Skip to main content

From Three-Dimensional GPCR Structure to Rational Ligand Discovery

  • Chapter
  • First Online:
G Protein-Coupled Receptors - Modeling and Simulation

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 796))

Abstract

This chapter will focus on G protein-coupled receptor structure-based virtual screening and ligand design. A generic virtual screening workflow and its individual elements will be introduced, covering amongst others the use of experimental data to steer the virtual screening process, ligand binding mode prediction, virtual screening for novel ligands, and rational structure-based virtual screening hit optimization. An overview of recent successful structure-based ligand discovery and design studies shows that receptor models, despite structural inaccuracies, can be efficiently used to find novel ligands for GPCRs. Moreover, the recently solved GPCR crystal structures have further increased the opportunities in structure-based ligand discovery for this pharmaceutically important protein family. The current chapter will discuss several challenges in rational ligand discovery based on GPCR structures including: (i) structure-based identification of ligands with specific effects on GPCR mediated signaling pathways, and (ii) virtual screening and structure-based optimization of fragment-like molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Andrews SP, Benjamin T (2013) Stabilised G protein-coupled receptors in structure-based drug design: a case study with adenosine A2A receptor. MedChemComm 4(1):52–67. doi:10.1039/c2md20164j

    CAS  Google Scholar 

  • Baell JB, Holloway GA (2010) New substructure filters for removal of pan assay interference compounds (PAINS) from screening libraries and for their exclusion in bioassays. J Med Chem 53(7):2719–2740. doi:10.1021/jm901137j

    PubMed  CAS  Google Scholar 

  • Baker JG (2005) The selectivity of beta-adrenoceptor antagonists at the human beta1, beta2 and beta3 adrenoceptors. Br J Pharmacol 144(3):317–322. doi:10.1038/sj.bjp.0706048

    PubMed  CAS  Google Scholar 

  • Baker JG (2010) The selectivity of beta-adrenoceptor agonists at human beta1-, beta2- and beta3-adrenoceptors. Br J Pharmacol 160(5):1048–1061. doi:10.1111/j.1476-5381.2010.00754.x

    PubMed  CAS  Google Scholar 

  • Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations of G protein-coupled receptors. Methods Neurosci 25:366–428. doi:10.1016/S1043-9471(05)80049-7

  • Barillari C, Marcou G, Rognan D (2008) Hot-spots-guided receptor-based pharmacophores (HS-Pharm): a knowledge-based approach to identify ligand-anchoring atoms in protein cavities and prioritize structure-based pharmacophores. J Chem Inf Model 48(7):1396–1410. doi:10.1021/ci800064z

    PubMed  CAS  Google Scholar 

  • Becker OM, Marantz Y, Shacham S, Inbal B, Heifetz A, Kalid O, Bar-Haim S, Warshaviak D, Fichman M, Noiman S (2004) G protein-coupled receptors: in silico drug discovery in 3D. Proc Natl Acad Sci U S A 101(31):11304–11309. doi:10.1073/pnas.0401862101

    PubMed  CAS  Google Scholar 

  • Becker OM, Dhanoa DS, Marantz Y, Chen D, Shacham S, Cheruku S, Heifetz A, Mohanty P, Fichman M, Sharadendu A, Nudelman R, Kauffman M, Noiman S (2006) An integrated in silico 3D model-driven discovery of a novel, potent, and selective amidosulfonamide 5-HT1A agonist (PRX-00023) for the treatment of anxiety and depression. J Med Chem 49(11):3116–3135. doi:10.1021/jm0508641

    PubMed  CAS  Google Scholar 

  • Bissantz C, Bernard P, Hibert M, Rognan D (2003) Protein-based virtual screening of chemical databases. II. Are homology models of G-protein coupled receptors suitable targets? Proteins 50(1):5–25. doi:10.1002/prot.10237

    PubMed  CAS  Google Scholar 

  • Blättermann S, Peters L, Ottersbach PA, Bock A, Konya V, Weaver CD, Gonzalez A, Schroder R, Tyagi R, Luschnig P, Gab J, Hennen S, Ulven T, Pardo L, Mohr K, Gutschow M, Heinemann A, Kostenis E (2012) A biased ligand for OXE-R uncouples G alpha and G beta gamma signaling within a heterotrimer. Nat Chem Biol 8(7):631–638. doi:10.1038/nchembio.962

    PubMed  Google Scholar 

  • Bokoch MP, Zou Y, Rasmussen SG, Liu CW, Nygaard R, Rosenbaum DM, Fung JJ, Choi HJ, Thian FS, Kobilka TS, Puglisi JD, Weis WI, Pardo L, Prosser RS, Mueller L, Kobilka BK (2010) Ligand-specific regulation of the extracellular surface of a G-protein-coupled receptor. Nature 463(7277):108–112. doi:10.1038/nature08650

    PubMed  CAS  Google Scholar 

  • Carlsson J, Yoo L, Gao ZG, Irwin JJ, Shoichet BK, Jacobson KA (2010) Structure-based discovery of A2A adenosine receptor ligands. J Med Chem 53(9):3748–3755. doi:10.1021/jm100240h

    PubMed  CAS  Google Scholar 

  • Carlsson J, Coleman RG, Setola V, Irwin JJ, Fan H, Schlessinger A, Sali A, Roth BL, Shoichet BK (2011) Ligand discovery from a dopamine D3 receptor homology model and crystal structure. Nat Chem Biol 7(11):769–778. doi:10.1038/nchembio.662

    PubMed  CAS  Google Scholar 

  • Cavasotto CN (2011) Homology models in docking and high-throughput docking. Curr Top Med Chem 11(12):1528–1534. doi:10.2174/156802611795860951

    PubMed  CAS  Google Scholar 

  • Cavasotto CN, Orry AJ, Murgolo NJ, Czarniecki MF, Kocsi SA, Hawes BE, O’Neill KA, Hine H, Burton MS, Voigt JH, Abagyan RA, Bayne ML, Monsma FJ Jr (2008) Discovery of novel chemotypes to a G-protein-coupled receptor through ligand-steered homology modeling and structure-based virtual screening. J Med Chem 51(3):581–588. doi:10.1021/jm070759m

    PubMed  CAS  Google Scholar 

  • Chen JZ, Wang J, Xie XQ (2007) GPCR structure-based virtual screening approach for CB2 antagonist search. J Chem Inf Model 47(4):1626–1637. doi:10.1021/ci7000814

    PubMed  CAS  Google Scholar 

  • Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318(5854):1258–1265. doi:10.1126/science.1150577

    PubMed  CAS  Google Scholar 

  • Cherezov V, Abola E, Stevens RC (2010) Recent progress in the structure determination of GPCRs, a membrane protein family with high potential as pharmaceutical targets. Methods Mol Biol 654:141–168. doi:10.1007/978-1-60761-762-4_8

    PubMed  CAS  Google Scholar 

  • Chien EY, Liu W, Zhao Q, Katritch V, Han GW, Hanson MA, Shi L, Newman AH, Javitch JA, Cherezov V, Stevens RC (2010) Structure of the human dopamine D3 receptor in complex with a D2/D3 selective antagonist. Science 330(6007):1091–1095. doi:10.1126/science.1197410

    PubMed  CAS  Google Scholar 

  • Congreve M, Langmead CJ, Mason JS, Marshall FH (2011) Progress in structure based drug design for G protein-coupled receptors. J Med Chem 54(13):4283–4311. doi:10.1021/jm200371q

    PubMed  CAS  Google Scholar 

  • Congreve M, Andrews SP, Dore AS, Hollenstein K, Hurrell E, Langmead CJ, Mason JS, Ng IW, Tehan B, Zhukov A, Weir M, Marshall FH (2012) Discovery of 1,2,4-triazine derivatives as adenosine A(2A) antagonists using structure based drug design. J Med Chem 55(5):1898–1903. doi:10.1021/jm201376w

    PubMed  CAS  Google Scholar 

  • Costanzi S, Vilar S (2012) In silico screening for agonists and blockers of the beta(2) adrenergic receptor: implications of inactive and activated state structures. J Comput Chem 33(5):561–572. doi:10.1002/jcc.22893

    PubMed  CAS  Google Scholar 

  • Costanzi S, Santhosh Kumar T, Balasubramanian R, Kendall Harden T, Jacobson KA (2012) Virtual screening leads to the discovery of novel non-nucleotide P2Y(1) receptor antagonists. Bioorg Med Chem 20(17):5254–5261. doi:10.1016/j.bmc.2012.06.044

    PubMed  CAS  Google Scholar 

  • de Graaf C, Rognan D (2008) Selective structure-based virtual screening for full and partial agonists of the beta2 adrenergic receptor. J Med Chem 51(16):4978–4985. doi:10.1021/jm800710x

    PubMed  Google Scholar 

  • de Graaf C, Rognan D (2009) Customizing G protein-coupled receptor models for structure-based virtual screening. Curr Pharm Des 15(35):4026–4048. doi:10.2174/138161209789824786

  • de Graaf C, Foata N, Engkvist O, Rognan D (2008) Molecular modeling of the second extracellular loop of G-protein coupled receptors and its implication on structure-based virtual screening. Proteins 71(2):599–620. doi:10.1002/prot.21724

    PubMed  Google Scholar 

  • de Graaf C, Rein C, Piwnica D, Giordanetto F, Rognan D (2011a) Structure-based discovery of allosteric modulators of two related class B G-protein-coupled receptors. ChemMedChem 6(12):2159–2169. doi:10.1002/cmdc.201100317

    PubMed  Google Scholar 

  • de Graaf C, Kooistra AJ, Vischer HF, Katritch V, Kuijer M, Shiroishi M, Iwata S, Shimamura T, Stevens RC, de Esch IJ, Leurs R (2011b) Crystal structure-based virtual screening for fragment-like ligands of the human histamine H(1) receptor. J Med Chem 54(23):8195–8206. doi:10.1021/jm2011589

    PubMed  Google Scholar 

  • de Graaf C, Vischer HF, de Kloe GE, Kooistra AJ, Nijmeijer S, Kuijer M, Verheij MH, England PJ, van Muijlwijk-Koezen JE, Leurs R, de Esch IJ (2013) Small and colorful stones make beautiful mosaics: fragment-based chemogenomics. Drug Discov Today 18(7–8):323–330. doi:10.1016/j.drudis.2012.12.003

    PubMed  Google Scholar 

  • de Kloe GE, Bailey D, Leurs R, de Esch IJ (2009) Transforming fragments into candidates: small becomes big in medicinal chemistry. Drug Discov Today 14(13–14):630–646. doi:10.1016/j.drudis.2009.03.009

    PubMed  Google Scholar 

  • Deng Z, Chuaqui C, Singh J (2004) Structural interaction fingerprint (SIFt): a novel method for analyzing three-dimensional protein-ligand binding interactions. J Med Chem 47(2):337–344. doi:10.1021/jm030331x

    PubMed  CAS  Google Scholar 

  • Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P, Shan Y, Xu H, Shaw DE (2011) Pathway and mechanism of drug binding to G-protein-coupled receptors. Proc Natl Acad Sci U S A 108(32):13118–13123. doi:10.1073/pnas.1104614108

    PubMed  CAS  Google Scholar 

  • Edwards BS, Bologa C, Young SM, Balakin KV, Prossnitz ER, Savchuck NP, Sklar LA, Oprea TI (2005) Integration of virtual screening with high-throughput flow cytometry to identify novel small molecule formylpeptide receptor antagonists. Mol Pharmacol 68(5):1301–1310. doi:10.1124/mol.105.014068

    PubMed  CAS  Google Scholar 

  • Engel S, Skoumbourdis AP, Childress J, Neumann S, Deschamps JR, Thomas CJ, Colson AO, Costanzi S, Gershengorn MC (2008) A virtual screen for diverse ligands: discovery of selective G protein-coupled receptor antagonists. J Am Chem Soc 130(15):5115–5123. doi:10.1021/ja077620l

    PubMed  CAS  Google Scholar 

  • Evers A, Klabunde T (2005) Structure-based drug discovery using GPCR homology modeling: successful virtual screening for antagonists of the alpha1A adrenergic receptor. J Med Chem 48(4):1088–1097. doi:10.1021/jm0491804

    PubMed  CAS  Google Scholar 

  • Evers A, Klebe G (2004) Successful virtual screening for a submicromolar antagonist of the neurokinin-1 receptor based on a ligand-supported homology model. J Med Chem 47(22):5381–5392. doi:10.1021/jm0311487

    PubMed  CAS  Google Scholar 

  • Evers A, Hessler G, Matter H, Klabunde T (2005) Virtual screening of biogenic amine-binding G-protein coupled receptors: comparative evaluation of protein- and ligand-based virtual screening protocols. J Med Chem 48(17):5448–5465. doi:10.1021/jm050090o

    PubMed  CAS  Google Scholar 

  • Gaulton A, Bellis LJ, Bento AP, Chambers J, Davies M, Hersey A, Light Y, McGlinchey S, Michalovich D, Al-Lazikani B, Overington JP (2012) ChEMBL: a large-scale bioactivity database for drug discovery. Nucleic Acids Res 40(Database issue):D1100–D1107. doi:10.1093/nar/gkr777

    PubMed  CAS  Google Scholar 

  • Gloriam DE, Wellendorph P, Johansen LD, Thomsen AR, Phonekeo K, Pedersen DS, Brauner-Osborne H (2011) Chemogenomic discovery of allosteric antagonists at the GPRC6A receptor. Chem Biol 18(11):1489–1498. doi:10.1016/j.chembiol.2011.09.012

    PubMed  CAS  Google Scholar 

  • Granier S, Manglik A, Kruse AC, Kobilka TS, Thian FS, Weis WI, Kobilka BK (2012) Structure of the delta-opioid receptor bound to naltrindole. Nature 485(7398):400–404. doi:10.1038/nature11111

    PubMed  CAS  Google Scholar 

  • Haga K, Kruse AC, Asada H, Yurugi-Kobayashi T, Shiroishi M, Zhang C, Weis WI, Okada T, Kobilka BK, Haga T, Kobayashi T (2012) Structure of the human M2 muscarinic acetylcholine receptor bound to an antagonist. Nature 482:547–551. doi:10.1038/nature10753

    PubMed  CAS  Google Scholar 

  • Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EY, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 A structure of the human beta2-adrenergic receptor. Structure 16(6):897–905. doi:10.1016/j.str.2008.05.001

    PubMed  CAS  Google Scholar 

  • Hanson MA, Roth CB, Jo E, Griffith MT, Scott FL, Reinhart G, Desale H, Clemons B, Cahalan SM, Schuerer SC, Sanna MG, Han GW, Kuhn P, Rosen H, Stevens RC (2012) Crystal structure of a lipid G protein-coupled receptor. Science 335(6070):851–855. doi:10.1126/science.1215904

    PubMed  CAS  Google Scholar 

  • Hopkins AL, Groom CR, Alex A (2004) Ligand efficiency: a useful metric for lead selection. Drug Discov Today 9(10):430–431. doi:10.1016/S1359-6446(04)03069-7

    PubMed  Google Scholar 

  • Istyastono EP (2012) Computational studies of histamine H4 receptor-ligand interactions. VU University Amsterdam, Amsterdam. ISBN 978-90-8570-994-7

    Google Scholar 

  • Jaakola VP, Griffith MT, Hanson MA, Cherezov V, Chien EY, Lane JR, Ijzerman AP, Stevens RC (2008) The 2.6 angstrom crystal structure of a human A2A adenosine receptor bound to an antagonist. Science 322(5905):1211–1217. doi:10.1126/science.1164772

    PubMed  CAS  Google Scholar 

  • Jaakola VP, Lane JR, Lin JY, Katritch V, Ijzerman AP, Stevens RC (2010) Ligand binding and subtype selectivity of the human A(2A) adenosine receptor: identification and characterization of essential amino acid residues. J Biol Chem 285(17):13032–13044. doi:10.1074/jbc.M109.096974

    PubMed  CAS  Google Scholar 

  • Katritch V, Abagyan R (2011) GPCR agonist binding revealed by modeling and crystallography. Trends Pharmacol Sci 32(11):637–643. doi:10.1016/j.tips.2011.08.001

    PubMed  CAS  Google Scholar 

  • Katritch V, Rueda M, Lam PC, Yeager M, Abagyan R (2010a) GPCR 3D homology models for ligand screening: lessons learned from blind predictions of adenosine A2a receptor complex. Proteins 78(1):197–211. doi:10.1002/prot.22507

    PubMed  CAS  Google Scholar 

  • Katritch V, Jaakola VP, Lane JR, Lin J, Ijzerman AP, Yeager M, Kufareva I, Stevens RC, Abagyan R (2010b) Structure-based discovery of novel chemotypes for adenosine A(2A) receptor antagonists. J Med Chem 53(4):1799–1809. doi:10.1021/jm901647p

    PubMed  CAS  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2012) Diversity and modularity of G protein-coupled receptor structures. Trends Pharmacol Sci 33(1):17–27. doi:10.1016/j.tips.2011.09.003

    PubMed  CAS  Google Scholar 

  • Katritch V, Cherezov V, Stevens RC (2013) Structure-function of the g protein-coupled receptor superfamily. Annu Rev Pharmacol Toxicol 53:531–556. doi:10.1146/annurev-pharmtox-032112-135923

    PubMed  CAS  Google Scholar 

  • Keiser MJ, Roth BL, Armbruster BN, Ernsberger P, Irwin JJ, Shoichet BK (2007) Relating protein pharmacology by ligand chemistry. Nat Biotechnol 25(2):197–206. doi:10.1038/nbt1284

    PubMed  CAS  Google Scholar 

  • Kellenberger E, Springael JY, Parmentier M, Hachet-Haas M, Galzi JL, Rognan D (2007) Identification of nonpeptide CCR5 receptor agonists by structure-based virtual screening. J Med Chem 50(6):1294–1303. doi:10.1021/jm061389p

    PubMed  CAS  Google Scholar 

  • Kim J, Wess J, van Rhee AM, Schoneberg T, Jacobson KA (1995) Site-directed mutagenesis identifies residues involved in ligand recognition in the human A2a adenosine receptor. J Biol Chem 270(23):13987–13997. doi:10.1074/jbc.270.23.13987

    Google Scholar 

  • Kim J, Yip ML, Shen X, Li H, Hsin LY, Labarge S, Heinrich EL, Lee W, Lu J, Vaidehi N (2012) Identification of anti-malarial compounds as novel antagonists to chemokine receptor CXCR4 in pancreatic cancer cells. PLoS One 7(2):e31004. doi:10.1371/journal.pone.0031004

    PubMed  CAS  Google Scholar 

  • Kiss R, Kiss B, Konczol A, Szalai F, Jelinek I, Laszlo V, Noszal B, Falus A, Keseru GM (2008) Discovery of novel human histamine H4 receptor ligands by large-scale structure-based virtual screening. J Med Chem 51(11):3145–3153. doi:10.1021/jm7014777

    PubMed  CAS  Google Scholar 

  • Kiss GN, Fells JI, Gupte R, Lee SC, Liu J, Nusser N, Lim KG, Ray RM, Lin FT, Parrill AL, Sumegi B, Miller DD, Tigyi G (2012) Virtual screening for LPA2-specific agonists identifies a nonlipid compound with antiapoptotic actions. Mol Pharmacol 82(6):1162–1173. doi:10.1124/mol.112.079699

    PubMed  CAS  Google Scholar 

  • Klabunde T, Giegerich C, Evers A (2009) Sequence-derived three-dimensional pharmacophore models for G-protein-coupled receptors and their application in virtual screening. J Med Chem 52(9):2923–2932. doi:10.1021/jm9001346

    PubMed  CAS  Google Scholar 

  • Knox C, Law V, Jewison T, Liu P, Ly S, Frolkis A, Pon A, Banco K, Mak C, Neveu V, Djoumbou Y, Eisner R, Guo AC, Wishart DS (2011) DrugBank 3.0: a comprehensive resource for ‘omics’ research on drugs. Nucleic Acids Res 39(Database issue):D1035–D1041. doi:10.1093/nar/gkq1126

    PubMed  CAS  Google Scholar 

  • Kolb P, Rosenbaum DM, Irwin JJ, Fung JJ, Kobilka BK, Shoichet BK (2009) Structure-based discovery of beta2-adrenergic receptor ligands. Proc Natl Acad Sci U S A 106(16):6843–6848. doi:10.1073/pnas.0812657106

    PubMed  CAS  Google Scholar 

  • Kolb P, Phan K, Gao ZG, Marko AC, Sali A, Jacobson KA (2012) Limits of ligand selectivity from docking to models: in silico screening for A(1) adenosine receptor antagonists. PLoS One 7(11):e49910. doi:10.1371/journal.pone.0049910

    PubMed  CAS  Google Scholar 

  • Kooistra AJ, Roumen L, Leurs R, de Esch IJP, de Graaf C (2013) From heptahelical bundle to hits from the Haystack: structure-based virtual screening for GPCR ligands. Methods Enzymol 522:279–336. doi:10.1016/B978-0-12-407865-9.00015-7

    PubMed  CAS  Google Scholar 

  • Kruse AC, Hu J, Pan AC, Arlow DH, Rosenbaum DM, Rosemond E, Green HF, Liu T, Chae PS, Dror RO, Shaw DE, Weis WI, Wess J, Kobilka BK (2012) Structure and dynamics of the M3 muscarinic acetylcholine receptor. Nature 482:552–556. doi:10.1038/nature10753

    PubMed  CAS  Google Scholar 

  • Kufareva I, Rueda M, Katritch V, Stevens RC, Abagyan R (2011) Participants, G.D.: status of GPCR modeling and docking as reflected by community-wide GPCR dock 2010 assessment. Structure 19(8):1108–1126. doi:10.1016/j.str.2011.05.012

  • Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7(4):339–357. doi:10.1038/nrd2518

    PubMed  Google Scholar 

  • Langmead CJ, Andrews SP, Congreve M, Errey JC, Hurrell E, Marshall FH, Mason JS, Richardson CM, Robertson N, Zhukov A, Weir M (2012) Identification of novel adenosine A2A receptor antagonists by virtual screening. J Med Chem 55(5):1904–1909. doi:10.1021/jm201455y

    PubMed  CAS  Google Scholar 

  • Leach AR, Hann MM (2011) Molecular complexity and fragment-based drug discovery: ten years on. Curr Opin Chem Biol 15(4):489–496. doi:10.1016/j.cbpa.2011.05.008

    PubMed  CAS  Google Scholar 

  • Lin X, Huang XP, Chen G, Whaley R, Peng S, Wang Y, Zhang G, Wang SX, Wang S, Roth BL, Huang N (2012) Life beyond kinases: structure-based discovery of sorafenib as nanomolar antagonist of 5-HT receptors. J Med Chem 55(12):5749–5759. doi:10.1021/jm300338m

    PubMed  CAS  Google Scholar 

  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ (2001) Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev 46(1–3):3–26. doi:10.1016/S0169-409X(00)00129-0

    PubMed  CAS  Google Scholar 

  • Liu T, Lin Y, Wen X, Jorissen RN, Gilson MK (2007) BindingDB: a web-accessible database of experimentally determined protein-ligand binding affinities. Nucleic Acids Res 35(Database issue):D198–D201. doi:10.1093/nar/gkl999

    PubMed  CAS  Google Scholar 

  • Liu Y, Zhou E, Yu K, Zhu J, Zhang Y, Xie X, Li J, Jiang H (2008) Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules 13(10):2426–2441. doi:10.3390/molecules13102426

    PubMed  CAS  Google Scholar 

  • Liu JJ, Horst R, Katritch V, Stevens RC, Wuthrich K (2012) Biased signaling pathways in beta2-adrenergic receptor characterized by 19F-NMR. Science 335(6072):1106–1110. doi:10.1126/science.1215802

    PubMed  CAS  Google Scholar 

  • Loving K, Alberts I, Sherman W (2010) Computational approaches for fragment-based and de novo design. Curr Top Med Chem 10(1):14–32. doi:10.2174/156802610790232305

    PubMed  CAS  Google Scholar 

  • Malherbe P, Kratochwil N, Muhlemann A, Zenner MT, Fischer C, Stahl M, Gerber PR, Jaeschke G, Porter RH (2006) Comparison of the binding pockets of two chemically unrelated allosteric antagonists of the mGlu5 receptor and identification of crucial residues involved in the inverse agonism of MPEP. J Neurochem 98(2):601–615. doi:10.1111/j.1471-4159.2006.03886.x

    PubMed  CAS  Google Scholar 

  • Manglik A, Kruse AC, Kobilka TS, Thian FS, Mathiesen JM, Sunahara RK, Pardo L, Weis WI, Kobilka BK, Granier S (2012) Crystal structure of the micro-opioid receptor bound to a morphinan antagonist. Nature 485(7398):321–326. doi:10.1038/nature10954

    PubMed  CAS  Google Scholar 

  • Marcou G, Rognan D (2007) Optimizing fragment and scaffold docking by use of molecular interaction fingerprints. J Chem Inf Model 47(1):195–207. doi:10.1021/ci600342e

    PubMed  CAS  Google Scholar 

  • Michino M, Abola E, Participants GD, Brooks CL 3rd, Dixon JS, Moult J, Stevens RC (2009) Community-wide assessment of GPCR structure modelling and ligand docking: GPCR dock 2008. Nat Rev Drug Discov 8(6):455–463. doi:10.1038/nrd2877

    Google Scholar 

  • Miller LJ, Chen Q, Lam PC, Pinon DI, Sexton PM, Abagyan R, Dong M (2011) Refinement of glucagon-like peptide 1 docking to its intact receptor using mid-region photolabile probes and molecular modeling. J Biol Chem 286(18):15895–15907. doi:10.1074/jbc.M110.217901

    PubMed  CAS  Google Scholar 

  • Miller DC, Lunn G, Jones P, Sabnis Y, Davies NL, Driscoll P (2012) Investigation of the effect of molecular properties on the binding kinetics of a ligand to its biological target. MedChemComm 3:449–452. doi:10.1021/ci200088d

    CAS  Google Scholar 

  • Moitessier N, Englebienne P, Lee D, Lawandi J, Corbeil CR (2008) Towards the development of universal, fast and highly accurate docking/scoring methods: a long way to go. Br J Pharmacol 153(Suppl 1):S7–S26. doi:10.1038/sj.bjp.0707515

    PubMed  CAS  Google Scholar 

  • Moukhametzianov R, Warne T, Edwards PC, Serrano-Vega MJ, Leslie AG, Tate CG, Schertler GF (2011) Two distinct conformations of helix 6 observed in antagonist-bound structures of a beta1-adrenergic receptor. Proc Natl Acad Sci U S A 108(20):8228–8232. doi:10.1073/pnas.1100185108

    PubMed  CAS  Google Scholar 

  • Moura Barbosa AJ, Del Rio A (2012) Freely accessible databases of commercial compounds for high- throughput virtual screenings. Curr Top Med Chem 12(8):866–877. doi:10.2174/156802612800166710

    PubMed  Google Scholar 

  • Muegge I (2003) Selection criteria for drug-like compounds. Med Res Rev 23(3):302–321. doi:10.1002/med.10041

    PubMed  CAS  Google Scholar 

  • Mysinger MM, Weiss DR, Ziarek JJ, Gravel S, Doak AK, Karpiak J, Heveker N, Shoichet BK, Volkman BF (2012) Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci U S A 109(14):5517–5522. doi:10.1073/pnas.1120431109

    PubMed  CAS  Google Scholar 

  • Nygaard R, Zou Y, Dror RO, Mildorf TJ, Arlow DH, Manglik A, Pan AC, Liu CW, Fung JJ, Bokoch MP, Thian FS, Kobilka TS, Shaw DE, Mueller L, Prosser RS, Kobilka BK (2013) The dynamic process of beta(2)-adrenergic receptor activation. Cell 152(3):532–542. doi:10.1016/j.cell.2013.01.008

    PubMed  CAS  Google Scholar 

  • Olah H, Rad R, Ostopovici L, Bora A, Hadaruga N, Hadaruga D, Moldovan R, Fulias A, Mracec M, Oprea TI (2007) WOMBAT and WOMBAT-PK: bioactivity databases for lead and drug discovery. In: Schreiber SL, Kapoor T, Wess G (eds) Chemical biology: from small molecules to systems biology and drug design. Wiley-VCH, New York, pp 760–786. doi:10.1002/9783527619375.ch13b

  • Palczewski K, Kumasaka T, Hori T, Behnke CA, Motoshima H, Fox BA, Le Trong I, Teller DC, Okada T, Stenkamp RE, Yamamoto M, Miyano M (2000) Crystal structure of rhodopsin: a G protein-coupled receptor. Science 289(5480):739–745. doi:10.1126/science.289.5480.739

    PubMed  CAS  Google Scholar 

  • Petrel C, Kessler A, Dauban P, Dodd RH, Rognan D, Ruat M (2004) Positive and negative allosteric modulators of the Ca2+-sensing receptor interact within overlapping but not identical binding sites in the transmembrane domain. J Biol Chem 279(18):18990–18997. doi:10.1074/jbc.M400724200

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Rosenbaum DM, Kobilka TS, Thian FS, Edwards PC, Burghammer M, Ratnala VR, Sanishvili R, Fischetti RF, Schertler GF, Weis WI, Kobilka BK (2007) Crystal structure of the human beta2 adrenergic G-protein-coupled receptor. Nature 450(7168):383–387. doi:10.1038/nature06325

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, Choi HJ, Fung JJ, Pardon E, Casarosa P, Chae PS, Devree BT, Rosenbaum DM, Thian FS, Kobilka TS, Schnapp A, Konetzki I, Sunahara RK, Gellman SH, Pautsch A, Steyaert J, Weis WI, Kobilka BK (2011a) Structure of a nanobody-stabilized active state of the beta(2) adrenoceptor. Nature 469(7329):175–180. doi:10.1038/nature09648

    PubMed  CAS  Google Scholar 

  • Rasmussen SG, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah ST, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011b) Crystal structure of the beta2 adrenergic receptor-Gs protein complex. Nature 477(7366):549–555. doi:10.1038/nature10361

    PubMed  CAS  Google Scholar 

  • Renault N, Laurent X, Farce A, El Bakali J, Mansouri R, Gervois P, Millet R, Desreumaux P, Furman C, Chavatte P (2012) Virtual screening of CB(2) receptor agonists from Bayesian network and high-throughput docking: structural insights into agonist-modulated GPCR features. Chem Biol Drug Des. doi:10.1111/cbdd.12095

    Google Scholar 

  • Rodriguez D, Gutierrez-de-Teran H (2013) Computational approaches for ligand discovery and design in class-A G protein-coupled receptors. Curr Pharm Des 19(12):2216–2236. doi:10.2174/1381612811319120009

    PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Cherezov V, Hanson MA, Rasmussen SG, Thian FS, Kobilka TS, Choi HJ, Yao XJ, Weis WI, Stevens RC, Kobilka BK (2007) GPCR engineering yields high-resolution structural insights into beta2-adrenergic receptor function. Science 318(5854):1266–1273. doi:10.1126/science.1150609

    PubMed  CAS  Google Scholar 

  • Rosenbaum DM, Zhang C, Lyons JA, Holl R, Aragao D, Arlow DH, Rasmussen SG, Choi HJ, Devree BT, Sunahara RK, Chae PS, Gellman SH, Dror RO, Shaw DE, Weis WI, Caffrey M, Gmeiner P, Kobilka BK (2011) Structure and function of an irreversible agonist-beta(2) adrenoceptor complex. Nature 469(7329):236–240. doi:10.1038/nature09665

    PubMed  CAS  Google Scholar 

  • Rosenkilde MM, Benned-Jensen T, Frimurer TM, Schwartz TW (2010) The minor binding pocket: a major player in 7TM receptor activation. Trends Pharmacol Sci 31(12):567–574. doi:10.1016/j.tips.2010.08.006

    PubMed  CAS  Google Scholar 

  • Roumen L, Sanders MP, Vroling B, de Esch IJ, de Vlieg J, Leurs R, Klomp JP, Nabuurs SB, de Graaf C (2011) In silico veritas: the pitfalls and challenges of predicting GPCR-ligand interactions. Pharmaceuticals 4(9):1196–1215. doi:10.1021/ci200088d

    CAS  Google Scholar 

  • Sabio M, Jones K, Topiol S (2008) Use of the X-ray structure of the beta2-adrenergic receptor for drug discovery. Part 2: identification of active compounds. Bioorg Med Chem Lett 18(20):5391–5395. doi:10.1016/j.bmcl.2008.09.046

    PubMed  CAS  Google Scholar 

  • Salo OM, Raitio KH, Savinainen JR, Nevalainen T, Lahtela-Kakkonen M, Laitinen JT, Jarvinen T, Poso A (2005) Virtual screening of novel CB2 ligands using a comparative model of the human cannabinoid CB2 receptor. J Med Chem 48(23):7166–7171. doi:10.1021/jm050565b

    PubMed  CAS  Google Scholar 

  • Salon JA, Lodowski DT, Palczewski K (2011) The significance of G protein-coupled receptor crystallography for drug discovery. Pharmacol Rev 63(4):901–937. doi:10.1124/pr.110.003350

    PubMed  CAS  Google Scholar 

  • Sanders MP, Verhoeven S, de Graaf C, Roumen L, Vroling B, Nabuurs SB, de Vlieg J, Klomp JP (2011) Snooker: a structure-based pharmacophore generation tool applied to class A GPCRs. J Chem Inf Model 51(9):2277–2292. doi:10.1021/ci200088d

    PubMed  CAS  Google Scholar 

  • Sanders MP, McGuire R, Roumen L, de Esch IJ, de Vlieg J, Klomp JP, de Graaf C (2012) From the protein’s perspective: the benefits and challenges of protein structure-based pharmacophore modeling. Med Chem Comm 3(1):28–38. doi:10.1021/ci200088d

    CAS  Google Scholar 

  • Shimamura T, Shiroishi M, Weyand S, Tsujimoto H, Winter G, Katritch V, Abagyan R, Cherezov V, Liu W, Han GW, Kobayashi T, Stevens RC, Iwata S (2011) Structure of the human histamine H1 receptor complex with doxepin. Nature 475(7354):65–70. doi:10.1038/nature10236

    PubMed  CAS  Google Scholar 

  • Sirci F, Istyastono EP, Vischer HF, Kooistra AJ, Nijmeijer S, Kuijer M, Wijtmans M, Mannhold R, Leurs R, de Esch IJ, de Graaf C (2012) Virtual fragment screening: discovery of histamine h(3) receptor ligands using ligand-based and protein-based molecular fingerprints. J Chem Inf Model 52(12):3308–3324. doi:10.1021/ci3004094

    PubMed  CAS  Google Scholar 

  • Stevens RC, Cherezov V, Katritch V, Abagyan R, Kuhn P, Rosen H, Wuthrich K (2012) The GPCR network: a large-scale collaboration to determine human GPCR structure and function. Nat Rev Drug Discov 12(1):25–34. doi:10.1038/nrd3859

    PubMed  Google Scholar 

  • Sum CS, Tikhonova IG, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2007) Identification of residues important for agonist recognition and activation in GPR40. J Biol Chem 282(40):29248–29255. doi:10.1074/jbc.M705077200

    PubMed  CAS  Google Scholar 

  • Surgand JS, Rodrigo J, Kellenberger E, Rognan D (2006) A chemogenomic analysis of the transmembrane binding cavity of human G-protein-coupled receptors. Proteins 62(2):509–538. doi:10.1002/prot.20768

    PubMed  CAS  Google Scholar 

  • Tang H, Wang XS, Hsieh JH, Tropsha A (2012) Do crystal structures obviate the need for theoretical models of GPCRs for structure based virtual screening. Proteins. doi:10.1002/prot.24035

    PubMed  Google Scholar 

  • Tautermann CS (2011) The use of G-protein coupled receptor models in lead optimization. Future Med Chem 3(6):709–721. doi:10.4155/fmc.11.24

    PubMed  CAS  Google Scholar 

  • Thompson AA, Liu W, Chun E, Katritch V, Wu H, Vardy E, Huang XP, Trapella C, Guerrini R, Calo G, Roth BL, Cherezov V, Stevens RC (2012) Structure of the nociceptin/orphanin FQ receptor in complex with a peptide mimetic. Nature 485(7398):395–399. doi:10.1038/nature11085

    PubMed  CAS  Google Scholar 

  • Tikhonova IG, Sum CS, Neumann S, Engel S, Raaka BM, Costanzi S, Gershengorn MC (2008) Discovery of novel agonists and antagonists of the free fatty acid receptor 1 (FFAR1) using virtual screening. J Med Chem 51(3):625–633. doi:10.1021/jm7012425

    PubMed  CAS  Google Scholar 

  • Topiol S, Sabio M (2008) Use of the X-ray structure of the Beta2-adrenergic receptor for drug discovery. Bioorg Med Chem Lett 18(5):1598–1602. doi:10.1016/j.bmcl.2008.01.063

    PubMed  CAS  Google Scholar 

  • Tosh DK, Phan K, Gao ZG, Gakh AA, Xu F, Deflorian F, Abagyan R, Stevens RC, Jacobson KA, Katritch V (2012) Optimization of adenosine 5′-carboxamide derivatives as adenosine receptor agonists using structure-based ligand design and fragment screening. J Med Chem 55(9):4297–4308. doi:10.1021/jm300095s

    PubMed  CAS  Google Scholar 

  • Tresadern G, Bartolome JM, Macdonald GJ, Langlois X (2011) Molecular properties affecting fast dissociation from the D2 receptor. Bioorg Med Chem 19(7):2231–2241. doi:10.1016/j.bmc.2011.02.033

    PubMed  CAS  Google Scholar 

  • Triballeau N, Van Name E, Laslier G, Cai D, Paillard G, Sorensen PW, Hoffmann R, Bertrand HO, Ngai J, Acher FC (2008) High-potency olfactory receptor agonists discovered by virtual high-throughput screening: molecular probes for receptor structure and olfactory function. Neuron 60(5):767–774. doi:10.1016/j.neuron.2008.11.014

    PubMed  CAS  Google Scholar 

  • van der Horst E, Okuno Y, Bender A, IJzerman AP (2009) Substructure mining of GPCR ligands reveals activity-class specific functional groups in an unbiased manner. J Chem Inf Model 49(2):348–360. doi:10.1021/ci8003896

    PubMed  Google Scholar 

  • Varady J, Wu X, Fang X, Min J, Hu Z, Levant B, Wang S (2003) Molecular modeling of the three-dimensional structure of dopamine 3 (D3) subtype receptor: discovery of novel and potent D3 ligands through a hybrid pharmacophore- and structure-based database searching approach. J Med Chem 46(21):4377–4392. doi:10.1021/jm030085p

    PubMed  CAS  Google Scholar 

  • Vohra S, Taddese B, Conner AC, Poyner DR, Hay DL, Barwell J, Reeves PJ, Upton GJ, Reynolds CA (2013) Similarity between class A and class B G-protein-coupled receptors exemplified through calcitonin gene-related peptide receptor modelling and mutagenesis studies. J R Soc Interface 10(79):20120846. doi:10.1098/rsif.2012.0846

    PubMed  Google Scholar 

  • Wacker D, Fenalti G, Brown MA, Katritch V, Abagyan R, Cherezov V, Stevens RC (2010) Conserved binding mode of human beta2 adrenergic receptor inverse agonists and antagonist revealed by X-ray crystallography. J Am Chem Soc 132(33):11443–11445. doi:10.1021/ja105108q

    PubMed  CAS  Google Scholar 

  • Warne T, Serrano-Vega MJ, Baker JG, Moukhametzianov R, Edwards PC, Henderson R, Leslie AG, Tate CG, Schertler GF (2008) Structure of a beta1-adrenergic G-protein-coupled receptor. Nature 454(7203):486–491. doi:10.1038/nature07101

    PubMed  CAS  Google Scholar 

  • Warne T, Moukhametzianov R, Baker JG, Nehme R, Edwards PC, Leslie AG, Schertler GF, Tate CG (2011) The structural basis for agonist and partial agonist action on a beta(1)-adrenergic receptor. Nature 469(7329):241–244. doi:10.1038/nature09746

    PubMed  CAS  Google Scholar 

  • Warne T, Edwards PC, Leslie AG, Tate CG (2012) Crystal structures of a stabilized beta1-adrenoceptor bound to the biased agonists bucindolol and carvedilol. Structure 20(5):841–849. doi:10.1016/j.str.2012.03.014

    PubMed  CAS  Google Scholar 

  • White JF, Noinaj N, Shibata Y, Love J, Kloss B, Xu F, Gvozdenovic-Jeremic J, Shah P, Shiloach J, Tate CG, Grisshammer R (2012) Structure of the agonist-bound neurotensin receptor. Nature 490(7421):508–513. doi:10.1038/nature11558

    PubMed  CAS  Google Scholar 

  • Wu B, Chien EY, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan R, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330(6007):1066–1071. doi:10.1126/science.1194396

    PubMed  CAS  Google Scholar 

  • Wu H, Wacker D, Mileni M, Katritch V, Han GW, Vardy E, Liu W, Thompson AA, Huang XP, Carroll FI, Mascarella SW, Westkaemper RB, Mosier PD, Roth BL, Cherezov V, Stevens RC (2012) Structure of the human kappa-opioid receptor in complex with JDTic. Nature 485(7398):327–332. doi:10.1038/nature10939

    PubMed  CAS  Google Scholar 

  • Yrjola S, Kalliokoski T, Laitinen T, Poso A, Parkkari T, Nevalainen T (2013) Discovery of novel cannabinoid receptor ligands by a virtual screening approach: further development of 2,4,6-trisubstituted 1,3,5-triazines as CB2 agonists. Eur J Pharm Sci 48(1–2):9–20. doi:10.1016/j.ejps.2012.10.020

    PubMed  CAS  Google Scholar 

  • Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492(7429):387–392. doi:10.1038/nature11701

    PubMed  CAS  Google Scholar 

  • Zhukov A, Andrews SP, Errey JC, Robertson N, Tehan B, Mason JS, Marshall FH, Weir M, Congreve M (2011) Biophysical mapping of the adenosine A2A receptor. J Med Chem 54(13):4312–4323. doi:10.1021/jm2003798

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chris de Graaf .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kooistra, A.J., Leurs, R., de Esch, I.J.P., de Graaf, C. (2014). From Three-Dimensional GPCR Structure to Rational Ligand Discovery. In: Filizola, M. (eds) G Protein-Coupled Receptors - Modeling and Simulation. Advances in Experimental Medicine and Biology, vol 796. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7423-0_7

Download citation

Publish with us

Policies and ethics