Skip to main content

Selection of Molecular Targets for Drug Development Against Trypanosomatids

  • Chapter
  • First Online:
Proteins and Proteomics of Leishmania and Trypanosoma

Part of the book series: Subcellular Biochemistry ((SCBI,volume 74))

Abstract

Trypanosomatid parasites are a group of flagellated protozoa that includes the genera Leishmania and Trypanosoma, which are the causative agents of diseases (leishmaniases, sleeping sickness and Chagas disease) that cause considerable morbidity and mortality, affecting more than 27 million people worldwide. Today no effective vaccines for the prevention of these diseases exist, whereas current chemotherapy is ineffective, mainly due to toxic side effects of current drugs and to the emergence of drug resistance and lack of cost effectiveness. For these reasons, rational drug design and the search of good candidate drug targets is of prime importance. The search for drug targets requires a multidisciplinary approach. To this end, the completion of the genome project of many trypanosomatid species gives a vast amount of new information that can be exploited for the identification of good drug candidates with a prediction of “druggability” and divergence from mammalian host proteins. In addition, an important aspect in the search for good drug targets is the “target identification” and evaluation in a biological pathway, as well as the essentiality of the gene in the mammalian stage of the parasite, which is provided by basic research and genetic and proteomic approaches. In this chapter we will discuss how these bioinformatic tools and experimental evaluations can be integrated for the selection of candidate drug targets, and give examples of metabolic and signaling pathways in the parasitic protozoa that can be exploited for rational drug design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AK:

Adenosine kinase

ALD:

Fructose 1,6 aldolase

APRT:

Adenine phopsphoribosyltransferase

CatB:

Cathepsin B

CDK:

Cyclin dependent kinase

CNS:

Central Nervous System

CPA:

Cysteine proteinase A

CPB:

Cysteine proteinase B

CRK:

cdc2 related kinase

CYC:

Cyclin

CYP51:

Cytochrome P-450 51

DHFR:

Dihydrofolate reductase

ECK1:

ERK-like, CRK-like Kinase-1

ENO:

Enolase

G3DPH:

Glycerol-3-phosphate dehydrogenase

GD3DPH:

Glyceraldehyde 3-phosphate dehydrogenase

GK:

Glycerol kinase

GSH:

Glutathione

GSK-3:

Glycogen synthase kinase 3

GSpS:

Glutathionylspermidine

HAT:

Human African trypanosomiasis

HGPRT:

Hypoxanthine guanine phopsphoribosyltransferase

HK:

Hexokinase

kDNA:

Kinetoplast DNA

MPK:

Mitogen activated kinase

PFK:

Phosphofructose kinase

PGI:

Phosphoglucose isomerase

PGK:

Phosphoglycerate kinase

PGM:

Phosphoglycerate mutase

PK:

Protein kinase

POS:

Posaconazole

PTR:

Pteridine reductase

PYK:

Pyruvate kinase

SMT:

Δ24(15)-sterol methyltransferase

SQS:

Squalene synthatase

STE7:

Signaling terminal 7 extension

TPI:

Triose phosphate isomerase

TryR:

Trypanothione reductase

TryS:

Trypanothione synthatase

TS:

Thymidylate synthase

TXN:

Tryparedoxin

WHO:

World Health Organization

XPRT:

Xanthine phopsphoribosyltransferase

References

  • Abdulla MH, O’Brien T, Mackey ZB, Sajid M, Grab DJ, McKerrow JH (2008) RNA interference of Trypanosoma brucei cathepsin B and L affects disease progression in a mouse model. PLoS Negl Trop Dis 2:e298

    PubMed  Google Scholar 

  • Al-Abdely HM, Graybill JR, Loebenberg D, Melby PC (1999) Efficacy of the triazole SCH 56592 against Leishmania amazonensis and Leishmania donovani in experimental murine cutaneous and visceral leishmaniases. Antimicrob Agents Chemother 43:2910–2914

    PubMed  CAS  Google Scholar 

  • Alexander J, Coombs GH, Mottram JC (1998) Leishmania mexicana cysteine proteinase-deficient mutants have attenuated virulence for mice and potentiate a Th1 response. J Immunol 161:6794–6801

    PubMed  CAS  Google Scholar 

  • Alves-Ferreira M, Guimaraes AC, Capriles PV, Dardenne LE, Degrave WM (2009) A new approach for potential drug target discovery through in silico metabolic pathway analysis using Trypanosoma cruzi genome information. Mem Inst Oswaldo Cruz 104:1100–1110

    PubMed  CAS  Google Scholar 

  • Ambit A, Fasel N, Coombs GH, Mottram JC (2008) An essential role for the Leishmania major metacaspase in cell cycle progression. Cell Death Differ 15:113–122

    PubMed  CAS  Google Scholar 

  • Arsenieva D, Appavu BL, Mazock GH, Jeffery CJ (2009) Crystal structure of phosphoglucose isomerase from Trypanosoma brucei complexed with glucose-6-phosphate at 1.6 A resolution. Proteins 74:72–80

    PubMed  CAS  Google Scholar 

  • Aslett M, Aurrecoechea C, Berriman M, Brestelli J, Brunk BP, Carrington M, Depledge DP, Fischer S, Gajria B, Gao X, Gardner MJ, Gingle A, Grant G, Harb OS, Heiges M, Hertz-Fowler C, Houston R, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Logan FJ, Miller JA, Mitra S, Myler PJ, Nayak V, Pennington C, Phan I, Pinney DF, Ramasamy G, Rogers MB, Roos DS, Ross C, Sivam D, Smith DF, Srinivasamoorthy G, Stoeckert CJ Jr, Subramanian S, Thibodeau R, Tivey A, Treatman C, Velarde G, Wang H (2010) TriTrypDB: a functional genomic resource for the Trypanosomatidae. Nucleic Acids Res 38:D457–462

    PubMed  CAS  Google Scholar 

  • Bakshi RP, Shapiro TA (2004) RNA interference of Trypanosoma brucei topoisomerase IB: both subunits are essential. Mol Biochem Parasitol 136:249–255

    PubMed  CAS  Google Scholar 

  • Balana-Fouce R, Redondo CM, Perez-Pertejo Y, Diaz-Gonzalez R, Reguera RM (2006) Targeting atypical trypanosomatid DNA topoisomerase I. Drug Discov Today 11:733–740

    PubMed  CAS  Google Scholar 

  • Banerjee S, Sen A, Das P, Saha P (2006) Leishmania donovani cyclin 1 (LdCyc1) forms a complex with cell cycle kinase subunit CRK3 (LdCRK3) and is possibly involved in S-phase-related activities. FEMS Microbiol Lett 256:75–82

    PubMed  CAS  Google Scholar 

  • Barr SC, Warner KL, Kornreic BG, Piscitelli J, Wolfe A, Benet L, McKerrow JH (2005) A cysteine protease inhibitor protects dogs from cardiac damage during infection by Trypanosoma cruzi. Antimicrob Agents Chemother 49:5160–5161

    PubMed  CAS  Google Scholar 

  • Beck JT, Ullman B (1990) Nutritional requirements of wild-type and folate transport-deficient Leishmania donovani for pterins and folates. Mol Biochem Parasitol 43:221–230

    PubMed  CAS  Google Scholar 

  • Bengs F, Scholz A, Kuhn D, Wiese M (2005) LmxMPK9, a mitogen-activated protein kinase homologue affects flagellar length in Leishmania mexicana. Mol Microbiol 55:1606–1615

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Michels PA, Hol WG (1997) Synergistic effects of substrate-induced conformational changes in phosphoglycerate kinase activation. Nature 385:275–278

    PubMed  CAS  Google Scholar 

  • Bernstein BE, Michels PA, Kim H, Petra PH, Hol WG (1998) The importance of dynamic light scattering in obtaining multiple crystal forms of Trypanosoma brucei PGK. Protein Sci 7:504–507

    PubMed  CAS  Google Scholar 

  • Berriman M, Ghedin E, Hertz-Fowler C, Blandin G, Renauld H, Bartholomeu DC, Lennard NJ, Caler E, Hamlin NE, Haas B, Bohme U, Hannick L, Aslett MA, Shallom J, Marcello L, Hou L, Wickstead B, Alsmark UC, Arrowsmith C, Atkin RJ, Barron AJ, Bringaud F, Brooks K, Carrington M, Cherevach I, Chillingworth TJ, Churcher C, Clark LN, Corton CH, Cronin A, Davies RM, Doggett J, Djikeng A, Feldblyum T, Field MC, Fraser A, Goodhead I, Hance Z, Harper D, Harris BR, Hauser H, Hostetler J, Ivens A, Jagels K, Johnson D, Johnson J, Jones K, Kerhornou AX, Koo H, Larke N, Landfear S, Larkin C, Leech V, Line A, Lord A, Macleod A, Mooney PJ, Moule S, Martin DM, Morgan GW, Mungall K, Norbertczak H, Ormond D, Pai G, Peacock CS, Peterson J, Quail MA, Rabbinowitsch E, Rajandream MA, Reitter C, Salzberg SL, Sanders M, Schobel S, Sharp S, Simmonds M, Simpson AJ, Tallon L, Turner CM, Tait A, Tivey AR, Van Aken S, Walker D, Wanless D, Wang S, White B, White O, Whitehead S, Woodward J, Wortman J, Adams MD, Embley TM, Gull K, Ullu E, Barry JD, Fairlamb AH, Opperdoes F, Barrell BG, Donelson JE, Hall N, Fraser CM, Melville SE, El-Sayed NM (2005) The genome of the African trypanosome Trypanosoma brucei. Science 309:416–422

    PubMed  CAS  Google Scholar 

  • Bodley AL, Wani MC, Wall ME, Shapiro TA (1995) Antitrypanosomal activity of camptothecin analogs. Structure-activity correlations. Biochem Pharmacol 50:937–942

    PubMed  CAS  Google Scholar 

  • Boitz JM, Ullman B, Jardim A, Carter NS (2012) Purine salvage in Leishmania: complex or simple by design? Trends Parasitol 28:345–352

    PubMed  CAS  Google Scholar 

  • Boukai LK, da Costa-Pinto D, Soares MJ, McMahon-Pratt D, Traub-Cseko YM (2000) Trafficking of cysteine proteinase to Leishmania lysosomes: lack of involvement of glycosylation. Mol Biochem Parasitol 107:321–325

    PubMed  CAS  Google Scholar 

  • Brak K, Doyle PS, McKerrow JH, Ellman JA (2008) Identification of a new class of nonpeptidic inhibitors of cruzain. J Am Chem Soc 130:6404–6410

    PubMed  CAS  Google Scholar 

  • Bryson K, Besteiro S, McGachy HA, Coombs GH, Mottram JC, Alexander J (2009) Overexpression of the natural inhibitor of cysteine peptidases in Leishmania mexicana leads to reduced virulence and a Th1 response. Infect Immun 77:2971–2978

    PubMed  CAS  Google Scholar 

  • Buckner FS, Griffin JH, Wilson AJ, Van Voorhis WC (2001) Potent anti-Trypanosoma cruzi activities of oxidosqualene cyclase inhibitors. Antimicrob Agents Chemother 45:1210–1215

    PubMed  CAS  Google Scholar 

  • Buckner FS, Nguyen LN, Joubert BM, Matsuda SP (2000) Cloning and heterologous expression of the Trypanosoma brucei lanosterol synthase gene. Mol Biochem Parasitol 110:399–403

    PubMed  CAS  Google Scholar 

  • Burri C, Brun R (2003) Eflornithine for the treatment of human African trypanosomiasis. Parasitol Res 90(Supp 1):S49–52

    PubMed  Google Scholar 

  • Caceres AJ, Portillo R, Acosta H, Rosales D, Quinones W, Avilan L, Salazar L, Dubourdieu M, Michels PA, Concepcion JL (2003) Molecular and biochemical characterization of hexokinase from Trypanosoma cruzi. Mol Biochem Parasitol 126:251–262

    PubMed  CAS  Google Scholar 

  • Caffrey CR, Scory S, Steverding D (2000) Cysteine proteinases of trypanosome parasites: novel targets for chemotherapy. Curr Drug Targets 1:155–162

    PubMed  CAS  Google Scholar 

  • Castro JA, Diaz de Toranzo EG (1988) Toxic effects of nifurtimox and benznidazole, two drugs used against American trypanosomiasis (Chagas’ disease). Biomed Environ Sci 1:19–33

    PubMed  CAS  Google Scholar 

  • Cazzulo JJ (2002) Proteinases of Trypanosoma cruzi: potential targets for the chemotherapy of Chagas disease. Curr Top Med Chem 2:1261–1271

    PubMed  CAS  Google Scholar 

  • Ceylan S, Seidel V, Ziebart N, Berndt C, Dirdjaja N, Krauth-Siegel RL (2010) The dithiol glutaredoxins of African trypanosomes have distinct roles and are closely linked to the unique trypanothione metabolism. J Biol Chem 285:35224–35237

    PubMed  CAS  Google Scholar 

  • Chambers JW, Kearns MT, Morris MT, Morris JC (2008a) Assembly of heterohexameric trypanosome hexokinases reveals that hexokinase 2 is a regulable enzyme. J Biol Chem 283:14963–14970

    PubMed  CAS  Google Scholar 

  • Chambers JW, Fowler ML, Morris MT, Morris JC (2008b) The anti-trypanosomal agent lonidamine inhibits Trypanosoma brucei hexokinase 1. Mol Biochem Parasitol 158:202–207

    PubMed  CAS  Google Scholar 

  • Champoux JJ, Dulbecco R (1972) An activity from mammalian cells that untwists superhelical DNA–a possible swivel for DNA replication (polyoma-ethidium bromide-mouse-embryo cells-dye binding assay). Proc Natl Acad Sci USA 69:143–146

    PubMed  CAS  Google Scholar 

  • Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13

    PubMed  Google Scholar 

  • Chudzik DM, Michels PA, de Walque S, Hol WG (2000) Structures of type 2 peroxisomal targeting signals in two trypanosomatid aldolases. J Mol Biol 300:697–707

    PubMed  CAS  Google Scholar 

  • Cleghorn LA, Woodland A, Collie IT, Torrie LS, Norcross N, Luksch T, Mpamhanga C, Walker RG, Mottram JC, Brenk R, Frearson JA, Gilbert IH, Wyatt PG (2011) Identification of inhibitors of the Leishmania cdc2-related protein kinase CRK3. ChemMedChem 6:2214–2224

    PubMed  CAS  Google Scholar 

  • Coppens I, Baudhuin P, Opperdoes FR, Courtoy PJ (1988) Receptors for the host low density lipoproteins on the hemoflagellate Trypanosoma brucei: purification and involvement in the growth of the parasite. Proc Natl Acad Sci USA 85:6753–6757

    PubMed  CAS  Google Scholar 

  • Cordeiro AT, Michels PA, Delboni LF, Thiemann OH (2004) The crystal structure of glucose-6-phosphate isomerase from Leishmania mexicana reveals novel active site features. Eur J Biochem 271:2765–2772

    PubMed  CAS  Google Scholar 

  • Croft SL, Sundar S, Fairlamb AH (2006) Drug resistance in leishmaniasis. Clin Microbiol Rev 19:111–126

    PubMed  CAS  Google Scholar 

  • Crowther GJ, Shanmugam D, Carmona SJ, Doyle MA, Hertz-Fowler C, Berriman M, Nwaka S, Ralph SA, Roos DS, Van Voorhis WC, Aguero F (2010) Identification of attractive drug targets in neglected-disease pathogens using an in silico approach. PLoS Negl Trop Dis 4:e804

    PubMed  Google Scholar 

  • Das BB, Sen N, Dasgupta SB, Ganguly A, Das R, Majumder HK (2006a) Topoisomerase research of kinetoplastid parasite Leishmania, with special reference to development of therapeutics. Indian J Med Res 123:221–232

    PubMed  CAS  Google Scholar 

  • Das BB, Sen N, Ganguly A, Majumder HK (2004) Reconstitution and functional characterization of the unusual bi-subunit type I DNA topoisomerase from Leishmania donovani. FEBS Lett 565:81–88

    PubMed  CAS  Google Scholar 

  • Das BB, Sen N, Roy A, Dasgupta SB, Ganguly A, Mohanta BC, Dinda B, Majumder HK (2006b) Differential induction of Leishmania donovani bi-subunit topoisomerase I-DNA cleavage complex by selected flavones and camptothecin: activity of flavones against camptothecin-resistant topoisomerase I. Nucleic Acids Res 34:1121–1132

    PubMed  CAS  Google Scholar 

  • Datta AK, Bhaumik D, Chatterjee R (1987) Isolation and characterization of adenosine kinase from Leishmania donovani. J Biol Chem 262:5515–5521

    PubMed  CAS  Google Scholar 

  • Dax C, Duffieux F, Chabot N, Coincon M, Sygusch J, Michels PA, Blonski C (2006) Selective irreversible inhibition of fructose 1,6-bisphosphate aldolase from Trypanosoma brucei. J Med Chem 49:1499–1502

    PubMed  CAS  Google Scholar 

  • de AS Navarro MV, Gomes Dias SM, Mello LV, da Silva Giotto MT, Gavalda S, Blonski C, Garratt RC, Rigden DJ (2007) Structural flexibility in Trypanosoma brucei enolase revealed by X-ray crystallography and molecular dynamics. FEBS J 274:5077–5089

    Google Scholar 

  • de Koning HP, Bridges DJ, Burchmore RJ (2005) Purine and pyrimidine transport in pathogenic protozoa: from biology to therapy. FEMS Microbiol Rev 29:987–1020

    PubMed  Google Scholar 

  • De Koning HP (2008) Ever increasing complexities of diamidine and arsenical cross resistance in African trypanosomes. Trends Parasitol 24:345–349

    Google Scholar 

  • De Sousa JM, Lareau SM, Pearson RD, Carvalho EM, Mann BJ, Jeronimo SM (2003) Characterization of Leishmania chagasi DNA topoisomerase II: a potential chemotherapeutic target. Scand J Infect Dis 35:826–829

    PubMed  Google Scholar 

  • de Souza W, Rodrigues JC (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis 2009:642502

    PubMed  Google Scholar 

  • Deterding A, Dungey FA, Thompson KA, Steverding D (2005) Anti-trypanosomal activities of DNA topoisomerase inhibitors. Acta Trop 93:311–316

    PubMed  CAS  Google Scholar 

  • Domenicali Pfister D, Burkard G, Morand S, Renggli CK, Roditi I, Vassella E (2006) A mitogen-activated protein kinase controls differentiation of bloodstream forms of Trypanosoma brucei. Eukaryot Cell 5:1126–1135

    PubMed  Google Scholar 

  • Douc-Rasy S, Riou JF, Ahomadegbe JC, Riou G (1988) ATP-independent DNA topoisomerase II as potential drug target in trypanosomes. Biol Cell 64:145–156

    PubMed  CAS  Google Scholar 

  • Doyle MA, MacRae JI, De Souza DP, Saunders EC, McConville MJ, Likic VA (2009) LeishCyc: a biochemical pathways database for Leishmania major. BMC Syst Biol 3:57

    PubMed  Google Scholar 

  • Doyle PS, Zhou YM, Engel JC, McKerrow JH (2007) A cysteine protease inhibitor cures Chagas’ disease in an immunodeficient-mouse model of infection. Antimicrob Agents Chemother 51:3932–3939

    PubMed  CAS  Google Scholar 

  • Drew ME, Morris JC, Wang Z, Wells L, Sanchez M, Landfear SM, Englund PT (2003) The adenosine analog tubercidin inhibits glycolysis in Trypanosoma brucei as revealed by an RNA interference library. J Biol Chem 278:46596–46600

    PubMed  CAS  Google Scholar 

  • Du X, Guo C, Hansell E, Doyle PS, Caffrey CR, Holler TP, McKerrow JH, Cohen FE (2002) Synthesis and structure-activity relationship study of potent trypanocidal thio semicarbazone inhibitors of the trypanosomal cysteine protease cruzain. J Med Chem 45:2695–2707

    PubMed  CAS  Google Scholar 

  • Eakin AE, Guerra A, Focia PJ, Torres-Martinez J, Craig SP 3rd (1997) Hypoxanthine phosphoribosyltransferase from Trypanosoma cruzi as a target for structure-based inhibitor design: crystallization and inhibition studies with purine analogs. Antimicrob Agents Chemother 41:1686–1692

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Bartholomeu DC, Nilsson D, Aggarwal G, Tran AN, Ghedin E, Worthey EA, Delcher AL, Blandin G, Westenberger SJ, Caler E, Cerqueira GC, Branche C, Haas B, Anupama A, Arner E, Aslund L, Attipoe P, Bontempi E, Bringaud F, Burton P, Cadag E, Campbell DA, Carrington M, Crabtree J, Darban H, da Silveira JF, de Jong P, Edwards K, Englund PT, Fazelina G, Feldblyum T, Ferella M, Frasch AC, Gull K, Horn D, Hou L, Huang Y, Kindlund E, Klingbeil M, Kluge S, Koo H, Lacerda D, Levin MJ, Lorenzi H, Louie T, Machado CR, McCulloch R, McKenna A, Mizuno Y, Mottram JC, Nelson S, Ochaya S, Osoegawa K, Pai G, Parsons M, Pentony M, Pettersson U, Pop M, Ramirez JL, Rinta J, Robertson L, Salzberg SL, Sanchez DO, Seyler A, Sharma R, Shetty J, Simpson AJ, Sisk E, Tammi MT, Tarleton R, Teixeira S, Van Aken S, Vogt C, Ward PN, Wickstead B, Wortman J, White O, Fraser CM, Stuart KD, Andersson B (2005a) The genome sequence of Trypanosoma cruzi, etiologic agent of Chagas disease. Science 309:409–415

    PubMed  CAS  Google Scholar 

  • El-Sayed NM, Myler PJ, Blandin G, Berriman M, Crabtree J, Aggarwal G, Caler E, Renauld H, Worthey EA, Hertz-Fowler C, Ghedin E, Peacock C, Bartholomeu DC, Haas BJ, Tran AN, Wortman JR, Alsmark UC, Angiuoli S, Anupama A, Badger J, Bringaud F, Cadag E, Carlton JM, Cerqueira GC, Creasy T, Delcher AL, Djikeng A, Embley TM, Hauser C, Ivens AC, Kummerfeld SK, Pereira-Leal JB, Nilsson D, Peterson J, Salzberg SL, Shallom J, Silva JC, Sundaram J, Westenberger S, White O, Melville SE, Donelson JE, Andersson B, Stuart KD, Hall N (2005b) Comparative genomics of trypanosomatid parasitic protozoa. Science 309:404–409

    PubMed  CAS  Google Scholar 

  • Elhalem E, Bailey BN, Docampo R, Ujvary I, Szajnman SH, Rodriguez JB (2002) Design, synthesis, and biological evaluation of aryloxyethyl thiocyanate derivatives against Trypanosoma cruzi. J Med Chem 45:3984–3999

    PubMed  CAS  Google Scholar 

  • Ellis J, Sarkar M, Hendriks E, Matthews K (2004) A novel ERK-like, CRK-like protein kinase that modulates growth in Trypanosoma brucei via an autoregulatory C-terminal extension. Mol Microbiol 53:1487–1499

    PubMed  CAS  Google Scholar 

  • Engel JC, Doyle PS, Palmer J, Hsieh I, Bainton DF, McKerrow JH (1998) Cysteine protease inhibitors alter golgi complex ultrastructure and function in Trypanosoma cruzi. J Cell Sci 111(Pt 5):597–606

    PubMed  CAS  Google Scholar 

  • Fernandes Rodrigues JC, Concepcion JL, Rodrigues C, Caldera A, Urbina JA, de Souza W (2008) In vitro activities of ER-119884 and E5700, two potent squalene synthase inhibitors, against Leishmania amazonensis: antiproliferative, biochemical, and ultrastructural effects. Antimicrob Agents Chemother 52:4098–4114

    PubMed  Google Scholar 

  • Figgitt D, Denny W, Chavalitshewinkoon P, Wilairat P, Ralph R (1992) In vitro study of anticancer acridines as potential antitrypanosomal and antimalarial agents. Antimicrob Agents Chemother 36:1644–1647

    PubMed  CAS  Google Scholar 

  • Flohe L (2012) The trypanothione system and the opportunities it offers to create drugs for the neglected kinetoplast diseases. Biotechnol Adv 30:294–301

    PubMed  CAS  Google Scholar 

  • Freymann DM, Wenck MA, Engel JC, Feng J, Focia PJ, Eakin AE, Craig SP (2000) Efficient identification of inhibitors targeting the closed active site conformation of the HPRT from Trypanosoma cruzi. Chem Biol 7:957–968

    PubMed  CAS  Google Scholar 

  • Galvao-Quintao L, Alfieri SC, Ryter A, Rabinovitch M (1990) Intracellular differentiation of Leishmania amazonensis promastigotes to amastigotes: presence of megasomes, cysteine proteinase activity and susceptibility to leucine-methyl ester. Parasitology 101(Pt 1):7–13

    PubMed  CAS  Google Scholar 

  • Goad LJ, Holz GG Jr, Beach DH (1985) Effect of the allylamine antifungal drug SF 86-327 on the growth and sterol synthesis of Leishmania mexicana mexicana promastigotes. Biochem Pharmacol 34:3785–3788

    PubMed  CAS  Google Scholar 

  • Gomes FC, Ali NO, Brown E, Walker RG, Grant KM, Mottram JC (2010) Recombinant Leishmania mexicana CRK3: CYCA has protein kinase activity in the absence of phosphorylation on the T-loop residue Thr178. Mol Biochem Parasitol 171:89–96

    PubMed  CAS  Google Scholar 

  • Grant KM, Dunion MH, Yardley V, Skaltsounis AL, Marko D, Eisenbrand G, Croft SL, Meijer L, Mottram JC (2004) Inhibitors of Leishmania mexicana CRK3 cyclin-dependent kinase: chemical library screen and antileishmanial activity. Antimicrob Agents Chemother 48:3033–3042

    PubMed  CAS  Google Scholar 

  • Grant KM, Hassan P, Anderson JS, Mottram JC (1998) The crk3 gene of Leishmania mexicana encodes a stage-regulated cdc2-related histone H1 kinase that associates with p12. J Biol Chem 273:10153–10159

    PubMed  CAS  Google Scholar 

  • Guido RV, Trossini GH, Castilho MS, Oliva G, Ferreira EI, Andricopulo AD (2008) Structure-activity relationships for a class of selective inhibitors of the major cysteine protease from Trypanosoma cruzi. J Enzyme Inhib Med Chem 23:964–973

    PubMed  CAS  Google Scholar 

  • Ha S, Seo YJ, Kwon MS, Chang BH, Han CK, Yoon JH (2008) IDMap: facilitating the detection of potential leads with therapeutic targets. Bioinformatics 24:1413–1415

    PubMed  CAS  Google Scholar 

  • Hammarton TC, Clark J, Douglas F, Boshart M, Mottram JC (2003) Stage-specific differences in cell cycle control in Trypanosoma brucei revealed by RNA interference of a mitotic cyclin. J Biol Chem 278:22877–22886

    PubMed  CAS  Google Scholar 

  • Hammarton TC, Engstler M, Mottram JC (2004) The Trypanosoma brucei cyclin, CYC2, is required for cell cycle progression through G1 phase and for maintenance of procyclic form cell morphology. J Biol Chem 279:24757–24764

    PubMed  CAS  Google Scholar 

  • Hardy LW, Matthews W, Nare B, Beverley SM (1997) Biochemical and genetic tests for inhibitors of Leishmania pteridine pathways. Exp Parasitol 87:157–169

    PubMed  CAS  Google Scholar 

  • Hartsel S, Bolard J (1996) Amphotericin B: new life for an old drug. Trends Pharmacol Sci 17:445–449

    PubMed  CAS  Google Scholar 

  • Hassan P, Fergusson D, Grant KM, Mottram JC (2001) The CRK3 protein kinase is essential for cell cycle progression of Leishmania mexicana. Mol Biochem Parasitol 113:189–198

    PubMed  CAS  Google Scholar 

  • Henriksen EJ, Kinnick TR, Teachey MK, O’Keefe MP, Ring D, Johnson KW, Harrison SD (2003) Modulation of muscle insulin resistance by selective inhibition of GSK-3 in Zucker diabetic fatty rats. Am J Physiol Endocrinol Metab 284:E892–900

    PubMed  CAS  Google Scholar 

  • Hudock MP, Sanz-Rodriguez CE, Song Y, Chan JM, Zhang Y, Odeh S, Kosztowski T, Leon-Rossell A, Concepcion JL, Yardley V, Croft SL, Urbina JA, Oldfield E (2006) Inhibition of Trypanosoma cruzi hexokinase by bisphosphonates. J Med Chem 49:215–223

    PubMed  CAS  Google Scholar 

  • Iovannisci DM, Ullman B (1984) Characterization of a mutant Leishmania donovani deficient in adenosine kinase activity. Mol Biochem Parasitol 12:139–151

    PubMed  CAS  Google Scholar 

  • Ivens AC, Peacock CS, Worthey EA, Murphy L, Aggarwal G, Berriman M, Sisk E, Rajandream MA, Adlem E, Aert R, Anupama A, Apostolou Z, Attipoe P, Bason N, Bauser C, Beck A, Beverley SM, Bianchettin G, Borzym K, Bothe G, Bruschi CV, Collins M, Cadag E, Ciarloni L, Clayton C, Coulson RM, Cronin A, Cruz AK, Davies RM, De Gaudenzi J, Dobson DE, Duesterhoeft A, Fazelina G, Fosker N, Frasch AC, Fraser A, Fuchs M, Gabel C, Goble A, Goffeau A, Harris D, Hertz-Fowler C, Hilbert H, Horn D, Huang Y, Klages S, Knights A, Kube M, Larke N, Litvin L, Lord A, Louie T, Marra M, Masuy D, Matthews K, Michaeli S, Mottram JC, Muller-Auer S, Munden H, Nelson S, Norbertczak H, Oliver K, O’Neil S, Pentony M, Pohl TM, Price C, Purnelle B, Quail MA, Rabbinowitsch E, Reinhardt R, Rieger M, Rinta J, Robben J, Robertson L, Ruiz JC, Rutter S, Saunders D, Schafer M, Schein J, Schwartz DC, Seeger K, Seyler A, Sharp S, Shin H, Sivam D, Squares R, Squares S, Tosato V, Vogt C, Volckaert G, Wambutt R, Warren T, Wedler H, Woodward J, Zhou S, Zimmermann W, Smith DF, Blackwell JM, Stuart KD, Barrell B, Myler PJ (2005) The genome of the kinetoplastid parasite, Leishmania major. Science 309:436–442

    PubMed  Google Scholar 

  • John von Freyend S, Rosenqvist H, Fink A, Melzer IM, Clos J, Jensen ON, Wiese M (2010) LmxMPK4, an essential mitogen-activated protein kinase of Leishmania mexicana is phosphorylated and activated by the STE7-like protein kinase LmxMKK5. Int J Parasitol 40:969–978

    PubMed  Google Scholar 

  • Kager PA, Rees PH, Wellde BT, Hockmeyer WT, Lyerly WH (1981) Allopurinol in the treatment of visceral leishmaniasis. Trans R Soc Trop Med Hyg 75:556–559

    PubMed  CAS  Google Scholar 

  • Kaidanovich-Beilin O, Eldar-Finkelman H (2006) Long-term treatment with novel glycogen synthase kinase-3 inhibitor improves glucose homeostasis in ob/ob mice: molecular characterization in liver and muscle. J Pharmacol Exp Ther 316:17–24

    PubMed  CAS  Google Scholar 

  • Khan MO (2007) Trypanothione reductase: a viable chemotherapeutic target for antitrypanosomal and antileishmanial drug design. Drug Target Insights 2:129–146

    PubMed  Google Scholar 

  • Kim H, Feil IK, Verlinde CL, Petra PH, Hol WG (1995) Crystal structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Leishmania mexicana: implications for structure-based drug design and a new position for the inorganic phosphate binding site. Biochemistry 34:14975–14986

    PubMed  CAS  Google Scholar 

  • Krauth-Siegel RL, Comini MA (2008) Redox control in trypanosomatids, parasitic protozoa with trypanothione-based thiol metabolism. Biochim Biophys Acta 1780:1236–1248

    PubMed  CAS  Google Scholar 

  • Krieger S, Schwarz W, Ariyanayagam MR, Fairlamb AH, Krauth-Siegel RL, Clayton C (2000) Trypanosomes lacking trypanothione reductase are avirulent and show increased sensitivity to oxidative stress. Mol Microbiol 35:542–552

    PubMed  CAS  Google Scholar 

  • LaFon SW, Nelson DJ, Berens RL, Marr JJ (1982) Purine and pyrimidine salvage pathways in Leishmania donovani. Biochem Pharmacol 31:231–238

    PubMed  CAS  Google Scholar 

  • Lakhdar-Ghazal F, Blonski C, Willson M, Michels P, Perie J (2002) Glycolysis and proteases as targets for the design of new anti-trypanosome drugs. Curr Top Med Chem 2:439–56

    PubMed  CAS  Google Scholar 

  • Legros D, Ollivier G, Gastellu-Etchegorry M, Paquet C, Burri C, Jannin J, Buscher P (2002) Treatment of human African trypanosomiasis–present situation and needs for research and development. Lancet Infect Dis 2:437–440

    PubMed  Google Scholar 

  • Leon LL, Temporal RM, Soares MJ, Grimaldi Junior G (1994) Proteinase activities during temperature-induced stage differentiation of species complexes of Leishmania. Acta Trop 56:289–298

    PubMed  CAS  Google Scholar 

  • Li Z, Wang CC (2003) A PHO80-like cyclin and a B-type cyclin control the cell cycle of the procyclic form of Trypanosoma brucei. J Biol Chem 278:20652–20658

    PubMed  CAS  Google Scholar 

  • Looker DL, Berens RL, Marr JJ (1983) Purine metabolism in Leishmania donovani amastigotes and promastigotes. Mol Biochem Parasitol 9:15–28

    PubMed  CAS  Google Scholar 

  • Lorente SO, Rodrigues JC, Jimenez Jimenez C, Joyce-Menekse M, Rodrigues C, Croft SL, Yardley V, de Luca-Fradley K, Ruiz-Perez LM, Urbina J, de Souza W, Gonzalez Pacanowska D, Gilbert IH (2004) Novel azasterols as potential agents for treatment of leishmaniasis and trypanosomiasis. Antimicrob Agents Chemother 48:2937–2950

    PubMed  Google Scholar 

  • Luscher A, Onal P, Schweingruber AM, Maser P (2007) Adenosine kinase of Trypanosoma brucei and its role in susceptibility to adenosine antimetabolites. Antimicrob Agents Chemother 51:3895–3901

    PubMed  CAS  Google Scholar 

  • Magaraci F, Jimenez CJ, Rodrigues C, Rodrigues JC, Braga MV, Yardley V, de Luca-Fradley K, Croft SL, de Souza W, Ruiz-Perez LM, Urbina J, Gonzalez Pacanowska D, Gilbert IH (2003) Azasterols as inhibitors of sterol 24-methyltransferase in Leishmania species and Trypanosoma cruzi. J Med Chem 46:4714–4727

    PubMed  CAS  Google Scholar 

  • Maldonado E, Soriano-Garcia M, Moreno A, Cabrera N, Garza-Ramos G, de Gomez-Puyou M, Gomez-Puyou A, Perez-Montfort R (1998) Differences in the intersubunit contacts in triosephosphate isomerase from two closely related pathogenic trypanosomes. J Mol Biol 283:193–203

    PubMed  CAS  Google Scholar 

  • Mallari JP, Shelat AA, Kosinski A, Caffrey CR, Connelly M, Zhu F, McKerrow JH, Guy RK (2009) Structure-guided development of selective TbcatB inhibitors. J Med Chem 52:6489–6493

    PubMed  CAS  Google Scholar 

  • Mallari JP, Zhu F, Lemoff A, Kaiser M, Lu M, Brun R, Guy RK (2010) Optimization of purine-nitrile TbcatB inhibitors for use in vivo and evaluation of efficacy in murine models. Bioorg Med Chem 18:8302–8309

    PubMed  CAS  Google Scholar 

  • Marr JJ, Berens RL (1983) Pyrazolopyrimidine metabolism in the pathogenic trypanosomatidae. Mol Biochem Parasitol 7:339–356

    PubMed  CAS  Google Scholar 

  • Marr JJ, Berens RL, Nelson DJ (1978) Purine metabolism in Leishmania donovani and Leishmania braziliensis. Biochim Biophys Acta 544:360–371

    PubMed  CAS  Google Scholar 

  • Marshall WF, Rosenbaum JL (2001) Intraflagellar transport balances continuous turnover of outer doublet microtubules: implications for flagellar length control. J Cell Biol 155:405–414

    PubMed  CAS  Google Scholar 

  • Martinez-Oyanedel J, McNae IW, Nowicki MW, Keillor JW, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD (2007) The first crystal structure of phosphofructokinase from a eukaryote: Trypanosoma brucei. J Mol Biol 366:1185–1198

    PubMed  CAS  Google Scholar 

  • Martinez S, Marr JJ (1992) Allopurinol in the treatment of American cutaneous leishmaniasis. N Engl J Med 326:741–744

    PubMed  CAS  Google Scholar 

  • McNae IW, Martinez-Oyanedel J, Keillor JW, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD (2009) The crystal structure of ATP-bound phosphofructokinase from Trypanosoma brucei reveals conformational transitions different from those of other phosphofructokinases. J Mol Biol 385:1519–1533

    PubMed  CAS  Google Scholar 

  • Molina J, Martins-Filho OA, Brener Z, Romanha AJ, Loebenberg D, Urbina JA (2000) Activities of the triazole derivative SCH 56592 (posaconazole) against drug-resistant strains of the protozoan parasite Trypanosoma (Schizotrypanum) cruzi in immunocompetent and immunosuppressed murine hosts. Antimicrob Agents Ch 44:150–155

    CAS  Google Scholar 

  • Monzani PS, Trapani S, Thiemann OH, Oliva G (2007) Crystal structure of Leishmania tarentolae hypoxanthine-guanine phosphoribosyltransferase. BMC Struct Biol 7:59

    PubMed  Google Scholar 

  • Morales MA, Renaud O, Faigle W, Shorte SL, Spath GF (2007) Over-expression of Leishmania major MAP kinases reveals stage-specific induction of phosphotransferase activity. Int J Parasitol 37:1187–1199

    PubMed  CAS  Google Scholar 

  • Moreira W, Leblanc E, Ouellette M (2009) The role of reduced pterins in resistance to reactive oxygen and nitrogen intermediates in the protozoan parasite Leishmania. Free Radic Biol Med 46:367–375

    PubMed  CAS  Google Scholar 

  • Morgan HP, McNae IW, Hsin KY, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD (2010) An improved strategy for the crystallization of Leishmania mexicana pyruvate kinase. Acta Crystallogr Sect F Struct Biol Cryst Commun 66:215–218

    PubMed  CAS  Google Scholar 

  • Morgan HP, Walsh MJ, Blackburn EA, Wear MA, Boxer MB, Shen M, Veith H, McNae IW, Nowicki MW, Michels PA, Auld DS, Fothergill-Gilmore LA, Walkinshaw MD (2012) A new family of covalent inhibitors block nucleotide binding to the active site of pyruvate kinase. Biochem J 448:62–72

    Google Scholar 

  • Morris MT, DeBruin C, Yang Z, Chambers JW, Smith KS, Morris JC (2006) Activity of a second Trypanosoma brucei hexokinase is controlled by an 18-amino-acid C-terminal tail. Eukaryot Cell 5:2014–2023

    PubMed  CAS  Google Scholar 

  • Mpamhanga CP, Spinks D, Tulloch LB, Shanks EJ, Robinson DA, Collie IT, Fairlamb AH, Wyatt PG, Frearson JA, Hunter WN, Gilbert IH, Brenk R (2009) One scaffold, three binding modes: novel and selective pteridine reductase 1 inhibitors derived from fragment hits discovered by virtual screening. J Med Chem 52:4454–4465

    PubMed  CAS  Google Scholar 

  • Myler PJ (2008) Searching the Tritryp genomes for drug targets. Adv Exp Med Biol 625:133–140

    PubMed  CAS  Google Scholar 

  • Nare B, Garraway LA, Vickers TJ, Beverley SM (2009) PTR1-dependent synthesis of tetrahydrobiopterin contributes to oxidant susceptibility in the trypanosomatid protozoan parasite Leishmania major. Curr Genet 55:287–299

    PubMed  CAS  Google Scholar 

  • Nare B, Hardy LW, Beverley SM (1997) The roles of pteridine reductase 1 and dihydrofolate reductase-thymidylate synthase in pteridine metabolism in the protozoan parasite Leishmania major. J Biol Chem 272:13883–13891

    PubMed  CAS  Google Scholar 

  • Naula C, Parsons M, Mottram JC (2005) Protein kinases as drug targets in trypanosomes and Leishmania. Biochim Biophys Acta 1754:151–159

    PubMed  CAS  Google Scholar 

  • Neal RA, Croft SL (1984) An in-vitro system for determining the activity of compounds against the intracellular amastigote form of Leishmania donovani. J Antimicrob Chemother 14:463–475

    PubMed  CAS  Google Scholar 

  • Nenortas E, Burri C, Shapiro TA (1999) Antitrypanosomal activity of fluoroquinolones. Antimicrob Agents Chemother 43:2066–2068

    PubMed  CAS  Google Scholar 

  • Nenortas E, Kulikowicz T, Burri C, Shapiro TA (2003) Antitrypanosomal activities of fluoroquinolones with pyrrolidinyl substitutions. Antimicrob Agents Chemother 47:3015–3017

    PubMed  CAS  Google Scholar 

  • Nowicki MW, Tulloch LB, Worralll L, McNae IW, Hannaert V, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD, Turner NJ (2008) Design, synthesis and trypanocidal activity of lead compounds based on inhibitors of parasite glycolysis. Bioorg Med Chem 16:5050–5061

    PubMed  CAS  Google Scholar 

  • Nussbaum K, Honek J, Cadmus CM, Efferth T (2010) Trypanosomatid parasites causing neglected diseases. Curr Med Chem 17:1594–1617

    PubMed  CAS  Google Scholar 

  • O’Brien TC, Mackey ZB, Fetter RD, Choe Y, O’Donoghue AJ, Zhou M, Craik CS, Caffrey CR, McKerrow JH (2008) A parasite cysteine protease is key to host protein degradation and iron acquisition. J Biol Chem 283:28934–28943

    PubMed  Google Scholar 

  • Oduor RO, Ojo KK, Williams GP, Bertelli F, Mills J, Maes L, Pryde DC, Parkinson T, Van Voorhis WC, Holler TP (2011) Trypanosoma brucei glycogen synthase kinase-3, a target for anti-trypanosomal drug development: a public-private partnership to identify novel leads. PLoS Negl Trop Dis 5:e1017

    PubMed  CAS  Google Scholar 

  • Ojo KK, Arakaki TL, Napuli AJ, Inampudi KK, Keyloun KR, Zhang L, Hol WG, Verlinde CL, Merritt EA, Van Voorhis WC (2011) Structure determination of glycogen synthase kinase-3 from Leishmania major and comparative inhibitor structure-activity relationships with Trypanosoma brucei GSK-3. Mol Biochem Parasitol 176:98–108

    PubMed  CAS  Google Scholar 

  • Ojo KK, Gillespie JR, Riechers AJ, Napuli AJ, Verlinde CL, Buckner FS, Gelb MH, Domostoj MM, Wells SJ, Scheer A, Wells TN, Van Voorhis WC (2008) Glycogen synthase kinase 3 is a potential drug target for African trypanosomiasis therapy. Antimicrob Agents Chemother 52:3710–3717

    PubMed  CAS  Google Scholar 

  • Olivares-Illana V, Perez-Montfort R, Lopez-Calahorra F, Costas M, Rodriguez-Romero A, Tuena de Gomez-Puyou M, Gomez Puyou A (2006) Structural differences in triosephosphate isomerase from different species and discovery of a multitrypanosomatid inhibitor. Biochemistry 45:2556–2560

    PubMed  CAS  Google Scholar 

  • Olivares-Illana V, Rodríguez-Romero A, Becker I, Berzunza M, García J, Pérez-Montfort R, Cabrera N, López-Calahorra F, de Gómez-Puyou MT, Gómez-Puyou A (2007) Perturbation of the dimer interface of triosephosphate isomerase and its effect on Trypanosoma cruzi. PLoS Negl Trop Dis 1(1):e01

    Google Scholar 

  • Orenes Lorente S, Gomez R, Jimenez C, Cammerer S, Yardley V, de Luca-Fradley K, Croft SL, Ruiz Perez LM, Urbina J, Gonzalez Pacanowska D, Gilbert IH (2005) Biphenylquinuclidines as inhibitors of squalene synthase and growth of parasitic protozoa. Bioorg Med Chem 13:3519–3529

    PubMed  CAS  Google Scholar 

  • Padhy BM, Gupta YK (2011) Drug repositioning: re-investigating existing drugs for new therapeutic indications. J Postgrad Med 57:153–160

    PubMed  CAS  Google Scholar 

  • Phukan S, Babu VS, Kannoji A, Hariharan R, Balaji VN (2010) GSK3beta: role in therapeutic landscape and development of modulators. Br J Pharmacol 160:1–19

    PubMed  CAS  Google Scholar 

  • Polychronopoulos P, Magiatis P, Skaltsounis AL, Myrianthopoulos V, Mikros E, Tarricone A, Musacchio A, Roe SM, Pearl L, Leost M, Greengard P, Meijer L (2004) Structural basis for the synthesis of indirubins as potent and selective inhibitors of glycogen synthase kinase-3 and cyclin-dependent kinases. J Med Chem 47:935–946

    PubMed  CAS  Google Scholar 

  • Racagni GE, Machado de Domenech EE (1983) Characterization of Trypanosoma cruzi hexokinase. Mol Biochem Parasitol 9:181–188

    PubMed  CAS  Google Scholar 

  • Robays J, Nyamowala G, Sese C, Betu Ku Mesu Kande V, Lutumba P, Van der Veken W, Boelaert M (2008) High failure rates of melarsoprol for sleeping sickness, Democratic Republic of Congo. Emerg Infect Dis 14:966–967

    PubMed  Google Scholar 

  • Robertson SA, Renslo AR (2011) Drug discovery for neglected tropical diseases at the Sandler Center. Future Med Chem 3:1279–1288

    PubMed  CAS  Google Scholar 

  • Rodrigues-Poveda CA, Gonzalez-Pacanowska D, Szajnman SH, Rodriguez JB (2012) 2-Alkylaminoethyl-1,1-Bisphosphonic acids are potent inhibitors of the enzymatic activity of Trypanosoma cruzi squalene synthase. Antimicrob Agents Chemother 56:4483–4486

    PubMed  CAS  Google Scholar 

  • Rodrigues JC, Attias M, Rodriguez C, Urbina JA, Souza W (2002) Ultrastructural and biochemical alterations induced by 22,26-azasterol, a delta(24(25))-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother 46:487–499

    PubMed  CAS  Google Scholar 

  • Romeiro NC, Aguirre G, Hernandez P, Gonzalez M, Cerecetto H, Aldana I, Perez-Silanes S, Monge A, Barreiro EJ, Lima LM (2009) Synthesis, trypanocidal activity and docking studies of novel quinoxaline-N-acylhydrazones, designed as cruzain inhibitors candidates. Bioorg Med Chem 17:641–652

    PubMed  CAS  Google Scholar 

  • Rottenberg ME, Masocha W, Ferella M, Petitto-Assis F, Goto H, Kristensson K, McCaffrey R, Wigzell H (2005) Treatment of African trypanosomiasis with cordycepin and adenosine deaminase inhibitors in a mouse model. J Infect Dis 192:1658–1665

    PubMed  CAS  Google Scholar 

  • Salem MM, Werbovetz KA (2005) Antiprotozoal compounds from Psorothamnus polydenius. J Nat Prod 68:108–111

    PubMed  CAS  Google Scholar 

  • Sanz-Rodriguez CE, Concepcion JL, Pekerar S, Oldfield E, Urbina JA (2007) Bisphosphonates as inhibitors of Trypanosoma cruzi hexokinase: kinetic and metabolic studies. J Biol Chem 282:12377–12387

    PubMed  CAS  Google Scholar 

  • Schurigt U, Schad C, Glowa C, Baum U, Thomale K, Schnitzer JK, Schultheis M, Schaschke N, Schirmeister T, Moll H (2010) Aziridine-2,3-dicarboxylate-based cysteine cathepsin inhibitors induce cell death in Leishmania major associated with accumulation of debris in autophagy-related lysosome-like vacuoles. Antimicrob Agents Chemother 54:5028–5041

    PubMed  CAS  Google Scholar 

  • Sealey-Cardona M, Cammerer S, Jones S, Ruiz-Perez LM, Brun R, Gilbert IH, Urbina JA, Gonzalez-Pacanowska D (2007) Kinetic characterization of squalene synthase from Trypanosoma cruzi: selective inhibition by quinuclidine derivatives. Antimicrob Agents Chemother 51:2123–2129

    PubMed  CAS  Google Scholar 

  • Sett R, Basu N, Ghosh AK, Das PK (1992) Potential of doxorubicin as an antileishmanial agent. J Parasitol 78:350–354

    PubMed  CAS  Google Scholar 

  • Sienkiewicz N, Jaroslawski S, Wyllie S, Fairlamb AH (2008) Chemical and genetic validation of dihydrofolate reductase-thymidylate synthase as a drug target in African trypanosomes. Mol Microbiol 69:520–533

    PubMed  CAS  Google Scholar 

  • Singh G, Dey CS (2007) Induction of apoptosis-like cell death by pentamidine and doxorubicin through differential inhibition of topoisomerase II in arsenite-resistant L. donovani. Acta Trop 103:172–185

    PubMed  CAS  Google Scholar 

  • Singh N, Kumar M, Singh RK (2012) Leishmaniasis: current status of available drugs and new potential drug targets. Asian Pac J Trop Med 5:485–497

    PubMed  CAS  Google Scholar 

  • Smirlis D, Duszenko M, Ruiz AJ, Scoulica E, Bastien P, Fasel N, Soteriadou K (2010) Targeting essential pathways in trypanosomatids gives insights into protozoan mechanisms of cell death. Parasit Vectors 3:107

    PubMed  Google Scholar 

  • Smirlis D, Soteriadou K (2011) Trypanosomatid apoptosis: ‘apoptosis’ without the canonical regulators. Virulence 2:253–256

    PubMed  Google Scholar 

  • Souza DH, Garratt RC, Araujo AP, Guimaraes BG, Jesus WD, Michels PA, Hannaert V, Oliva G (1998) Trypanosoma cruzi glycosomal glyceraldehyde-3-phosphate dehydrogenase: structure, catalytic mechanism and targeted inhibitor design. FEBS Lett 424:131–135

    PubMed  CAS  Google Scholar 

  • Steverding D, Wang X (2009) Evaluation of anti-sleeping-sickness drugs and topoisomerase inhibitors in combination on Trypanosoma brucei. J Antimicrob Chemother 63:1293–1295

    PubMed  CAS  Google Scholar 

  • Strauss PR, Wang JC (1990) The TOP2 gene of Trypanosoma brucei: a single-copy gene that shares extensive homology with other TOP2 genes encoding eukaryotic DNA topoisomerase II. Mol Biochem Parasitol 38:141–150

    PubMed  CAS  Google Scholar 

  • Suckling KE (2006) The return of two old targets? Expert Opin Ther Targets 10:785–788

    PubMed  CAS  Google Scholar 

  • Suresh S, Bressi JC, Kennedy KJ, Verlinde CL, Gelb MH, Hol WG (2001) Conformational changes in Leishmania mexicana glyceraldehyde-3-phosphate dehydrogenase induced by designed inhibitors. J Mol Biol 309:423–435

    PubMed  CAS  Google Scholar 

  • Teixeira SM, de Paiva RM, Kangussu-Marcolino MM, Darocha WD (2012) Trypanosomatid comparative genomics: contributions to the study of parasite biology and different parasitic diseases. Genet Mol Biol 35:1–17

    PubMed  CAS  Google Scholar 

  • Torrie LS, Wyllie S, Spinks D, Oza SL, Thompson S, Harrison JR, Gilbert IH, Wyatt PG, Fairlamb AH, Frearson JA (2009) Chemical validation of trypanothione synthetase: a potential drug target for human trypanosomiasis. J Biol Chem 284:36137–36145

    PubMed  CAS  Google Scholar 

  • Tu X, Wang CC (2004) The involvement of two cdc2-related kinases (CRKs) in Trypanosoma brucei cell cycle regulation and the distinctive stage-specific phenotypes caused by CRK3 depletion. J Biol Chem 279:20519–20528

    PubMed  CAS  Google Scholar 

  • Tulloch LB, Morgan HP, Hannaert V, Michels PA, Fothergill-Gilmore LA, Walkinshaw MD (2008) Sulphate removal induces a major conformational change in Leishmania mexicana pyruvate kinase in the crystalline state. J Mol Biol 383:615–626

    PubMed  CAS  Google Scholar 

  • Urbina JA (2002) Chemotherapy of Chagas disease. Curr Pharm Des 8:287–295

    PubMed  CAS  Google Scholar 

  • Urbina JA (2010) Specific chemotherapy of Chagas disease: relevance, current limitations and new approaches. Acta Trop 115:55–68

    PubMed  Google Scholar 

  • Urbina JA, Concepcion JL, Caldera A, Payares G, Sanoja C, Otomo T, Hiyoshi H (2004) In vitroand in vivo activities of E5700 and ER-119884, two novel orally active squalene synthase inhibitors, against Trypanosoma cruzi. Antimicrob Agents Chemother 48:2379–2387

    PubMed  CAS  Google Scholar 

  • Urbina JA, Concepcion JL, Montalvetti A, Rodriguez JB, Docampo R (2003) Mechanism of action of 4-phenoxyphenoxyethyl thiocyanate (WC-9) against Trypanosoma cruzi, the causative agent of Chagas’ disease. Antimicrob Agents Chemother 47:2047–2050

    PubMed  CAS  Google Scholar 

  • Urbina JA, Concepcion JL, Rangel S, Visbal G, Lira R (2002) Squalene synthase as a chemotherapeutic target in Trypanosoma cruzi and Leishmania mexicana. Mol Biochem Parasitol 125:35–45

    PubMed  CAS  Google Scholar 

  • Urbina JA, Crespo A (1984) Regulation of energy metabolism in Trypanosoma (Schizotrypanum) cruzi epimastigotes. I. Hexokinase and phosphofructokinase. Mol Biochem Parasitol 11:225–239

    PubMed  CAS  Google Scholar 

  • Urbina JA, Docampo R (2003) Specific chemotherapy of Chagas disease: controversies and advances. Trends Parasitol 19:495–501

    PubMed  CAS  Google Scholar 

  • Urbina JA, Lazardi K, Aguirre T, Piras MM, Piras R (1988) Antiproliferative synergism of the allylamine SF 86-327 and ketoconazole on epimastigotes and amastigotes of Trypanosoma (Schizotrypanum) cruzi. Antimicrob Agents Chemother 32:1237–1242

    PubMed  CAS  Google Scholar 

  • Urbina JA, Payares G, Molina J, Sanoja C, Liendo A, Lazardi K, Piras MM, Piras R, Perez N, Wincker P, Ryley JF (1996a) Cure of short- and long-term experimental Chagas’ disease using D0870. Science 273:969–971

    PubMed  CAS  Google Scholar 

  • Urbina JA, Vivas J, Lazardi K, Molina J, Payares G, Piras MM, Piras R (1996b) Antiproliferative effects of delta 24(25) sterol methyl transferase inhibitors on Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Chemotherapy 42:294–307

    PubMed  CAS  Google Scholar 

  • Urbina JA, Vivas J, Visbal G, Contreras LM (1995) Modification of the sterol composition of Trypanosoma (Schizotrypanum) cruzi epimastigotes by delta 24(25)-sterol methyl transferase inhibitors and their combinations with ketoconazole. Mol Biochem Parasitol 73:199–210

    PubMed  CAS  Google Scholar 

  • Van Hellemond JJ, Neuville P, Schwarz RT, Matthews KR, Mottram JC (2000) Isolation of Trypanosoma brucei CYC2 and CYC3 cyclin genes by rescue of a yeast G(1) cyclin mutant. Functional characterization of CYC2. J Biol Chem 275:8315–8323

    PubMed  Google Scholar 

  • Vannier-Santos MA, Urbina JA, Martiny A, Neves A, de Souza W (1995) Alterations induced by the antifungal compounds ketoconazole and terbinafine in Leishmania. J Eukaryot Microbiol 42:337–346

    PubMed  CAS  Google Scholar 

  • Vellieux FM, Hajdu J, Verlinde CL, Groendijk H, Read RJ, Greenhough TJ, Campbell JW, Kalk KH, Littlechild JA, Watson HC et al (1993) Structure of glycosomal glyceraldehyde-3-phosphate dehydrogenase from Trypanosoma brucei determined from Laue data. Proc Natl Acad Sci USA 90:2355–2359

    PubMed  CAS  Google Scholar 

  • Verlinde CL, Hannaert V, Blonski C, Willson M, Perie JJ, Fothergill-Gilmore LA, Opperdoes FR, Gelb MH, Hol WG, Michels PA (2001) Glycolysis as a target for the design of new anti-trypanosome drugs. Drug Resist Updat 4:50–65

    PubMed  CAS  Google Scholar 

  • Walker RG, Thomson G, Malone K, Nowicki MW, Brown E, Blake DG, Turner NJ, Walkinshaw MD, Grant KM, Mottram JC (2011) High throughput screens yield small molecule inhibitors of Leishmania CRK3: CYC6 cyclin-dependent kinase. PLoS Negl Trop Dis 5:e1033

    PubMed  CAS  Google Scholar 

  • Wang Q, Melzer IM, Kruse M, Sander-Juelch C, Wiese M (2005) LmxMPK4, a mitogen-activated protein (MAP) kinase homologue essential for promastigotes and amastigotes of Leishmania mexicana. Kinetoplastid Biol Dis 4:6

    PubMed  Google Scholar 

  • Wang Y, Dimitrov K, Garrity LK, Sazer S, Beverley SM (1998) Stage-specific activity of the Leishmania major CRK3 kinase and functional rescue of a Schizosaccharomyces pombe cdc2 mutant. Mol Biochem Parasitol 96:139–150

    PubMed  CAS  Google Scholar 

  • Wierenga RK, Noble ME, Postma JP, Groendijk H, Kalk KH, Hol WG, Opperdoes FR (1991a) The crystal structure of the “open” and the “closed” conformation of the flexible loop of trypanosomal triosephosphate isomerase. Proteins 10:33–49

    PubMed  CAS  Google Scholar 

  • Wierenga RK, Noble ME, Vriend G, Nauche S, Hol WG (1991b) Refined 1.83 a structure of trypanosomal triosephosphate isomerase crystallized in the presence of 2.4 M-ammonium sulphate. A comparison with the structure of the trypanosomal triosephosphate isomerase-glycerol-3-phosphate complex. J Mol Biol 220:995–1015

    PubMed  CAS  Google Scholar 

  • Wiese M (1998) A mitogen-activated protein (MAP) kinase homologue of Leishmania mexicana is essential for parasite survival in the infected host. EMBO J 17:2619–2628

    PubMed  CAS  Google Scholar 

  • Wiese M (2007) Leishmania MAP kinases–familiar proteins in an unusual context. Int J Parasitol 37:1053–1062

    PubMed  CAS  Google Scholar 

  • Williams JC, Zeelen JP, Neubauer G, Vriend G, Backmann J, Michels PA, Lambeir AM, Wierenga RK (1999) Structural and mutagenesis studies of leishmania triosephosphate isomerase: a point mutation can convert a mesophilic enzyme into a superstable enzyme without losing catalytic power. Protein Eng 12:243–250

    PubMed  CAS  Google Scholar 

  • Williamson J, Scott-Finnigan TJ (1978) Trypanocidal activity of antitumor antibiotics and other metabolic inhibitors. Antimicrob Agents Chemother 13:735–744

    PubMed  CAS  Google Scholar 

  • Willson M, Lauth N, Perie J, Callens M, Opperdoes FR (1994) Inhibition of glyceraldehyde-3-phosphate dehydrogenase by phosphorylated epoxides and alpha-enones. Biochemistry 33:214–220

    PubMed  CAS  Google Scholar 

  • Xingi E, Smirlis D, Myrianthopoulos V, Magiatis P, Grant KM, Meijer L, Mikros E, Skaltsounis AL, Soteriadou K (2009) 6-Br-5methylindirubin-3′oxime (5-Me-6-BIO) targeting the leishmanial glycogen synthase kinase-3 (GSK-3) short form affects cell-cycle progression and induces apoptosis-like death: exploitation of GSK-3 for treating leishmaniasis. Int J Parasitol 39:1289–1303

    PubMed  CAS  Google Scholar 

  • Zhu F, Han B, Kumar P, Liu X, Ma X, Wei X, Huang L, Guo Y, Han L, Zheng C, Chen Y (2010) Update of TTD: therapeutic target database. Nucleic Acids Res 38:D787–791

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the FP7-PEOPLE-2010-IRSES program “ChemBioFight” (Exploring chemical biodiversity with innovative approaches for fighting Chagas and leishmaniasis, grant number 269031) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Despina Smirlis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Smirlis, D., Soares, M.B.P. (2014). Selection of Molecular Targets for Drug Development Against Trypanosomatids. In: Santos, A., Branquinha, M., d’Avila-Levy, C., Kneipp, L., Sodré, C. (eds) Proteins and Proteomics of Leishmania and Trypanosoma. Subcellular Biochemistry, vol 74. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7305-9_2

Download citation

Publish with us

Policies and ethics