Skip to main content

Glioma Propagating Cells Show Enhanced Chemoresistance and Radioresistance (an Update)

  • Chapter
  • First Online:
Stem Cells and Cancer Stem Cells, Volume 11

Part of the book series: Stem Cells and Cancer Stem Cells ((STEM,volume 11))

  • 1264 Accesses

Abstract

Glioblastomas (GBMs) are the most aggressive primary brain tumors and are heterogeneous at the cellular level. Current therapeutic means are limited to a largely palliative role, with modest improvement in clinical response. The cellular and molecular heterogeneity of GBMs indicates that individual mechanisms are likely to exert different levels of influences on patient treatment response. Glioma-propagating cells (GPCs) which are purportedly enriched in tumor-initiating and sustaining potential are important because they mirror primary tumors at the phenotypic and molecular level. Moreover, they display long-term self-renewal capability, possibly accounting for the frequently observed tumor recurrence and re-growth. Hence, elucidation of GPC targets that confer therapeutic resistance is essential for effective treatment outcome. Here, we highlight several key intrinsic mechanisms that contribute to the perpetuation of GPCs, including the multi-drug resistant phenotype, DNA damage repair as well as key self-renewal signaling cascades. Another integral factor is the paracrine cues from the perivascular/hypoxic milieu. Targeting these multifaceted pathways might therefore sensitize GPCs to chemotherapeutic agents and lead to long-lasting therapies. In addition, we discuss how transcriptome analysis of GPCs derived from histologically similar yet molecularly distinct primary tumors can stratify patient subtypes, each bearing their own unique genetic and clinical profile. These findings highlight the clinical contribution of GPCs to disease progression and survival outcome. Identification of patient subtypes may account for the heterogeneity in treatment response and thus accelerate the development of personalized therapy that can induce sustained clinical outcome. The road ahead will likely be filled with obstacles but these emerging therapeutic paradigms promise new opportunities to patient cohorts lacking in effective treatment options.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB, Dewhirst MW, Bigner DD, Rich JN (2006a) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444:756–760

    Article  PubMed  CAS  Google Scholar 

  • Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Shi Q, McLendon RE, Bigner DD, Rich JN (2006b) Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res 66:7843–7848

    Article  PubMed  CAS  Google Scholar 

  • Bar EE, Chaudhry A, Lin A, Fan X, Schreck K, Matsui W, Piccirillo S, Vescovi AL, DiMeco F, Olivi A, Eberhart CG (2007) Cyclopamine-mediated hedgehog pathway inhibition depletes stem-like cancer cells in glioblastoma. Stem Cells 25:2524–2533

    Article  PubMed  CAS  Google Scholar 

  • Bleau AM, Hambardzumyan D, Ozawa T, Fomchenko EI, Huse JT, Brennan CW, Holland EC (2009) PTEN/PI3K/Akt pathway regulates the side population phenotype and ABCG2 activity in glioma tumor stem-like cells. Cell Stem Cell 4:226–235

    Article  PubMed  CAS  Google Scholar 

  • Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Oh EY, Gaber MW, Finklestein D, Allen M, Frank A, Bayazitov IT, Zakharenko SS, Gajjar A, Davidoff A, Gilbertson RJ (2007) A perivascular niche for brain tumor stem cells. Cancer Cell 11:69–82

    Article  PubMed  CAS  Google Scholar 

  • Cheng L, Wu Q, Huang Z, Guryanova OA, Huang Q, Shou W, Rich JN, Bao S (2011) L1CAM regulates DNA damage checkpoint response of glioblastoma stem cells through NBS1. EMBO J 30:800–813

    Article  PubMed  CAS  Google Scholar 

  • Chua C, Zaiden N, Chong KH, See SJ, Wong MC, Ang BT, Tang C (2008) Characterization of a side population of astrocytoma cells in response to temozolomide. J Neurosurg 109:856–866

    Article  PubMed  CAS  Google Scholar 

  • Clement V, Sanchez P, de Tribolet N, Radovanovic I, Ruiz i Altaba A (2007) HEDGEHOG-GLI1 signaling regulates human glioma growth, cancer stem cell self-renewal, and tumorigenicity. Curr Biol 17:165–172

    Article  PubMed  CAS  Google Scholar 

  • Cui D, Xu Q, Wang K, Che X (2010) Gli1 is a potential target for alleviating multidrug resistance of gliomas. J Neurol Sci 288:156–166

    Article  PubMed  CAS  Google Scholar 

  • Ehtesham M, Sarangi A, Valadez JG, Chanthaphaychith S, Becher MW, Abel TW, Thompson RC, Cooper MK (2007) Ligand-dependent activation of the hedgehog pathway in glioma progenitor cells. Oncogene 26:5752–5761

    Article  PubMed  CAS  Google Scholar 

  • Eyler CE, Foo WC, LaFiura KM, McLendon RE, Hjelmeland AB, Rich JN (2008) Brain cancer stem cells display preferential sensitivity to Akt inhibition. Stem Cells 26:3027–3036

    Article  PubMed  CAS  Google Scholar 

  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N, Koh C, Zhang J, Li YM, Maciaczyk J, Nikkhah G, Dimeco F, Piccirillo S, Vescovi AL, Eberhart CG (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28:5–16

    PubMed  CAS  Google Scholar 

  • Folkins C, Shaked Y, Man S, Tang T, Lee CR, Zhu Z, Hoffman RM, Kerbel RS (2009) Glioma tumor stem-like cells promote tumor angiogenesis and vasculogenesis via vascular endothelial growth factor and stromal-derived factor 1. Cancer Res 69:7243–7251

    Article  PubMed  CAS  Google Scholar 

  • Gilbertson RJ, Rich JN (2007) Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer 7:733–736

    Article  PubMed  CAS  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE, Hjelmeland AB, Rich JN (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    Article  PubMed  CAS  Google Scholar 

  • Hjelmeland AB, Wu Q, Heddleston JM, Choudhary GS, MacSwords J, Lathia JD, McLendon R, Lindner D, Sloan A, Rich JN (2011) Acidic stress promotes a glioma stem cell phenotype. Cell Death Differ 18:829–840

    Article  PubMed  CAS  Google Scholar 

  • Hu YY, Zheng MH, Cheng G, Li L, Liang L, Gao F, Wei YN, Fu LA, Han H (2011) Notch signaling contributes to the maintenance of both normal neural stem cells and patient-derived glioma stem cells. BMC Cancer 11:82

    Article  PubMed  CAS  Google Scholar 

  • Inda MM, Bonavia R, Mukasa A, Narita Y, Sah DW, Vandenberg S, Brennan C, Johns TG, Bachoo R, Hadwiger P, Tan P, Depinho RA, Cavenee W, Furnari F (2010) Tumor heterogeneity is an active process maintained by a mutant EGFR-induced cytokine circuit in glioblastoma. Genes Dev 24:1731–1745

    Article  PubMed  CAS  Google Scholar 

  • Lathia JD, Gallagher J, Heddleston JM, Wang J, Eyler CE, Macswords J, Wu Q, Vasanji A, McLendon RE, Hjelmeland AB, Rich JN (2010) Integrin alpha 6 regulates glioblastoma stem cells. Cell Stem Cell 6:421–432

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S, Shi Q, Cao Y, Lathia J, McLendon RE, Hjelmeland AB, Rich JN (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15:501–513

    Article  PubMed  CAS  Google Scholar 

  • Liu G, Yuan X, Zeng Z, Tunici P, Ng H, Abdulkadir IR, Lu L, Irvin D, Black KL, Yu JS (2006) Analysis of gene expression and chemoresistance of CD133+ cancer stem cells in glioblastoma. Mol Cancer 5:67

    Article  PubMed  Google Scholar 

  • Mazzoleni S, Politi LS, Pala M, Cominelli M, Franzin A, Sergi Sergi L, Falini A, De Palma M, Bulfone A, Poliani PL, Galli R (2010) Epidermal growth factor receptor expression identifies functionally and molecularly distinct tumor-initiating cells in human glioblastoma multiforme and is required for gliomagenesis. Cancer Res 70:7500–7513

    Article  PubMed  CAS  Google Scholar 

  • Nakai E, Park K, Yawata T, Chihara T, Kumazawa A, Nakabayashi H, Shimizu K (2009) Enhanced MDR1 expression and chemoresistance of cancer stem cells derived from glioblastoma. Cancer Invest 27:901–908

    Article  PubMed  CAS  Google Scholar 

  • Ricci-Vitiani L, Pallini R, Biffoni M, Todaro M, Invernici G, Cenci T, Maira G, Parati EA, Stassi G, Larocca LM, De Maria R (2010) Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells. Nature 468:824–828

    Article  PubMed  CAS  Google Scholar 

  • Soda Y, Marumoto T, Friedmann-Morvinski D, Soda M, Liu F, Michiue H, Pastorino S, Yang M, Hoffman RM, Kesari S, Verma IM (2011) Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci USA 108:4274–4280

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Lathia JD, Wu Q, Wang J, Li Z, Heddleston JM, Eyler CE, Elderbroom J, Gallagher J, Schuschu J, MacSwords J, Cao Y, McLendon RE, Wang XF, Hjelmeland AB, Rich JN (2009) Targeting interleukin 6 signaling suppresses glioma stem cell survival and tumor growth. Stem Cells 27:2393–2404

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Wakeman TP, Lathia JD, Hjelmeland AB, Wang XF, White RR, Rich JN, Sullenger BA (2010a) Notch promotes radioresistance of glioma stem cells. Stem Cells 28:17–28

    Article  PubMed  CAS  Google Scholar 

  • Wang R, Chadalavada K, Wilshire J, Kowalik U, Hovinga KE, Geber A, Fligelman B, Leversha M, Brennan C, Tabar V (2010b) Glioblastoma stem-like cells give rise to tumour endothelium. Nature 468:829–833

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Wei P, Gong A, Chiu WT, Lee HT, Colman H, Huang H, Xue J, Liu M, Wang Y, Sawaya R, Xie K, Yung WK, Medema RH, He X, Huang S (2011) FoxM1 promotes beta-catenin nuclear localization and controls Wnt target-gene expression and glioma tumorigenesis. Cancer Cell 20:427–442

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

 The authors would like to acknowledge grant support to C. Tang (BMRC: 09/1/33/19/611) and Singapore Institute for Clinical Sciences (A*STAR) core funding to B.T. Ang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Beng Ti Ang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Koh, L.W.H., Toh, T.B., Tang, C., Ang, B.T. (2014). Glioma Propagating Cells Show Enhanced Chemoresistance and Radioresistance (an Update). In: Hayat, M. (eds) Stem Cells and Cancer Stem Cells, Volume 11. Stem Cells and Cancer Stem Cells, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7329-5_7

Download citation

Publish with us

Policies and ethics