulase activity. Chin J Biotechnol. 2006;22(2):257–62.

    Article  Google Scholar 

  73. Han YJ, Chen HZ. Synergism between corn stover protein and cellulase. Enzyme Microb Technol. 2007;41(5):638–45.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Chemical Industry Press, Beijing and Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Chen, H. (2014). Chemical Composition and Structure of Natural Lignocellulose. In: Biotechnology of Lignocellulose. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-6898-7_2

Download citation

Publish with us

Policies and ethics