Skip to main content

Genomics of Mineral Nutrient Biofortification: Calcium, Iron and Zinc

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Dietary deficiencies affect nearly half of the people on the planet, who simply do not receive sufficient nutrition from the food they buy or grow. Inadequate calcium, iron, and zinc consumption create short and long term health problems, which in turn can magnify and stagnate national development. Dietary diversity, use of industrially fortified foods, and medical interventions are all effective solutions to this suite of related problems. However, each of these solutions requires infrastructure, economic support, and either education or access to markets, and thus are more suitable for the urban than rural poor. Biofortification, or the nutritional enhancement of staple and specialty crops, represents a low cost, sustainable, and potentially effective solution to addressing dietary deficiency and malnutrition in the rural poor. Recent progress on calcium, iron, and zinc biofortification using quantitative genetics, mutational genetics, and genetic engineering technologies will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abebe Y, Bogale A, Hambidge KM et al (2008) Inadequate intakes of dietary zinc among pregnant women from subsistence households in Sidama, Southern Ethiopia. Public Health Nutr 11:379–386

    PubMed  Google Scholar 

  • Alonso-Blanco C, Peeters AJ, Koornneef M et al (1998) Development of an AFLP based linkage map of Ler, Col and Cvi Arabidopsis thaliana ecotypes and construction of a Ler/Cvi recombinant inbred line population. Plant J 14:259–271

    CAS  PubMed  Google Scholar 

  • Arsenault JE, Yakes EA, Hossain MB et al (2010) The current high prevalence of dietary zinc inadequacy among children and women in rural Bangladesh could be substantially ameliorated by zinc biofortification of rice. J Nutr 140:1683–1690

    CAS  PubMed  Google Scholar 

  • Assunção AG, Herrero E, Lin YF et al (2010) Arabidopsis thaliana transcription factors bZIP19 and bZIP23 regulate the adaptation to zinc deficiency. Proc Acad Natl Sci U S A 107:10296–10301

    Google Scholar 

  • Atwell S, Huang YS, Vilhjalmsson BJ et al (2010) Genome-wide association study of 107 phenotypes in Arabidopsis thaliana inbred lines. Nature 465:627–631

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter I (2009) Ionomics: studying the social network of mineral nutrients. Curr Opin Plant Biol 12:381–386

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter I, Ouzzani M, Orcun S et al (2007) Purdue ionomics information management system. An integrated functional genomics platform. Plant Physiol 143:600–611

    CAS  PubMed Central  PubMed  Google Scholar 

  • Baxter I, Hosmani PS, Rus A et al (2009) Root suberin forms an extracellular barrier that affects water relations and mineral nutrition in Arabidopsis. PLoS Genet 5:e1000492

    PubMed Central  PubMed  Google Scholar 

  • Baxter IR, Gustin JL, Settles AM, Hoekenga OA (2013) Ionomic characterization of maize kernels in the Intermated B73x Mo17 (IBM) population. 53:209–220

    Google Scholar 

  • Bentsink L, Yuan K, Koornneef M, Vreugdenhil D (2003) The genetics of phytate and phosphate accumulation in seeds and leaves of Arabidopsis thaliana, using natural variation. Theor Appl Genet 106:1234–1243

    CAS  PubMed  Google Scholar 

  • Blair MW, Astudillo C, Grusak MA et al (2009) Inheritance of seed iron and zinc concentrations in common bean (Phaseolus vulgaris L.). Mol Breeding 23:197–207

    CAS  Google Scholar 

  • Blair MW, Chaves A, Tofino A et al (2010a) Extensive diversity and inter-genepool introgression in a world-wide collection of indeterminate snap bean accessions. Theor Appl Genet 120:1381–1391

    Google Scholar 

  • Blair MW, Knewtson SJ, Astudillo C et al (2010b) Variation and inheritance of iron reductase activity in the roots of common bean (Phaseolus vulgaris L.) and association with seed iron accumulation QTL. BMC Plant Biol 10:215

    Google Scholar 

  • Blair MW, Medina JI, Astudillo C et al (2010c) QTL for seed iron and zinc concentration and content in a Mesoamerican common bean (Phaseolus vulgaris L.) population. Theor Appl Genet 121:1059–1070

    CAS  Google Scholar 

  • Blair MW, Astudillo C, Rengifo J et al (2011) QTL analyses for seed iron and zinc concentrations in an intra-genepool population of Andean common beans (Phaseolus vulgaris L.). Theor Appl Genet 122:511–521

    CAS  PubMed  Google Scholar 

  • Boccio JR, Iyengar V (2003) Iron deficiency: causes, consequences, and strategies to overcome this nutritional problem. Biol Trace Elem Res 94:1–32

    CAS  PubMed  Google Scholar 

  • Bouis HE (2003) Micronutrient fortification of plants through plant breeding: can it improve nutrition in man at low cost? Proc Nutr Soc 62:403–411

    PubMed  Google Scholar 

  • Bouis HE, Welch R (2010) Biofortification—a sustainable agricultural strategy for reducing micronutrient malnutrition in the global south. Crop Sci 50:20–32

    Google Scholar 

  • Broadley MR, Hammond JP, King GJ et al (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiol 146:1707–1720

    CAS  PubMed Central  PubMed  Google Scholar 

  • Broadley MR, White PJ (2010) Eats roots and leaves. Can edible horticultural crops address dietary calcium, magnesium and potassium deficiencies? Proc Nutr Soc 69:601–612

    CAS  PubMed  Google Scholar 

  • Buescher E, Achberger T, Amusan I et al (2010) Natural genetic variation in selected populations of Arabidopsis thaliana is associated with ionomic differences. PLoS One 5:e11081

    PubMed Central  PubMed  Google Scholar 

  • Caballero B (2002) Global patterns of child health: the role of nutrition. Ann Nutr Metab 46(Suppl 1):3–7

    CAS  PubMed  Google Scholar 

  • Cakmak I (2009) Enrichment of fertilizers with zinc: an excellent investment for humanity and crop production in India. J Trace Elem Med Biol 23:281–289

    CAS  PubMed  Google Scholar 

  • Chao DY, Gable K, Chen M et al (2011) Sphingolipids in the root play an important role in regulating the leaf ionome in Arabidopsis thaliana. Plant Cell 23:1061–1081

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cichy KA, Caldas GV, Snapp SS, Blair MW (2009) QTL analysis of seed iron, zinc, and phosphorous levels in an andean bean population. Crop Sci 49:1742–1750

    CAS  Google Scholar 

  • Conte SS, Walker EL (2011) Transporters contributing to iron trafficking in plants. Mol Plant 4:464–476

    CAS  PubMed  Google Scholar 

  • Doust AN, Kellogg EA, Devos KM, Bennetzen JL (2009) Foxtail millet: a sequence-driven grass model system. Plant Physiol 149:137–141

    CAS  PubMed Central  PubMed  Google Scholar 

  • Drakakaki G, Marcel S, Glahn RP et al (2005) Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Plant Mol Biol 59:869–880

    CAS  PubMed  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One 6:e19379

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fairweather-Tait S, Lynch S, Hotz C et al (2005) The usefulness of in vitro models to predict the bioavailability of iron and zinc: a consensus statement from the HarvestPlus expert consultation. Int J Vitam Nutr Res 75:371–374

    CAS  PubMed  Google Scholar 

  • FAO (2000) Food insecurity: when people live with hunger and fear starvation. The state of food insecurity in the world. FAO, Rome

    Google Scholar 

  • FAO/WHO (2004a) Calcium. Joint FAO/WHO expert consultation on human vitamin and mineral requirements, 2nd edn. Bangkok, pp 59–93. Accessed from http://whqlibdoc.who.int/publications/2004/9241546123_chap4.pdf. Verified 11/14/13

  • FAO/WHO (2004b) Food as a source of nutrients. Joint FAO/WHO expert consultation on human vitamin and mineral requirements, 2nd edn. Bangkok, pp 318–337. Accessed from http://whqlibdoc.who.int/publications/2004/9241546123_chap17.pdf. Verified 11/14/13.

  • FAO/WHO (2004c) Iron. Joint FAO/WHO expert consultation on human vitamin and mineral requirements. FAO/WHO, Bangkok, pp 246–278. Accessed from http://whqlibdoc.who.int/publications/2004/9241546123_chap13.pdf. Verified 11/14/13.

  • FAO/WHO (2004d) Zinc. Joint FAO/WHO expert consultation on human vitamin and mineral requirements, 2nd edn. Bangkok, pp 230–245 Accessed from http://whqlibdoc.who.int/publications/2004/9241546123_chap12.pdf. Verified 11/14/13.

  • Frossard E, Bucher M, Mächler F et al (2000) Potential for increasing the content and bioavailability of Fe, Zn, and Ca in plants for human nutrition. J Sci Food Agric 80:861–879

    CAS  Google Scholar 

  • Garcia-Casal MN, Layrisse M, Solano L et al (1998) Vitamin A and beta-carotene can improve nonheme iron absorption from rice, wheat and corn by humans. J Nutr 128:646–650

    CAS  PubMed  Google Scholar 

  • Garcia-Oliveira AL, Tan L, Fu Y, Sun C (2009) Genetic identification of quantitative trait loci for contents of mineral nutrients in rice grain. J Intr Plant Bio 51:84–92

    CAS  Google Scholar 

  • Georges F, Das S, Ray H, Bock C et al (2009) Over-expression of Brassica napus phosphatidylinositol-phospholipase C2 in canola induces significant changes in gene expression and phytohormone distribution patterns, enhances drought tolerance and promotes early flowering and maturation. Plant Cell Environ 32:1664–1681

    CAS  PubMed  Google Scholar 

  • Gibson RS, Bailey KB, Gibbs M, Ferguson EL (2010) A review of phytate, iron, zinc, and calcium concentrations in plant-based complementary foods used in low-income countries and implications for bioavailability. Food Nutr Bull 31:S134–S146

    PubMed  Google Scholar 

  • Glahn RP, Lee OA, Yeung A, Goldman MI, Miller DD (1998) Caco-2 cell ferritin formation predicts nonradiolabeled food iron availability in an in vitro digestion/Caco-2 cell culture model. J Nutr 128:1555–1561

    CAS  PubMed  Google Scholar 

  • Glahn RP, Wortley GM, South PK, Miller DD (2002) Inhibition of iron uptake by phytic acid, tannic acid, and ZnCl2: studies using an in vitro digestion/Caco-2 cell model. J Agric Food Chem 50:390–395

    CAS  PubMed  Google Scholar 

  • Gore MA, Chia JM, Elshire RJ et al (2009) A first-generation haplotype map of maize. Science 326:1115–1117

    CAS  PubMed  Google Scholar 

  • Guzman Maldonado H, Martinez O, Acosta GJAetal (2003) Putative quantitiative trait loci for physical and chemical components of common bean. Crop Sci 43:1029–1035

    CAS  Google Scholar 

  • Hacisalihoglu G, Kochian LV (2003) How do some plants tolerate low levels of soil zinc? Mechanisms of zinc efficiency in crop plants. New Phytol 159:341–350

    CAS  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Kochian LV (2001) High- and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat. Plant Physiol 125:456–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Wang YH et al (2003) Zinc efficiency is correlated with enhanced expression and activity of zinc-requiring enzymes in wheat. Plant Physiol 131:595–602

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hacisalihoglu G, Hart JJ, Vallejos CE, Kochian LV (2004) The role of shoot-localized processes in the mechanism of Zn efficiency in common bean. Planta 218:704–711

    CAS  PubMed  Google Scholar 

  • Hambidge KM, Krebs NF, Westcott J et al (2005) Absorption of calcium from tortilla meals prepared from low-phytate maize. Am J Clin Nutr 82:84–87

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamblin MT, Buckler ES, Jannink JL (2011) Population genetics of genomics-based crop improvement methods. Trends Genet 27:98–106

    CAS  PubMed  Google Scholar 

  • Harjes CE, Rocheford TR, Bai L et al (2008) Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortification. Science 319:330–333

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschi KD (2009) Nutrient biofortification of food crops. Annu Rev Nutr 29:401–421

    CAS  PubMed  Google Scholar 

  • Hoekenga O, Gustin J, Flint-Garcia S et al (2010) Ionomics of the maize nested association mapping panel. Vitro Cell Dev Biol-Anim 46:S9–S9

    Google Scholar 

  • Hoekenga OA, Lung’aho MG, Tako E et al (2011) Iron biofortification of maize grain. Plant Genet Res 9:327–329

    CAS  Google Scholar 

  • Horton S, Ross J (2003) The economics of iron deficiency. Food Pol 28:51–75

    Google Scholar 

  • Huang X, Wei X, Sang T et al (2010) Genome-wide association studies of 14 agronomic traits in rice landraces. Nat Genet 42:961–967

    CAS  PubMed  Google Scholar 

  • Hunt JR (2003) Bioavailability of iron, zinc, and other trace minerals from vegetarian diets. Am J Clin Nutr 78:633S–639S

    CAS  PubMed  Google Scholar 

  • Hurrell R, Egli I (2010) Iron bioavailability and dietary reference values. Am J Clin Nutr 91:1461S–1467S

    CAS  PubMed  Google Scholar 

  • Islam FMA, Basford KE, Jara C et al (2002) Seed compositional and disease resistance differences among gene pools in cultivated common bean. Genet Resour Crop Evol 49:285–293

    Google Scholar 

  • Jeong J, Guerinot ML (2009) Homing in on iron homeostasis in plants. Trends Plant Sci 14:280–285

    CAS  PubMed  Google Scholar 

  • Khoshgoftarmanesh AH, Sadrarhami A, Sharifi HR et al (2009) Selecting zinc-efficient wheat genotypes with high grain yield using a stress tolerance index. Agron J 101:1409–1416

    CAS  Google Scholar 

  • Kim KM, Park YH, Kim CK et al (2005) Development of transgenic rice plants overexpressing the Arabidopsis H+/Ca2+ antiporter CAX1 gene. Plant Cell Rep 23:678–682

    CAS  PubMed  Google Scholar 

  • Kim SI, Tai TH (2011) Identification of genes necessary for wild-type levels of seed phytic acid in Arabidopsis thaliana using a reverse genetics approach. Mol Genet Genomics 286:119–133

    CAS  PubMed  Google Scholar 

  • Kim SI, Andaya CB, Goyal SS, Tai TH (2008) The rice OsLpa1 gene encodes a novel protein involved in phytic acid metabolism. Theor Appl Genet 117:769–779

    CAS  PubMed  Google Scholar 

  • Klein MA, Grusak MA (2009) Identification of nutrient and physical seed trait QTL in the model legume Lotus japonicus. Genome 52:677–691

    CAS  PubMed  Google Scholar 

  • Korth KL, Doege SJ, Park SH et al (2006) Medicago truncatula mutants demonstrate the role of plant calcium oxalate crystals as an effective defense against chewing insects. Plant Physiol 141:188–195

    CAS  PubMed Central  PubMed  Google Scholar 

  • Krill AM, Kirst M, Kochian LV et al (2010) Association and linkage analysis of aluminum tolerance genes in maize. PLoS One 5:e9958

    PubMed Central  PubMed  Google Scholar 

  • Lahner B, Gong J, Mahmoudian M et al (2003) Genomic scale profiling of nutrient and trace elements in Arabidopsis thaliana. Nat Biotechnol 21:1215–1221

    CAS  PubMed  Google Scholar 

  • Larson SR, Raboy V (1999) Linkage mapping of maize and barley myo-inositol 1-phosphate synthase DNA sequences: correspondence with a low phytic acid mutation. Theor Appl Genet 99:27–36

    CAS  Google Scholar 

  • Lawrence CJ, Harper LC, Schaeffer ML et al (2008) MaizeGDB: the maize model organism database for basic, translational, and applied research. Int J Plant Genomics 2008:496957. doi: 10.1155/2008/496957.

    Google Scholar 

  • Lee M, Sharopova N, Beavis WD et al (2002) Expanding the genetic map of maize with the intermated B73x Mo17 (IBM) population. Plant Mol Biol 48:453–461

    CAS  PubMed  Google Scholar 

  • Lee S, Jeon US, Lee SJ et al (2009) Iron fortification of rice seeds through activation of the nicotianamine synthase gene. Proc Acad Natl Sci U S A 106:22014–22019

    CAS  Google Scholar 

  • Li YC, Ledoux DR, Veum TL et al (2000) Effects of low phytic acid corn on phosphorus utilization, performance, and bone mineralization in broiler chicks. Poult Sci 79:1444–1450

    CAS  PubMed  Google Scholar 

  • Lister C, Dean C (1993) Recombinant inbred lines for mapping RFLP and phenotypic markers in Arabidopsis thaliana. Plant J 4:745–750

    CAS  Google Scholar 

  • Liu QL, Xu XH, Ren XL et al (2007) Generation and characterization of low phytic acid germplasm in rice (Oryza sativa L.). Theor Appl Genet 114:803–814

    CAS  PubMed  Google Scholar 

  • Lung’aho MG, Mwaniki AM, Szalma SJ et al (2011) Genetic and physiological anlaysis of iron biofortification in maize kernels. PLoS One 6:e20429

    PubMed Central  PubMed  Google Scholar 

  • Martino HS, Martin BR, Weaver CM et al (2008) A soybean cultivar lacking lipoxygenase 2 and 3 has similar calcium bioavailability to a commercial variety despite higher calcium absorption inhibitors. J Food Sci 73:H33–H35

    CAS  PubMed  Google Scholar 

  • Mongrand S, Stanislas T, Bayer EM et al (2010) Membrane rafts in plant cells. Trends Plant Sci 15:656–663

    CAS  PubMed  Google Scholar 

  • Morris J, Hawthorne KM, Hotze T et al (2008) Nutritional impact of elevated calcium transport activity in carrots. Proc Natl Acad Sci U S A 105:1431–1435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morris J, Nakata PA, McConn M et al (2007) Increased calcium bioavailability in mice fed genetically engineered plants lacking calcium oxalate. Plant Mol Biol 64:613–618

    CAS  PubMed  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the ionome. Chem Rev 109:4553–4567

    CAS  PubMed Central  PubMed  Google Scholar 

  • Murphy AM, Otto B, Brearley CA et al (2008) A role for inositol hexakisphosphate in the maintenance of basal resistance to plant pathogens. Plant J 56:638–652

    CAS  PubMed  Google Scholar 

  • Murray-Kolb LE, Takaiwa F, Goto F et al (2002) Transgenic rice is a source of iron for iron-depleted rats. J Nutr 132:957–960

    CAS  PubMed  Google Scholar 

  • Nagy R, Grob H, Weder B, Green P et al (2009) The Arabidopsis ATP-binding cassette protein AtMRP5/AtABCC5 is a high affinity inositol hexakisphosphate transporter involved in guard cell signaling and phytate storage. J Biol Chem 284:33614–33622

    CAS  PubMed  Google Scholar 

  • Panzeri D, Cassani E, Doria E et al (2011) A defective ABC transporter of the MRP family, responsible for the bean lpa1 mutation, affects the regulation of the phytic acid pathway, reduces seed myo-inositol and alters ABA sensitivity. New Phytol 191:70–83

    CAS  PubMed  Google Scholar 

  • Park S, Kim CK, Pike LM et al (2004) Increased calcium in carrots by expression an Arabidopsis H+/Ca2+ transporter. Mol Breeding 14:275–282

    Google Scholar 

  • Park S, Cheng NH, Pittman JK et al (2005a) Increased calcium levels and prolonged shelf life in tomatoes expressing Arabidopsis H+/Ca2+ transporters. Plant Physiol 139:1194–1206

    CAS  Google Scholar 

  • Park S, Kang TS, Kim CK et al (2005b) Genetic manipulation for enhancing calcium content in potato tuber. J Agric Food Chem 53:5598–5603

    CAS  Google Scholar 

  • Park S, Elless MP, Park J et al (2009) Sensory analysis of calcium-biofortified lettuce. Plant Biotechnol J 7:106–117

    CAS  PubMed  Google Scholar 

  • Pinstrup-Andersen P (2002) Food and agricultural policy for a globalizing world: preparing for the future. Amer J Agr Econ 84:1201–1214

    Google Scholar 

  • Pixley KV, Palacio-Rojas N, Glahn R (2011) The usefulness of iron bioavailability as a target trait for breeding maize (Zea mays L.) with enhanced nutritional value. Field Crops Research 123:153–160

    Google Scholar 

  • Pomper KW, Grusak MA (2004) Calcium Uptake and Whole-plant Water Use Influence Pod Calcium Concentration in Snap Bean Plants. J Amer Soc Hort Sci 129:890–895

    CAS  Google Scholar 

  • Raboy V, Gerbasi PF, Young KA et al (2000) Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1. Plant Physiol 124:355–368

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rai KN, Hash CT, Singh AK, Velu G (2008) Adaptation and quality traits of a germplasm-derived commercial seed parent of pearl millet. Plant Genet Res News 154:20–24

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS et al (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326:1112–1115

    CAS  PubMed  Google Scholar 

  • Simic D, Sudar R, Ledencan T et al (2009) Genetic variation of bioavailable iron and zinc in grain of a maize population. J Cereal Sci 50:392–397

    CAS  Google Scholar 

  • Simic D, Drinic SM, Zdunic Z et al (2012) Quantitative trait loci for biofortification traits in maize. J Hered 103:47–54

    CAS  PubMed  Google Scholar 

  • Stangoulis J, Huynh BL, Welch R et al (2007) Quantitative trait loci for phytate in rice grain and their relationship with grain micronutrient content. Euphytica 154:289–294

    Google Scholar 

  • Stoecker BJ, Abebe Y, Hubbs-Tait L et al (2009) Zinc status and cognitive function of pregnant women in Southern Ethiopia. Eur J Clin Nutr 63:916–918

    CAS  PubMed  Google Scholar 

  • Swarbreck D, Wilks C, Lamesch P et al (2008) The Arabidopsis Information Resource (TAIR): gene structure and function annotation. Nucleic Acids Res 36:D1009–D1014

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tako E, Laparra JM, Glahn RP et al (2009) Biofortified black beans in a maize and bean diet provide more bioavailable iron to piglets than standard black beans. J Nutr 139:305–309

    CAS  PubMed  Google Scholar 

  • Tako E, Rutzke MA, Glahn RP (2010) Using the domestic chicken (Gallus gallus) as an in vivo model for iron bioavailability. Poult Sci 89:514–521

    CAS  PubMed  Google Scholar 

  • Tako E, Blair MW, Glahn RP (2011) Biofortified red mottled beans (Phaseolus vulgaris L.) in a maize and bean diet provide more bioavailable iron than standard red mottled beans: Studies in poultry (Gallus gallus) and in vitro digestion/Caco-2 model. Nutrition J 10:113

    CAS  Google Scholar 

  • Tako E, Hoekenga OA, Kochian LV, Glahn RP (2013) High bioavailability iron maize (Zea mays L.) developed through molecular breeding provides more bioavailable iron in vitro (Caco-2 model) and in vivo (Gallus gallus). Nutr J 12:3 doi: 10.1186/1475-2891-12-3

    Google Scholar 

  • Thavarajah P, Thavarajah D, Vandenberg A (2009) Low phytic acid lentils (Lens culinaris L.): a potential solution for increased micronutrient bioavailability. J Agric Food Chem 57:9044–9049

    CAS  PubMed  Google Scholar 

  • Tontisirin K, Nantel G, Bhattacharjee L (2002) Food-based strategies to meet the challenges of micronutrient malnutrition in the developing world. Proc Nutr Soc 61:243–250

    PubMed  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC Gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    CAS  PubMed  Google Scholar 

  • Varshney RK, Close TJ, Singh NK et al (2009) Orphan legume crops enter the genomics era! Curr Opin Plant Biol 12:202–210

    PubMed  Google Scholar 

  • Veum TL, Ledoux DR, Raboy V, Ertl DS (2001) Low-phytic acid corn improves nutrient utilization for growing pigs. J Anim Sci 79:2873–2880

    CAS  PubMed  Google Scholar 

  • Vreugdenhil D, Aarts MG, Koornneef M et al (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Arabidopsis thaliana. Plant Cell Environ 27:828–839

    CAS  Google Scholar 

  • Vucenik I, Shamsuddin AM (2003) Cancer inhibition by inositol hexaphosphate (IP6) and inositol: from laboratory to clinic. J Nutr 133:3778S–3784S

    CAS  PubMed  Google Scholar 

  • Vucenik I, Shamsuddin AM (2006) Protection against cancer by dietary IP6 and inositol. Nutr Cancer 55:109–125

    CAS  PubMed  Google Scholar 

  • Walker EL, Waters BM (2011) The role of transition metal homeostasis in plant seed development. Curr Opin Plant Biol 14:318–324

    CAS  PubMed  Google Scholar 

  • Waters BM, Chu HH, Didonato RJ et al (2006) Mutations in Arabidopsis yellow stripe-like1 and yellow stripe-like3 reveal their roles in metal ion homeostasis and loading of metal ions in seeds. Plant Physiol 141:1446–1458

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters BM, Grusak MA (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phytol 179:1033–1047

    CAS  PubMed  Google Scholar 

  • Waters BM, Uauy C, Dubcovsky J, Grusak MA (2009) Wheat (Triticum aestivum) NAM proteins regulate the translocation of iron, zinc, and nitrogen compounds from vegetative tissues to grain. J Exp Bot 60:4263–4274

    CAS  PubMed  Google Scholar 

  • Welch RM (2002) Breeding strategies for biofortified staple plant foods to reduce micronutrient malnutrition globally. J Nutr 132:495S–499S

    PubMed  Google Scholar 

  • Welch RM, Graham RD (2004) Breeding for micronutrients in staple food crops from a human nutrition perspective. J Exp Bot 55:353–364

    CAS  PubMed  Google Scholar 

  • White PJ, Broadley MR (2005) Biofortifying crops with essential mineral elements. Trends Plant Sci 10:586–593

    PubMed  Google Scholar 

  • White PJ, Broadley MR (2009) Biofortification of crops with seven mineral elements often lacking in human diets–iron, zinc, copper, calcium, magnesium, selenium and iodine. New Phytol 182:49–84

    CAS  PubMed  Google Scholar 

  • Yun S, Habicht J, Miller D, Glahn R (2004) An in vitro digestion/Caco-2 cell culture system accurately predicts the effects of ascorbic acid and polyphenolic compounds on iron bioavailability in humans. J Nutr 134:2712–2721

    Google Scholar 

  • Zhao J, Paulo MJ, Jamar D et al (2007) Association mapping of leaf traits, flowering time, and phytate content in Brassica rapa. Genome 50:963–973

    CAS  PubMed  Google Scholar 

  • Zhao J, Jamar DC, Lou P et al (2008) Quantitative trait loci analysis of phytate and phosphate concentrations in seeds and leaves of Brassica rapa. Plant Cell Environ 31:887–900

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by USDA ARS. The author would like to thank Mrs. Meghan den Bakker and Ms. Ellie Taylor for their excellent work on the research farm during the writing of this review.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or part of an individual’s income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA’s TARGET Center at (202) 720–2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250–9410, or call (800) 795–3272 (voice) or (202) 720–6382 (TDD). USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Owen A. Hoekenga .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hoekenga, O. (2014). Genomics of Mineral Nutrient Biofortification: Calcium, Iron and Zinc. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_18

Download citation

Publish with us

Policies and ethics