Skip to main content

Evolutionary Divergence of Lepidopteran and Trichopteran Fibroins

  • Chapter
  • First Online:
Biotechnology of Silk

Part of the book series: Biologically-Inspired Systems ((BISY,volume 5))

Abstract

Lepidopteran insects produce and secrete silk proteins mainly for cocoon formation. The lepidopteran silks generally consist of several components. Fibroins are a major component of the silks. So far as we know, two different types of fibroins have been described for the silk fiber construction. One is known in the saturniid silkmoth, wherein only one component, fibroin, forms homodimers with a disulfide bond and representing a unit of silk fiber formation (Tamura T, Inoue H, Suzuki Y, Mol Gen Genet 206:189–195, 1987; Tanaka K, Mizuno S, Insect Biochem Mol Biol 31:665–677, 2001). The other mode of fiber construction is the fibroin complex that consists of three components, that is, the fibroin heavy chain (fhc; about 350 kDa), the fibroin light chain (flc; 26 kDa) and P25 (or fibrohexamerin) (about 30 kDa) (Tanaka K, Mori K, Mizuno S, Biochem (Tokyo) 114:1–4, 1993, Tanaka K, Inoue S, Mizuno S, Insect Biochem Mol Biol 29:269–276, 1999a). The representative of this mode is that of Bombyx mori.

We present specific features of lepidopteran fibroins by highlighting Antheraea and Bombyx fibroins. Particularly, the two types of fibroins consist of different mode of repetitive structures. We describe details of these features. In addition, we illustrate structure and conformation for other lepidopteran and trichopteran fibroin system. As Trichoptera is the sister order of Lepidoptera, it is very interesting to compare them from the viewpoint of the evolution of silk proteins. Finally, we discuss mode of fibroin evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Chaitanya RK, Sridevi P, Senthilkumaran B, Gupta AD (2011) 20-Hydroxyecdysone regulation of H-fibroin gene in the stored grain pest Corcyra cephalonica, during the last instar larval development. Steroids 76:125–134

    Article  PubMed  CAS  Google Scholar 

  • Chevillard M, Couble P, Prudhomme JC (1986) Complete nucleotide sequence of the gene encoding the Bombyx mori silkprotein P25 and predicted amino acid sequence of the protein. Nucleic Acids Res 14:6341–6342

    Article  PubMed  CAS  Google Scholar 

  • Collin MA, Mita K, Sehnal F, Hayashi CY (2010) Molecular evolution of lepidopteran silk proteins: insights from the ghost moth, Hepialus californicus. J Mol Evol 70:519–529

    Article  PubMed  CAS  Google Scholar 

  • Datta A, Ghosh AK, Kundu SC (2001) Differential expression of the fibroin gene in developmental stages of silkworm, Antheraea mylitta (Saturniidae). Comp Biochem Physiol B 129:197–204

    Article  PubMed  CAS  Google Scholar 

  • Fedič R, Žurovec M, Sehnal F (2003) Correlation between fibroin amino acid sequence and physical silk properties. J Biol Chem 278:35255–35264

    Article  PubMed  Google Scholar 

  • Fraser RDB, MacRae TP (1973) Conformation in fibrous proteins and related synthetic polypeptide. Academic, San Diego

    Google Scholar 

  • Friedlander TP, Horst KR, Regier JC, Mitter C, Peigler RS, Fang QQ (1998) Two nuclear genes yield concordant relationships within Attacini (Lepidoptera: Saturniidae). Mol Phylogenet Evol 9:131–140

    Article  PubMed  CAS  Google Scholar 

  • Hwang J-S, Lee J-S, Goo T-W, Yun E-Y, Lee K-S, Kim Y-S, Jin B-R, Lee S-M, Kim KL-Y, Kang S-W, Suh D-S (2001) Cloning of the fibroin gene from the oak silkworm, Antheraea yamamai and its complete sequence. Biotechnol Lett 23:1321–1326

    Article  CAS  Google Scholar 

  • Hynes RO (1987) Integrins: a family of cell surface receptors. Cell 48:549–554

    Article  PubMed  CAS  Google Scholar 

  • Inoue S, Tanaka K, Arisaka F, Kimura S, Ohtomo K, Mizuno S (2000) Silk fibroin of Bombyx mori is secreted, assembling a high molecular mass elementary unit consisting of H-chain, L-chain, and P25, with a 6:6:1 molar ratio. J Biol Chem 275:40517–40528

    Article  PubMed  CAS  Google Scholar 

  • Kikuchi Y, Mori K, Suzuki S, Yamaguchi K, Mizuno S (1992) Structure of the Bombyx mori fibroin light-chain-encoding gene: upstream sequence elements common to the light and heavy chain. Gene 110:151–158

    Article  PubMed  CAS  Google Scholar 

  • Kirimura J (1962) Studies on amino acid composition and chemical structure of silk protein by microbiological determination. Bull Sericul Exp Sta 17:447–522 (in Japanese)

    CAS  Google Scholar 

  • Kristensen NP (1975) The phylogeny of hexapod “orders”. A critical review of recent accounts. Zeitshrift für Zoologische Systematik und Evolutionsforschung 13:1–44

    Article  Google Scholar 

  • Kristensen NP (1991) Phylogeny of extant hexapods. In: Naumann ID (ed) The insects of Australia; a text for students and research workers, vol 1, 2nd edn. Cornell University Press, Ithaca, pp 125–140

    Google Scholar 

  • Lam ST, Stahl MM, McMilin KD, Stahl FW (1974) Rec-mediated recombinational hot spot activity in bacteriophage lambda II: a mutation which causes hot spot activity. Genetics 77:425–433

    PubMed  CAS  Google Scholar 

  • Maning RF, Gage LP (1980) Internal structure of the silk fibroin gene of Bombyx mori II. Remarkable polymorphism of the organisation of crystalline and amorphus coding sequences. J Biol Chem 255:9451–9457

    Google Scholar 

  • Mori K, Tanaka K, Kikuchi Y, Waga M, Waga S, Mizuno S (1995) Production of a chimeric fibroin light-chain polypeptide in a fibroin secretion-deficient naked pupa mutant of the silkworm Bombyx mori. J Mol Biol 251:217–228

    Article  PubMed  CAS  Google Scholar 

  • Sehnal F, Sutherland T (2008) Silks produced by insect labial glands. Prion 2:145–153

    Article  PubMed  Google Scholar 

  • Sehnal F, Žurovec M (2004) Construction of silk fiber core in Lepidoptera. Biomacromolecules 5:666–667

    Article  PubMed  CAS  Google Scholar 

  • Sezutsu H, Yukuhiro K (2000) Dynamic rearrangement within the Antheraea pernyi silk fibroin gene is associated with four types of repetitive units. J Mol Evol 51:329–338

    PubMed  CAS  Google Scholar 

  • Sezutsu H, Tamura T, Yukuhiro K (2008a) Leucine-rich fibroin gene of the Japanese wild silkmoth, Rhodinia fugax Lepidoptera (Saturniidae). Eur J Entomol 105:561–566

    CAS  Google Scholar 

  • Sezutsu H, Tamura T, Yukuhiro K (2008b) Uniform size of leucine-rich repeats in a wild silk moth Saturnia japonica (Lepidoptera Saturniidae) fibroin. Int J Wild Silkmoth Silk 13:53–60

    Google Scholar 

  • Sezutsu H, Uchino K, Kobayashi I, Tamura T, Yukuhiro K (2010) Extensive sequence rearrangements and length polymorphism in fibroin genes in the wild silkmoth, Antheraea yamamai (Lepidoptera, Saturniidae). Int J Wild Silkmoth Silk 15:35–50

    Google Scholar 

  • Takei F, Kikuchi Y, Kikuchi A, Mizuno S, Shimura K (1987) Further evidence for importance of the subunit combination of silkfibroin in its efficient secretion from the posterior silk gland cells. J Cell Biol 105:175–180

    Article  PubMed  CAS  Google Scholar 

  • Tamura T, Kubota T (1989) A determination of molecular weight of fibroin polypeptides in the saturniid silkworms, Antheraea yamamai, Antheraea pernyi and Philosamia cynthia ricini by SDS PAGE. In: Akai H, Wu ZS (eds) Wild silkmoth ’88. International Society for Wild Silkmoths, Tokyo, pp 67–72

    Google Scholar 

  • Tamura T, Inoue H, Suzuki Y (1987) The fibroin genes of the Antheraea yamamai and Bombyx mori are different in the core regions but reveal a striking sequences similarity in their 5′-ends and 5′-flanking regions. Mol Gen Genet 206:189–195

    Article  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Mizuno S (2001) Homologues of fibroin L-chain and P25 of Bombyx mori are present in Dendrolimus spectabilis and Papilio xuthus but not detectable in Antheraea yamamai. Insect Biochem Mol Biol 31:665–677

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Mori K, Mizuno S (1993) Immunological identification of the major disulfide-linked light component of silk fibroin. Biochem (Tokyo) 114:1–4

    CAS  Google Scholar 

  • Tanaka K, Inoue S, Mizuno S (1999a) Hydrophobic interaction of P25, containing Asn-linked oligosaccharide chains, with the H–L complex of silk fibroin produced by Bombyx mori. Insect Biochem Mol Biol 29:269–276

    Article  PubMed  CAS  Google Scholar 

  • Tanaka K, Kajiyama N, Ishikura K, Waga S, Kikuchi A, Ohtomo K, Takagi T, Mizuno S (1999b) Determination of the site of disulfide linkage between heavy and light chains of silkfibroin produced by Bombyx mori. Biochim Biophys Acta 1432:92–103

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1997) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  Google Scholar 

  • Tsujimoto Y, Suzuki Y (1979) The DNA sequence of Bombyx mori fibroin gene including the 5′ flanking, mRNA coding, entire intervening and fibroin protein coding regions. Cell 18:591–600

    Article  PubMed  CAS  Google Scholar 

  • Wheeler WC, Whiting M, Wheeler QD, Carpenter JM (2001) The phylogeny of the extant hexapod orders. Cladistics 17:113–169

    Article  Google Scholar 

  • Whelan S, Goldman N (2001) A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol 18:691–699

    Article  PubMed  CAS  Google Scholar 

  • Whiiting MF (2002) Phylogeny of the holometabolous insect orders: molecular evidence. Zool Scripta 31:3–15

    Article  Google Scholar 

  • Yamaguchi K, Kikuchi Y, Takagi T, Kikuchi A, Oyama F, Shimura K, Mizuno S (1989) Primary structure of the silk fibroin light chain determined by cDNA sequencing and peptide analysis. J Mol Biol 210:127–139

    Article  PubMed  CAS  Google Scholar 

  • Yonemura N, Sehnal F (2006) The design of silk fiber composition in moths has been conserved for more than 150 million years. J Mol Evol 63:42–53

    Article  PubMed  CAS  Google Scholar 

  • Yonemura N, Sehnal F, Mita K, Tamura T (2006) Protein composition of silk filaments spun under water by caddisfly larvae. Biomacromolecules 7:3370–3378

    Article  PubMed  CAS  Google Scholar 

  • Yonemura N, Mita K, Tamura T, Sehnal F (2009) Conservation of silk genes in Trichoptera and Lepidoptera. J Mol Evol 68:641–653

    Article  PubMed  CAS  Google Scholar 

  • Yukuhiro K, Kanda T, Tamura T (1997) Preferential codon usage and two types of repetitive motifs in the fibroin gene of the Chinese oak silkworm, Antheraea pernyi. Insect Mol Biol 6:89–95

    Article  PubMed  CAS  Google Scholar 

  • Zhou C-Z, Confalonieri F, Medina N, Zivanovic Y, Esnault C, Yang T, Jacquet M, Janin J, Duguet M, Perasso R, Li Z-G (2000) Fine organization of Bombyx mori fibroin heavy chain gene. Nucleic Acid Res 28:2413–2419

    Article  PubMed  CAS  Google Scholar 

  • Zhou C-Z, Confalonieri F, Jacquet M, Perasso R, Li Z-G, Janin J (2001) Silk fibroin: structural implications of a remarkable amino acid sequence. Proteins 44:119–122

    Article  PubMed  CAS  Google Scholar 

  • Žurovec M, Sehnal F (2002) Unique molecular architecture of silkfibroin in the waxmoth, Galleria mellonella. J Biol Chem 277:22639–22647

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

We thank Prof. Tetsuo Asakura for his encouragement. We also express our thanks to Prof. Thomas A. Miller for his advice for improving our English writing. We thank Prof. František Sehnal for his critical reading and comments and for his discussion and guidance to Naoyuki Yonemura. We also appreciate Dr. Toshiki Tamura for their discussion and guidance to Naoyuki Yonemura.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Yukuhiro .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Yukuhiro, K., Sezutsu, H., Yonemura, N. (2014). Evolutionary Divergence of Lepidopteran and Trichopteran Fibroins. In: Asakura, T., Miller, T. (eds) Biotechnology of Silk. Biologically-Inspired Systems, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7119-2_2

Download citation

Publish with us

Policies and ethics