Skip to main content

Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley Production

  • Chapter
  • First Online:
Genomics of Plant Genetic Resources

Abstract

Stability of high yields in a changing environment becomes the main aim of the future wheat and barley breeding, oriented towards development of frost-tolerant winter and facultative cultivars together with careful selection of growth cycle adaptation and drought tolerance. Since low temperature signal influences both the cold acclimation and vernalization processes the interaction between VRN gene expression and freezing tolerance (FT) is discussed. Recent advances in global expression changes driven by cold are reviewed in view of the immense progress in high throughput technological platforms. Different signal transduction pathways in which several transcription factors play an important role regulating the expression of whole sets of genes are presented, including CBF-regulated and CBF-independent hubs. The knowledge acquired from genomics and transcriptome analysis has been then complemented by the description of metabolomics and proteomic approaches to help unraveling the molecular changes that occur under cold stress in the cereal plants. Finally, it is surveyed the great importance of stable and well-characterized genetic resources for future breeding for FT, that could switch from marker-assisted to genomics-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Achard P, Gong F, Cheminant S et al (2008) The cold-inducible CBF1 factor-dependent signaling pathway modulates the accumulation of the growth-repressing DELLA proteins via its effect on gibberellin metabolism. Plant Cell 20:2117–2129

    CAS  PubMed Central  PubMed  Google Scholar 

  • Acquaah G (2006) Principles of plant genetics and breeding. Blackwell Publishing Ltd., Oxford

    Google Scholar 

  • Akar T, Francia E, Tondelli A et al (2009) Marker-assisted characterization of frost tolerance in barley (Hordeum vulgare L.). Plant Breed 128:381–386

    Google Scholar 

  • Alberta Agriculture, Food and Development (2001) The Growth Potential of Triticale in Western Canada: Section B—Genetic Basis, Breeding and Varietal Performance of Triticale Genetic Sources and Potential of 21st Century Triticale Germplasm: Past, Current and Future Breeding Goals, Achievements and Limitations. Government of Alberta, Agricultural and Rural Development. http://www1.agric.gov.ab.ca/$department/deptdocs.nsf/all/fcd4232 Accessed 25 February 2013

  • Amme S, Matros A, Schlesier B, Mock HP (2006) Proteome analysis of cold stress response in Arabidopsis thaliana using DIGE-technology. J Exp Bot 57:1537–1546

    CAS  PubMed  Google Scholar 

  • Badawi M, Danyluk J, Boucho B et al (2007) The CBF gene family in hexaploid wheat and its relationship to the phylogenetic complexity of cereal CBFs. Mol Genet Genomics 277:533–554

    CAS  PubMed Central  PubMed  Google Scholar 

  • Badawi M, Reddy YV, Agharbaoui Z et al (2008) Structure and functional analysis of wheat ICE (Inducer of CBF Expression) genes. Plant Cell Physiol 49:1237–1249

    CAS  PubMed  Google Scholar 

  • Bae MS, Cho EJ, Choi EY, Park OK (2003) Analysis of the Arabidopsis nuclear proteome and its response to cold stress. Plant J 36:652–663

    CAS  PubMed  Google Scholar 

  • Baga M, Chodaparambil SV, Limin ASE et al (2007) Identification of quantitative trait loci and associated candidate genes for low-temperature tolerance in cold-hardy winter wheat. Funct Integr Genom 7:53–68

    CAS  Google Scholar 

  • Baker SS, Wilhelm KS, Thomashow MF (1994) The 5’-region of Arabidopsis thaliana cor15a has cis-acting elements that confer cold-, drought- and ABA-regulated gene expression. Plant Mol Biol 24:701–713

    CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE et al (2011) NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res 39:D1005–D1010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Battaglia M, Olvera-Carillo Y, Garciarrubio A, Covarrubias AA (2008) The enigmatic LEA proteins and other hydrophilins. Plant Physiol 48:6–24

    Google Scholar 

  • Baum M, Grando S, Backes G et al (2003) QTLs for agronomic traits in the Mediterranean environment identified in recombinant inbred lines of the cross ‘Arta’ x H. spontaneum 41–1. Theor Appl Genet 107:1215–1225

    CAS  PubMed  Google Scholar 

  • Beales J, Turner A, Griffiths S et al (2007) A Pseudo-Response Regulator is misexpressed in the photoperiod insensitive Ppd-D1a mutant of wheat (Triticum aestivum L.). Theor Appl Genet 115:721–733

    CAS  PubMed  Google Scholar 

  • Bishop RE (2000) The bacterial lipocalins. Biochim Biophys Acta 1482:73–83

    Google Scholar 

  • Bocian A, Kosmala A, Rapacz M et al (2011) Differences in leaf proteome response to cold acclimation between Lolium perenne plants with distinct levels of frost tolerance. J Plant Physiol 168:1271–1279

    CAS  PubMed  Google Scholar 

  • Braun HJ, Sãulescu NN (2002) Breeding winter and facultative wheat. In: Curtis BC, Rajaram S, Gomez Macpherson H (eds) FAO Plant production and protection series. Bread wheat. Improvement and production. Food and Agriculture and Food Organization of the United Nations, Rome

    Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M et al (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491:705–710

    CAS  PubMed Central  PubMed  Google Scholar 

  • Buckler DR, Park A, Viswanathan M et al (2008) Screening isolates from antibody phage-display libraries. Drug Discov Today 13:318–324

    CAS  PubMed  Google Scholar 

  • Campoli C, Matus-Cádiz MA, Pozniak CJ et al (2009) Comparative expression of Cbf genes in the Triticeae under different acclimation induction temperatures. Mol Genet Genomics 282:141–152

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cantrel C, Vazquez T, Puyaubert J et al (2011) Nitric oxide participates in cold-responsive phosphosphingolipid formation and gene expression in Arabidopsis thaliana. New Phytol 189:415–427

    CAS  PubMed  Google Scholar 

  • Catala R, Santos E, Alonso JM et al (2003) Mutations in the Ca2+/H+ transporter CAX1 increase CBF/DREB1 expression and the cold-acclimation response in Arabidopsis. Plant Cell 15:2940–2951

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cattivelli L, Baldi P, Crosatti C et al (2002) Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol Biol 48:649–655

    CAS  Google Scholar 

  • Chen A, Reinheimer J, Brulé-Babel A et al (2009) Genes and traits associated with chromosome 2H and 5H regions controlling sensitivity of reproductive tissues to frost in barley. Theor Appl Genet 8:1465–1476

    Google Scholar 

  • Cheng L, Gao X, Li S et al (2010) Proteomic analysis of soybean [Glycine max (L.) Meer.] seeds during imbibition at chilling temperature. Mol Breed 26:1–17

    CAS  Google Scholar 

  • Chinnusamy V, Ohta M, Kanrar S et al (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev 17:1043–1054

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Schumaker K, Zhu JK (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J Exp Bot 55:225–236

    CAS  PubMed  Google Scholar 

  • Chinnusamy V, Zhu J, Zhu JK (2006) Gene regulation during cold acclimation in plants. Physiol Plant 126:52–61

    CAS  Google Scholar 

  • Chinnusamy V, Zhu JK, Sunkar R (2010) Gene regulation during cold stress acclimation in plants. Methods Mol Biol 639:39–55

    CAS  PubMed Central  PubMed  Google Scholar 

  • Choi DW, Zhu B, Close TJ (1999) The barley (Hordeum vulgare L.) dehydrin multigene family: sequences, allele types, chromosome assignments, and expression characteristics of 11 Dhn genes of cv. Dicktoo. Theor Appl Genet 98:1234–1247

    CAS  Google Scholar 

  • Choi DW, Rodriguez EM, Close TJ (2002) Barley Cbf3 gene identification, expression pattern, and map location. Plant Physiol 129:1781–1787

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cockram J, Chiapparino E, Taylor SA et al (2007a) Haplotype analysis of vernalization loci in European barley germplasm reveals novel VRN-H1 alleles and predominant winter VRN-H1/VRN-H2 multi-locus haplotype. Theor Appl Genet 115:993–1001

    CAS  Google Scholar 

  • Cockram J, Jones H, Leigh FJ et al (2007b) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exp Bot 58:1231–1244

    CAS  Google Scholar 

  • Cockram J, White J, Leigh FJ et al (2008) Association mapping of partitioning loci in barley. BMC Genet 9:16

    PubMed Central  PubMed  Google Scholar 

  • Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for spring and winter seasonal growth habit in barley. Crop Sci 49:404–410

    Google Scholar 

  • Comadran J, Kilian B, Russell J et al (2012) Natural variation in a homolog of Antirrhinum CENTRORADIALIS contributed to spring growth habit and environmental adaptation in cultivated barley. Nat Genet 44:1388–1392

    CAS  PubMed  Google Scholar 

  • Cook D, Fowler S, Fiehn O, Thomashow MF (2004) A prominent role for the CBF cold response pathway in configuring the low-temperature metabolome of Arabidopsis. Proc Natl Acad Sci USA 42:15243–15248

    Google Scholar 

  • Crosatti C, Soncini C, Stanca AM, Cattivelli L (1995) The accumulation of a cold-regulated chloroplastic protein is light-dependent. Planta 196:458–463

    CAS  PubMed  Google Scholar 

  • Cui S, Huang F, Wang J et al (2005) A proteomic analysis of cold stress responses in rice seedlings. Proteomics 5:3162–3172

    CAS  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q et al (2007) Overexpression of a R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143:1739–1751

    CAS  PubMed Central  PubMed  Google Scholar 

  • Danyluk J, Kane NA, Breton G et al (2003) TaVRT-1, a putative transcription factor associated with vegetative to reproductive transition in cereals. Plant Physiol 132:1849–1860

    CAS  PubMed Central  PubMed  Google Scholar 

  • Degand H, Faber AM, Dauchot N et al (2009) Proteomic analysis of chicory root identifies proteins typically involved in cold acclimation. Proteomics 9:2903–2907

    CAS  PubMed  Google Scholar 

  • Dhillon T, Pearce SP, Stockinger EJ et al (2010) Regulation of freezing tolerance and flowering in cereals: the VRN-1 connection. Plant Physiol 153:1846–1858

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dionne J, Castonguay Y, Nadeau P, Desjardnis Y (2001) Amino acid and protein changes during cold acclimation of green-type annual bluegrass (Poa annua L.) ecotypes. Crop Sci 41:1862–1870

    CAS  Google Scholar 

  • Distelfeld A, Li C, Dubcovsky J (2009) Regulation of flowering in temperate cereals. Curr Opin Plant Biol 12:1–7

    Google Scholar 

  • Doherty CJ, van Buskirk HA, Myers SJ, Thomashow MF (2009) Roles for Arabidopsis CAMTA transcription factors in cold-regulated gene expression and freezing tolerance. Plant Cell 21:972–984

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dong CH, Agarwal M, Zhang Y et al (2006) The negative regulator of plant cold responses, HOS1, is a RING E3 ligase that mediates the ubiquiti-nation and degradation of ICE1. Proc Natl Acad Sci USA 103:8281–8286

    CAS  PubMed  Google Scholar 

  • Dong MA, Farré EM, Thomashow MF (2011) Circadian clock-associated 1 and late elongated hypocotyl regulate expression of the C-repeat binding factor (CBF) pathway in Arabidopsis. Proc Natl Acad Sci USA 108:7241–7246

    CAS  PubMed  Google Scholar 

  • Dörffling K, Schulenburg S, Lesselich G, Dörffling H (1990) Abscisic acid and proline levels in cold-hardened winter wheat leaves in relation to variety-specific differences in freezing resistance. J Agr Crop Sci 165:230–239

    Google Scholar 

  • Dubcovsky J, Luo MC, Dvorak J (1995) Linkage relationships among stress-induced genes in wheat. Theor Appl Genet 91:795–801

    CAS  PubMed  Google Scholar 

  • Dubcovsky J, Loukoianov A, Fu D et al (2006) Effect of photoperiod on the regulation of wheat vernalization genes VRN1 and VRN2. Plant Mol Biol 60:469–480

    CAS  PubMed  Google Scholar 

  • Dubouzet JG, Sakuma Y, Ito Y et al (2003) OsDREB genes in rice, Oryza sativa L, encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    CAS  PubMed  Google Scholar 

  • Dumont E, Bahrman N, Goulas E et al (2011) A proteomic approach to decipher chilling response from cold acclimation in pea (Pisum sativum L.). Plant Sci 180:86–98

    CAS  PubMed  Google Scholar 

  • FAO (2010) The second report on the state of the world’s plant genetic resources for food and agriculture. Food and Agriculture and Food Organization of the United Nations, Rome

    Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The flowering locus T-like gene family in barley (Hordeum vulgare). Genet 176:599–609

    CAS  Google Scholar 

  • Fowler DB (2008) Cold acclimation threshold induction temperatures in cereals. Crop Sci 48:1147–1154

    Google Scholar 

  • Fowler DB, Chauvin LP, Limin AE, Sarhan F (1996a) The regulatory role of vernalization in the expression of low-temperature-induced genes in wheat and rye. Theor Appl Genet 93:554–559

    CAS  Google Scholar 

  • Fowler DB, Limin AE, Wang SY, Ward RW (1996b) Relationship between low-temperature tolerance and vernalization response in wheat and rye. Can J Plant Sci 76:37–42

    Google Scholar 

  • Fowler S, Thomashow MF (2002) Arabidopsis transcriptome profiling indicates that multiple regulatory pathways are activated during cold acclimation in addition to the CBF cold response pathway. Plant Cell 14:1675–1690

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fowler SG, Cook D, Thomashow MF (2005) Low temperature induction of Arabidopsis CBF1, 2 and 3 is gated by the circadian clock. Plant Physiol 137:961–968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Francia E, Rizza F, Cattivelli L et al (2004) Two loci on chromosome 5H determine low temperature tolerance in a ‘Nure’ (winter) x ‘Tremois’ (spring) barley map. Theor Appl Genet 108:670–680

    CAS  PubMed  Google Scholar 

  • Francia E, Barabaschi D, Tondelli A et al (2007) Fine mapping of a HvCBF gene cluster at the frost resistance locus Fr-H2 in barley. Theor Appl Genet 115:1083–1091

    CAS  PubMed  Google Scholar 

  • Fricano A, Rizza F, Faccioli P et al (2009) Genetic variants of HvCbf14 are statistically associated with frost tolerance in a European germplasm collection of Hordeum vulgare. Theor Appl Genet 119:1335–1348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu D, Szücs P, Yan L et al (2005) Large deletions within the first intron in VRN-1 are associated with spring growth habit in barley and wheat. Mol Genet Genomics 273:54–65

    CAS  PubMed  Google Scholar 

  • Galiba G (2002) Mapping of genes regulating abiotic stress tolerance in cereals. Acta Agron Hung 50:235–247

    CAS  Google Scholar 

  • Galiba G, Quarrie SA, Sutka J et al (1995) RFLP mapping of the vernalization (Vrn1) and frost resistance (Fr1) genes on chromosome 5A of wheat. Theor Appl Genet 90:1174–1179

    CAS  PubMed  Google Scholar 

  • Galiba G, Vágújfalvi A, Li CX et al (2009) Regulatory genes involved in the determination of frost tolerance in temperate cereals. Plant Sci 176:12–19

    CAS  Google Scholar 

  • Ganeshan S, Sharma P, Young L et al (2011) Contrasting cDNA-AFLP profiles between crown and leaf tissues of cold-acclimated wheat plants indicate differing regulatory circuitries for low temperature tolerance. Plant Mol. Biol 75:379–398

    CAS  Google Scholar 

  • Gao F, Zhou Y, Zhu W et al (2009) Proteomic analysis of cold stress-responsive proteins in Thellungiella rosette leaves. Planta 230:1033–1046

    CAS  PubMed  Google Scholar 

  • Gong Z, Lee H, Xiong L et al (2002) RNA helicase-like protein as an early regulator of transcription factors for plant chilling and freezing tolerance. Proc Natl Acad Sci USA 99:11507–11512

    CAS  PubMed  Google Scholar 

  • Greenup AG, Peacock WJ, Dennis ES, Trevaskis B (2009) The molecular biology of seasonal flowering-responses in Arabidopsis and the cereals. Ann Bot (Lond) 103:1165–1172

    CAS  Google Scholar 

  • Greenup AG, Sasani S, Oliver SN et al (2011) Transcriptome analysis of the vernalization response in Barley (Hordeum vulgare) Seedlings. PLOS ONE 6:e17900

    CAS  PubMed Central  PubMed  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gulick P, Drouin S, Yu Z et al (2005) Transcriptome comparison of winter and spring wheat responding to low temperature. Genome 48:913–923

    CAS  PubMed  Google Scholar 

  • Guy C, Kaplan F, Kopka J et al (2008) Metabolomics of temperature stress. Physiol Plant 132:220–235

    CAS  PubMed  Google Scholar 

  • Habier D, Fernando RL, Dekkers JCM (2009) Genomic selection using low-density marker panels. Genetics 182:343–353

    CAS  PubMed  Google Scholar 

  • Harlan J, de Wet J (1971) Towards a rational classification of cultivated plants. Taxon 20:509–517

    Google Scholar 

  • Hashimoto M, Komatsu S (2007) Proteomic analysis of rice seedlings during cold stress. Proteomics 7:1293–1302

    CAS  PubMed  Google Scholar 

  • Heffner EL, Sorrells ME, Jannink JL (2009) Genomic selection for crop improvement. Crop Sci 49:1–12

    CAS  Google Scholar 

  • Heffner EL, Jannink JL, Sorrells ME (2010) Genomic selection accuracy using multifamily prediction models in a wheat breeding program. Plant Genome 4:65–75

    Google Scholar 

  • Heidarvand L, Maali Amiri R (2010) What happens in plant molecular responses to cold stress? Acta Physiole Plant 32:419–431

    CAS  Google Scholar 

  • Herman EM, Rotter K, Premakumar R et al (2006) Additional freeze hardiness in wheat acquired by exposure to –3 °C is associated with extensive physiological, morphological, and molecular changes. J Exp Bot 14:3601–3618

    Google Scholar 

  • Houde M, Dhindsa RS, Sarhan F (1992) A molecular marker to select for freezing tolerance in Gramineae. Mol Gen Genet 234:43–48

    CAS  PubMed  Google Scholar 

  • Hsieh TH, Lee JT, Yang PT et al (2002) Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol 129:1086–1094

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hussain SS (2006) Barley genetics and genomics: a review. Proc Pak Acad Sci 43:63–84

    CAS  Google Scholar 

  • Imin N, Kerim T, Rolfe BG, Weinman JJ (2004) Effect of early cold stress on the maturation of rice anthers. Proteomics 4:1873–1882

    CAS  PubMed  Google Scholar 

  • Jaglo-Ottosen KR, Gilmour SJ, Zarka DG et al (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280:104–106

    CAS  PubMed  Google Scholar 

  • Johnston PA, Timmerman-Vaughan GM, Farnden KJF, Pickering R (2009) Marker development and characterisation of Hordeum bulbosum introgression lines: a resource for barley improvement. Theor Appl Genet 118:1429–1437

    PubMed  Google Scholar 

  • Kane NA, Danyluk J, Tardif G et al (2005) TaVRT-2, a member of the St-MADS-11 clade of flowering repressors, is regulated by vernalization and photoperiod in wheat. Plant Physiol 138:2354–2363

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kane NA, Agharbaoui Z, Diallo AO et al (2007) TaVRT2 represses transcription of the wheat vernalization gene TaVRN1. Plant J 51:670–680

    CAS  PubMed  Google Scholar 

  • Kaplan F, Kopka J, Haskell DW et al (2004) Exploring the temperature-stress metabolome of Arabidopsis. Plant Physiol 136:4159–4168

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kawamura Y, Uemura M (2003) Mass spectrometric approach for identifying putative plasma membrane proteins of Arabidopsis leaves associated with cold acclimation. Plant J 36:141–154

    CAS  PubMed  Google Scholar 

  • Kidokoro S, Maruyama K, Nakashima K et al (2009) The phytochrome-interacting factor PIF7 negatively regulates DREB1 expression under circadian control in Arabidopsis. Plant Physiol 151:046–2057

    Google Scholar 

  • Kim TS, Kim SK, Han TJ et al (2002) ABA and polyamines act independently in primary leaves of cold-stressed tomato (Lycopersicon esculentum). Physiol Plant 115:370–376

    CAS  PubMed  Google Scholar 

  • Knight H (2000) Calcium signaling during abiotic stress in plants. Int Rev Cytol 195:269–324

    CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1996) Cold calcium signaling in Arabidopsis involves two cellular pools and a change in calcium signature after acclimation. Plant Cell 8:489–503

    CAS  PubMed Central  PubMed  Google Scholar 

  • Knox AK, Li C, Vágújfalvi A, Galiba G et al (2008) Identification of candidate CBF genes for the frost tolerance locus Fr-A m 2 in Triticum monococcum. Plant Mol Biol 67:257–270

    CAS  PubMed  Google Scholar 

  • Knox AK, Dhillon T, Cheng H et al (2010) CBF gene copy number variation at Frost Resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet 121:21–35

    PubMed  Google Scholar 

  • Kobayashi F, Takumi S, Kume S et al (2005) Regulation by Vrn-1/Fr-1 chromosomal intervals of CBF-mediated Cor/Lea gene expression and freezing tolerance in common wheat. J Exp Bot 56:887–895

    CAS  PubMed  Google Scholar 

  • Kocsy G, Galiba G, Brunold C (2001) Role of glutathione in adaptation and signalling during chilling and cold acclimation in plants. Physiol Plant 113:158–164

    CAS  PubMed  Google Scholar 

  • Kocsy G, Szalai G, Vágújfalvi A et al (2000) Genetic study of glutathione accumulation during cold hardening in wheat. Planta 210:295–301

    CAS  PubMed  Google Scholar 

  • Kocsy G, Athmer B, Perovic D et al (2010) Regulation of gene expression by chromosome 5A during cold hardening in wheat. Mol Genet Genomics 283:351–363

    CAS  PubMed  Google Scholar 

  • Kosmala A, Bocian A, Rapacz M et al (2009) Identification of leaf proteins differentially accumulated during cold acclimation between Festuca pratensis plants with distinct levels of frost tolerance. J Exp Bot 60:3595–3609

    CAS  PubMed  Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT (2007) The role of dehydrins in plant response to cold. Biol Plant 51:601–617

    Google Scholar 

  • Kosová K, Holková L, Prášil IT et al (2008a) Expression of dehydrin 5 during the development of frost tolerance in barley (Hordeum vulgare). J Plant Physiol 165:1142–1151

    Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2008b) The relationship between vernalization- and photoperiodically-regulated genes and the development of frost tolerance in wheat and barley. Biol Plant 52:601–615

    Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P (2010) Role of dehydrins in plant stress response. In: Pessarakli M (ed) Handbook of plant and crop stress. 3rd edn. CRC Press, Taylor & Francis, Boca Raton pp 239–285

    Google Scholar 

  • Kosová K, Vítámvás P, Prášil IT, Renaut J (2011) Plant proteome changes under abiotic stress—contribution of proteomics studies to understanding plant stress response. J Proteomics 74:1301–1322

    PubMed  Google Scholar 

  • Kosová K, Prášil IT, Vítámvás P et al (2012) Complex phytohormone responses during the cold acclimation of two wheat cultivars differing in cold tolerance, winter Samanta and spring Sandra. J Plant Physiol 169:567–576

    PubMed  Google Scholar 

  • Kovács Z, Simon-Sarkadi L, Sovány C et al (2011) Differential effects of cold acclimation and abscisic acid on free amino acid composition in wheat. Plant Sci 180:61–68

    PubMed  Google Scholar 

  • Kovács Z, Simon-Sarkadi L, Szücs A, Kocsy G (2010) Differential effects of cold, osmotic stress and abscisic acid on polyamine accumulation in wheat. Amino Acids 38:623–631

    PubMed  Google Scholar 

  • Kume S, Kobayashi F, Ishibashi M et al (2005) Differential and coordinated expression of Cbf and Cor/Lea genes during long-term cold acclimation in two wheat cultivars showing distinct levels of freezing tolerance. Genes Genet Syst 80:185–197

    CAS  PubMed  Google Scholar 

  • Kumar S, Bink M, Volz RK et al (2012) Towards genomic selection in apple (Malus × domestica Borkh.) breeding programmes: Prospects, challenges and strategies. Tree Genetics Genomes 8:1–14

    Google Scholar 

  • Laudencia-Chingcuanco D, Ganeshan S, You F et al (2011) Genome-wide gene expression analysis supports a developmental model of low temperature tolerance gene regulation in wheat (Triticum aestivum L.). BMC Genomics 12:299

    CAS  PubMed Central  PubMed  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1994) Genetic analysis of a photoperiod response gene on the short arm of chromosome 2(2 H) of barley (Hordeum vulgare L.). Heredity 72:619–627

    CAS  Google Scholar 

  • Laurie DA, Pratchett N, Bezant JH, Snape JW (1995) RFLP mapping of five major genes and eight quantitative trait loci controlling flowering time in a winter × spring barley (Hordeum vulgare L.) cross. Genome 38:575–585

    CAS  PubMed  Google Scholar 

  • Limin A, Corey A, Hayes P, Fowler DB (2007) Low-temperature acclimation of barley cultivars used as parents in mapping populations: response to photoperiod, vernalization and phenological development. Planta 226:139–146

    CAS  PubMed  Google Scholar 

  • Limin AE, Fowler DB (1991) Breeding for cold hardiness in winter wheat: problems, progress and alien gene expression. Field Crop Res 27:201–218

    Google Scholar 

  • Limin AE, Fowler DB (1993) Inheritance of cold hardiness in Triticum aestivum × synthetic hexaploid wheat crosses. Plant Breed 110:103–108

    Google Scholar 

  • Loukoianov A, Yan L, Blechl A et al (2005) Regulation of VRN-1 vernalization genes in normal and transgenic polyploid wheat. Plant Physiol 138:2364–2373

    CAS  PubMed Central  PubMed  Google Scholar 

  • Macháčková I, Hanišová A, Krekule J (2006) Levels of ethylene, ACC, MACC, ABA and proline as indicators of cold hardening and frost resistance in winter wheat. Physiol Plant 76:603–607

    Google Scholar 

  • Mago R, Lawrence GJ, Ellis JG (2011) The application of DNA marker and doubled-haploid technology for stacking multiple stem rust resistance genes in wheat. Mol Breed 27:329–335

    Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S et al (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150:1972–1980

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mayer KFX, Waugh R, Langridge P et al (2012) A physical, genetic and functional sequence assembly of the barley genome. Nature 491:711–716

    CAS  PubMed  Google Scholar 

  • Mazzucotelli E, Tartari A, Cattivelli L, Forlani G (2006) Metabolism of GABA acid during cold acclimation and freezing and its relationship to frost tolerance in barley and wheat. J Exp Bot 57:3755–3766

    CAS  PubMed  Google Scholar 

  • Meuwissen THE, Karlsen A, Lien S et al (2001) Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage disequilibrium mapping. Genetics 161:373–379

    Google Scholar 

  • Miller AK, Galiba G, Dubcovsky J (2006) A cluster of 11 CBF transcription factors is located at the frost tolerance locus Fr-A m 2 in Triticum monococcum. Mol Genet Genomics 275:193–203

    CAS  PubMed  Google Scholar 

  • Miura K, Jin JB, Lee J et al (2007) SIZ1-mediated sumoylation of ICE1 controls CBF3/DREB1A expression and freezing tolerance in Arabidopsis. Plant Cell 19:1403–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mochida K, Uehara-Yamaguchi Y, Yoshida T et al (2011) Global landscape of a co-expressed gene network in Barley and its application to gene discovery in triticeae crops. Plant Cell Physiol 52:785–803

    CAS  PubMed  Google Scholar 

  • Monroy AF, Labbé E, Dhindsa RS (1997) Low temperature perception in plants: effects of cold on protein phosphorylation in cell-free extracts. FEBS Lett 410:206–209

    CAS  PubMed  Google Scholar 

  • Monroy AF, Dryanova A, Malette B et al (2007) Regulatory gene candidates and gene expression analysis of cold acclimation in winter and spring wheat. Plant Mol Biol 64:409–423

    CAS  PubMed  Google Scholar 

  • Murata N, Los DA (1997) Membrane fluidity and temperature perception. Plant Physiol 115:875–879

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nadeau P, Delaney S, Chouinard L (1987) Effects of cold hardening on the regulation of polyamine levels in wheat (Triticum aestivum L.) and alfalfa (Medicago sativa L.). Plant Physiol 84:73–77

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nakashima K, Yamaguchi-Shinozaki K (2006) Regulons involved in osmotic stress-responsive and cold stress-responsive gene expression in plants. Physiol Plant 126:62–71

    CAS  Google Scholar 

  • Nakashima K, Ito Y, Yamaguchi-Shinozaki K (2009) Transcriptional regulatory networks in response to abiotic stresses in Arabidopsis and grasses. Plant Physiol 149:88–95

    CAS  PubMed Central  PubMed  Google Scholar 

  • Neilson KA, Gammulla CG, Mizraei M et al (2010) Proteomic analysis of temperature stress in plants. Proteomics 10:828–845

    CAS  PubMed  Google Scholar 

  • Nevo E (2011) Triticum. In: Kole C (ed) Wild crop relatives: Genomic and breeding resources: Cereals. Springer-Verlag, Berlin, pp 407–456

    Google Scholar 

  • Oliver SN, Finnegan EJ, Dennis ES et al (2009) Vernalization-induced flowering in cereals is associated with changes in histone methylation at the VERNALIZATION1 gene. Proc Natl Acad Sci USA 106:8386–8391

    CAS  PubMed  Google Scholar 

  • Ouellet F, Vazquez-Tello A, Sarhan F (1998) The wheat wcs120 promoter is cold-inducible in both monocotyledonous and dicotyledonous species. FEBS Lett 423:324–328

    CAS  PubMed  Google Scholar 

  • Paux E, Sourdille P, Mackay I, Feuillet C (2012) Sequence-based marker development in wheat: Advances and applications to breeding. Biotechnol Adv 30:1071–1088

    CAS  PubMed  Google Scholar 

  • Pecchioni N, Milc JA, Pasquariello M, Francia E (2012) Barley: Omics approaches for abiotic stress tolerance. In: Tuteja N, Gill SS, Tiburcio AF, Tuteja R (eds) Improving crop resistance to abiotic stress. Wiley-VCH, Weinheim, pp 777–882

    Google Scholar 

  • Penfield S (2008) Temperature perception and signal transduction in plants. New Phytol 179:615–628

    CAS  PubMed  Google Scholar 

  • Pennycooke JC, Cheng H, Roberts SM et al (2008) The low temperature-responsive, Solanum CBF1 genes maintain high identity in their upstream regions in a genomic environment undergoing gene duplications, deletions, and rearrangements. Plant Mol Biol 67:483–497

    CAS  PubMed  Google Scholar 

  • Pickering R, Johnston PA (2005) Recent progress in barley improvement using wild species of Hordeum. Cytogenet Genome Res 109:344–349

    CAS  PubMed  Google Scholar 

  • Pourkheirandish M, Komatsuda T (2007) The importance of barley genetics and domestication in a global perspective. Ann Bot 100:999–1008

    PubMed  Google Scholar 

  • Queitsch C, Sangster TA, Lindquist S (2002) Hsp90 as a capacitor of phenotypic variation. Nature 417:618–624

    CAS  PubMed  Google Scholar 

  • Quesada V, Dean C, Simpson CG (2005) Regulated RNA processing in the control of Arabidopsis flowering. Int J Dev Biol 49:773–780

    CAS  PubMed  Google Scholar 

  • Rabbani A, Maruyama K, Abe H et al (2003) Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol 133:1755–1767

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramalingam J, Pathan MS, Feril O et al (2006) Structural and functional analysis of the wheat genomes based on expressed sequence tags (ESTs) related to abiotic stresses. Genome 49:1324–1340

    CAS  PubMed  Google Scholar 

  • Rapacz M, Tyrka M, Gut M, Mikulski W (2010) Associations of PCR markers with freezing tolerance and photosynthetic acclimation to cold in winter barley. Euphytica 175:293–301

    CAS  Google Scholar 

  • Reddy ASN, Ali GSA, Celesnik H, Day IS (2011) Coping with stresses: roles of calcium- and calcium/calmodulin-regulated gene expression. Plant Cell 23:2010–2032

    CAS  PubMed Central  PubMed  Google Scholar 

  • Reinheimer JL, Barr AR, Eglinton JK (2004) QTL mapping of chromosomal regions conferring reproductive frost tolerance in barley (Hordeum vulgare L.). Theor Appl Genet 109:1267–1274

    CAS  PubMed  Google Scholar 

  • Renaut J, Hausman JF, Bassett C et al (2008) Quantitative proteomic analysis of short photoperiod and low-temperature responses in bark tissues of peach (Prunus persica L. Batsch). Tree Genet Genomes 4:589–600

    Google Scholar 

  • Rinalducci S, Egidi MG, Karimzadeh G et al (2011a) Proteomic analysis of a spring wheat cultivar in response to prolonged cold stress. Electrophoresis 32:1807–1818

    CAS  Google Scholar 

  • Rinalducci S, Egidi MG, Mahfoozi S et al (2011b) The influence of temperature on plant development in a vernalization-requiring winter wheat: a 2-DE based proteomic investigation. J Proteomics 74:643–659

    CAS  Google Scholar 

  • Rizza F, Baldi P, Cattivelli L, Delogu G (1997) Cold hardening in triticale in comparison with rye and wheat. Cereal Res Commun 25:947–954

    Google Scholar 

  • Rizza F, Pagani D, Gut M et al (2011) Diversity in the response to low temperature in representative barley genotypes cultivated in Europe. Crop Sci 51:2759–2779

    CAS  Google Scholar 

  • Roberts DWA (1990) Identification of loci on chromosome 5A of wheat involved in control of cold hardiness, vernalization, leaf length, rosette growth habit, and height of hardened plants. Genome 33:247–259

    Google Scholar 

  • Rutkoski JE, Heffner EL, Sorrells ME (2011) Genomic selection for durable stem rust resistance in wheat. Euphytica 179:161–173

    Google Scholar 

  • Sabatini E, Beretta M, Sala T et al (2013) Molecular breeding. In: Liedl BE, Labate JA, Stommel JR, Slade A, Kole C (eds) Tomato, Genomics of fruit and vegetable crops series. Science Publishers Inc., Enfield

    Google Scholar 

  • Sandre SR, Kosmala A, Rudi H et al (2011) Molecular mechanisms underlying frost tolerance in perennial grasses adapted to cold climates. Plant Sci 180:69–77

    Google Scholar 

  • Sarhadi E, Mahfoozi S, Hosseini SA, Salekdeh GH (2010) Cold acclimation proteome analysis reveals close link between the up-regulation of low-temperature associated proteins and vernalization fulfillment. J Proteome Res 9:5658–5667

    CAS  PubMed  Google Scholar 

  • Sasaki E, Takahashi C, Asami T, Shimada Y (2010) AtCAST, a tool for exploring gene expression similarities among DNA microarray experiments using networks. Plant Cell Physiol 52:169–180

    PubMed  Google Scholar 

  • Savitch LV, Harney T, Huner NPA (2000) Sucrose metabolism in spring and winter wheat in response to high irradiance, cold stress and cold acclimation. Physiol Plant 108:270–278

    CAS  Google Scholar 

  • Sears ER (1953) Nullisomic analysis in common wheat. Am Nat 87:245–252

    Google Scholar 

  • Seki M, Narusaka M, Abe H, Kasuga M et al (2001) Monitoring the expression pattern of 1300 Arabidopsis genes under drought and cold stresses by using a full length cDNA microarray. Plant Cell 13:61–72

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shitsukawa N, Ikari C, Shimada S et al (2007) The einkorn wheat (Triticum monococcum) mutant, maintained vegetative phase, is caused by a deletion in the VRN1 gene. Genes Genet Syst 82:167–170

    CAS  PubMed  Google Scholar 

  • Skinner DZ (2009) Post-acclimation transcriptome adjustment is a major factor in freezing tolerance of winter wheat. Funct Integr Genomics 9:513–523

    CAS  PubMed  Google Scholar 

  • Skinner JS, von Zitzewitz J, Szucs P et al (2005) Structural, functional, and phylogenetic characterization of a large CBF gene family in barley. Plant Mol Biol 59:533–551

    CAS  PubMed  Google Scholar 

  • Skinner JS, Szücs P, von Zitzewitz J et al (2006) Mapping of barley homologs to genes that regulate low temperature tolerance in Arabidopsis. Theor Appl Genet 112:832–842

    CAS  PubMed  Google Scholar 

  • Sreenivasulu N, Sopory SK, Kavi Kishor PB (2007) Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene 388: 1–13

    Google Scholar 

  • Steffenson BJ, Olivera P, Roy JK et al (2007) A walk on the wild side: mining wild wheat and barley collections for rust resistance genes. Aust J Agr Res 58:532–544

    Google Scholar 

  • Stockinger EJ, Gilmour SJ, Thomashow MF (1997) Arabidopsis thaliana CBF1 encodes an AP2 domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA 94:1035–1040

    CAS  PubMed  Google Scholar 

  • Stockinger EJ, Skinner JS, Gardner KG et al (2007) Expression levels of barley Cbf genes at the Frost resistance-H2 locus are dependent upon alleles at Fr-H1 and Fr-H2. Plant J 51:308–321

    CAS  PubMed  Google Scholar 

  • Sutka J (1994) Genetic control of frost tolerance in wheat. Euphytica 77:277–282

    Google Scholar 

  • Suzuki I, Los DA, Kanesaki Y et al (2000) The pathway for perception and transduction of low-temperature signals in Synechocystis. EMBO J 19:1327–1334

    CAS  PubMed  Google Scholar 

  • Svensson JT, Crosatti C, Campoli C et al (2006) Transcriptome analysis of cold acclimation in barley Albina and Xantha mutants. Plant Physiol 141:257–270

    CAS  PubMed Central  PubMed  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: freezing tolerance genes and regulatory mechanisms. Annu Rev Plant Physiol Plant Mol Biol 50:571–599

    CAS  PubMed  Google Scholar 

  • Thomashow MF (2010) Molecular basis of plant cold acclimation: insights gained from studying the CBF cold response pathway. Plant Physiol 154:571–577

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tondelli A, Pagani D, Rizza F et al (2009) Association mapping of frost tolerance QTL in barley. 19th International Triticeae Mapping Initiative 3rd COST Tritigen Clermont-Ferrand, France August 31st—September 4th 2009

    Google Scholar 

  • Tondelli A, Francia E, Barabaschi D et al (2011) Inside the CBF locus in Poaceae. Plant Sci 180:39–45

    CAS  PubMed  Google Scholar 

  • Tóth B, Galiba G, Fehér E et al (2003) Mapping genes affecting flowering time and frost resistance on chromosome 5B of wheat. Theor Appl Genet 107:509–514

    PubMed  Google Scholar 

  • Trevaskis B, Hemming MN, Peacock WJ, Dennis ES (2006) HvVRN2 responds to daylength, whereas HvVRN1 is regulated by vernalization and developmental status. Plant Physiol 140:1397–1405

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tuberosa R, Galiba G, Sanguineti MC et al (1997) Identification of QTL influencing freezing tolerance in barley. Acta Agron Hung 45:413–417

    Google Scholar 

  • Tuberosa R, Gill BS, Quarrie S (2002) Cereal genomics: ushering in a brave new world. Plant Mol Biol 48:445–449

    CAS  PubMed  Google Scholar 

  • Tunnacliffe A, Wise MJ (2007) The continuing conundrum of the LEA proteins. Naturwissenschaften 94:791–812

    CAS  PubMed  Google Scholar 

  • Turner A, Beales J, Faure S et al (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    CAS  PubMed  Google Scholar 

  • Vágújfalvi A, Kerepesi I, Galiba G et al (1999) Frost hardiness depending on carbohydrate changes during cold acclimation in wheat. Plant Sci 144:85–92

    Google Scholar 

  • Vágújfalvi A, Crosatti C, Galiba G et al (2000) Two loci on wheat chromosome 5A regulate the differential cold-dependent expression of the cor14b gene in frost-tolerant and frost-sensitive genotypes. Mol Gen Genet 263:194–200

    PubMed  Google Scholar 

  • Vágújfalvi A, Galiba G, Cattivelli L et al (2003) The cold-regulated transcriptional activator Cbf3 is linked to the frost-tolerance gene Fr-A2 on wheat chromosome 5A. Mol Genet Genom 269:60–67

    Google Scholar 

  • Vágújfalvi A, Aprile A, Miller A et al (2005) The expression of several Cbf genes at the Fr-A2 locus linked to frost resistance in wheat. Mol Genet Genom 274:506–514

    Google Scholar 

  • Van Buskirk HA, Thomashow MF (2006) Arabidopsis transcription factors regulating cold acclimation. Physiol Plant 126:72–80

    CAS  Google Scholar 

  • Van derSC, Rinne PL (2011) Dormancy cycling at the shoot apical meristem: transitioning between self-organization and self-arrest. Plant Sci 180:120–131

    Google Scholar 

  • Vannini C, Locatelli F, Bracale M et al (2004) Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37:115–127

    CAS  PubMed  Google Scholar 

  • Varshney RK, Graner A, Sorrells ME (2005) Genomics-assisted breeding for crop improvement. Trends Plant Sci 10:621–630

    CAS  PubMed  Google Scholar 

  • Vij S, Tyagi AK (2007) Emerging trends in the functional genomics of the abiotic stress response in crop plants. Plant Biotech J 3:361–380

    Google Scholar 

  • Vítámvás P, Prášil IT (2008) WCS120 protein family and frost tolerance during cold acclimation, deacclimation and reacclimation of winter wheat. Plant Physiol Biochem 46:970–976

    PubMed  Google Scholar 

  • Vítámvás P, Saalbach G, Prášil IT et al (2007) WCS120 protein family and proteins soluble upon boiling in cold-acclimated winter wheat. J Plant Physiol 164:1197–1207

    PubMed  Google Scholar 

  • Vítámvás P, Prášil IT, Kosová K et al (2012) Analysis of proteome and frost tolerance in chromosome 5A and 5B reciprocal substitution lines between two winter wheats during long-term cold acclimation. Proteomics 12:68–85

    PubMed  Google Scholar 

  • Vlachonasios KE, Thomashow MF, Triezenberg SJ (2003) Disruption Mutations of ADA2b and GCN5 Transcriptional Adaptor Genes Dramatically Affect Arabidopsis Growth, Development, and Gene Expression. Plant Cell 15:626–638

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vogel JT, Zarka DG, van Buskirk HA et al (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J 41:195–211

    CAS  PubMed  Google Scholar 

  • von Zitzewitz J, Szücs P, Dubcovsky J et al (2005) Molecular and structural characterization of barley vernalization genes. Plant Mol Biol 59:449–467

    PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID et al (2009) Cold- and light-induced changes in the transcriptome of wheat leading to phase transition from vegetative to reproductive growth. BMC Plant Biol 9:55

    PubMed Central  PubMed  Google Scholar 

  • Winfield MO, Lu C, Wilson ID et al (2010) Plant responses to cold: transcriptome analysis of wheat. Plant Bitechnol J 8:749–771

    CAS  Google Scholar 

  • Xin Z, Mandaokar A, Chen J et al (2007) Arabidopsis ESK1 encodes a novel regulator of freezing tolerance. Plant J 21:786–799

    Google Scholar 

  • Xing L, Li J, Xu Y et al (2009) Phosphorylation modification of wheat lectin VER2 is associated with vernalization-induced O-GlcNAc signaling and intracellular motility. PLoS ONE 4:e4854

    PubMed Central  PubMed  Google Scholar 

  • Xu ZS, Xia LQ, Chen M et al (2007) Isolation and molecular characterization of the Triticum aestivum L. ethylene-responsive factor 1 (TaERF1) that increases multiple stress tolerance. Plant Mol Biol 65:719–732

    CAS  PubMed  Google Scholar 

  • Xue GP (2003) The DNA-binding activity of an AP2 transcriptional activator HvCBF2 involved in regulation of low-temperature responsive genes in barley is modulated by temperature. Plant J 33:373–383

    CAS  PubMed  Google Scholar 

  • Yamaguchi-Shinozaki K, Shinozaki K (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu Rev Plant Biol 57:781–803

    CAS  PubMed  Google Scholar 

  • Yan L, Loukoianov A, Blechl A et al (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    CAS  PubMed  Google Scholar 

  • Yan SP, Zhang QY, Tang ZC et al (2006) Comparative proteomic analysis provides new insights into chilling stress responses in rice. Mol Cell Proteomics 5:484–496

    CAS  PubMed  Google Scholar 

  • Zarka DG, Vogel JT, Cook D et al (2003) Cold induction of Arabidopsis CBF genes involves multiple ICE1 (inducer of CBF expression 1) promoter elements and a cold-regulatory circuit that is desenzitized by low temperature. Plant Physiol 133:910–918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang JZ, Creelman RA, Zhu JK (2004) From laboratory to field. Using Information from Arabidopsis to Engineer Salt, Cold, and Drought Tolerance in Crops. Plant Physiol 135:615–621

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhu J, Shi H, Lee B et al (2004) An Arabidopsis homeodomain transcription factor gene, HOS9, mediates cold tolerance through a CBF-independent pathway. Proc Natl Acad Sci USA 26:9873–9878

    Google Scholar 

  • Zhu J, Verslues PE, Zheng X et al (2005) HOS10 encodes an R2R3-type MYB transcription factor essential for cold acclimation in plants. Proc Natl Acad Sci USA 102:9966–9971

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Union (AGRISAFE 203288—EU-FP7-REGPOT 2007-1), by a joint grant of EU and the European Social Fund, by the FROSTMAP project of the Fondazione Cassa di Risparmio di Modena, by the Hungarian Scientific Research Fund and the National Office for Research and Technology (OTKA K 83642, NKTH-OTKA CNK 80781), by the National Development Agency grant TÁMOP-4.2.2/B-10/1-2010-0025 Doctoral School of Molecular- and Nanotechnologies, Faculty of Information Technology, University of Pannonia, by the Czech Ministry of Agriculture (MZe ČR), project no. 0002700604 and by the Grant Agency of the Czech Republic (GA ČR) postdoctoral project P501/11/P637.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Galiba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Pecchioni, N. et al. (2014). Genomics of Low-Temperature Tolerance for an Increased Sustainability of Wheat and Barley Production. In: Tuberosa, R., Graner, A., Frison, E. (eds) Genomics of Plant Genetic Resources. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7575-6_6

Download citation

Publish with us

Policies and ethics