Skip to main content

The Contribution of History and Philosophy to the Problem of Hybrid Views About Genes in Genetics Teaching

  • Chapter
  • First Online:
International Handbook of Research in History, Philosophy and Science Teaching

Abstract

Currently there are persistent doubts about the meaning and contributions of the gene concept, mostly related to its interpretation as a stretch of DNA encoding a single functional product, i.e., the classical molecular gene concept. There is, however, much conceptual variation around genes, leading to important difficulties in genetics teaching. We investigated whether and how conceptual variation related to the gene concept and gene function models is present in school science and what potential problems it may bring to genetics teaching and learning. Here, we report results on how ideas about genes and gene function are treated in textbooks and appear in students’ views and, also, about a teaching strategy for improving higher education students’ understanding of scientific models and conceptual variation around genes and their functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 749.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 949.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 949.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    See, for example, Burian (1985), Falk (1986), Fogle (1990), Hull (1974), and Kitcher (1982).

  2. 2.

    See, for example, Gerstein et al. (2007), Kampa et al. (2004), Venter et al. (2001), and Wang et al. (2000).

  3. 3.

    In alternative splicing, a pre-mRNA molecule is processed – in particular, spliced – in a diversity of manners, so that different combinations of exons emerge in the mature mRNA. In this manner, several distinct mRNAs and, thus, polypeptides can be obtained from the same DNA sequence. In Drosophila melanogaster, for instance, DSCAM alternative splicing can lead to ca. 38,016 protein products (Celotto and Graveley 2001).

  4. 4.

    The generation of the diverse antigen receptors found in lymphocytes and, consequently, of antibody specificity depends on a combinatorial set of genomic rearrangements between different DNA segments called variable segments, constant segments, and diversity and joining segments.

  5. 5.

    mRNA editing is an alteration of mRNA nucleotides during processing, resulting in lack of correspondence between nucleotide sequences in mature mRNA and nucleotide sequences in DNA.

  6. 6.

    “Model” is a polysemous term, with diverse meanings that capture distinct relationships between elements of knowledge (e.g., Black 1962; Grandy 2003; Halloun 2004, 2007; Hesse 1963). We treat models here as constructs created by the scientific community in order to represent relevant aspects of experience, i.e., phenomena and processes/mechanisms that can explain and/or predict them. In these terms, models capture the relationship between a symbolic system (a representation) and phenomena, processes, and mechanisms ontologically treated as being part of the world or nature. Models are built through processes of generalization, abstraction, and idealization that crucially involves selecting a number of entities, variables, relationships associated with a specific class of phenomena and processes/mechanisms to be included in the model, while others are selected out. These entities, variables, and relationships are captured by scientific concepts, and thus, a model can be seen as a system of related concepts. Concepts gain meaning by being used in model construction, as contributors to model structure (Halloun 2004). If we understand scientific theories as families of models – according to a semantic approach (e.g., Develaki 2007; Suppe 1977; van Fraassen 1980) – concepts will form a network of relationships as a consequence of their participation in a series of models, and ultimately, the meaning of a concept will be constructed out of its relationship with other concepts in a network of models.

  7. 7.

    See, for example, Burian (1985), Falk (1986), Griffiths and Neumann-Held (1999), Kitcher (1982), and Stotz et al. (2004).

  8. 8.

    For instance, El-Hani (2007), Falk (1986), and Griffiths and Neumann-Held (1999).

  9. 9.

    This corresponds to Gericke and Hagberg’s (2007) neoclassical model of gene function.

  10. 10.

    This shows the connection between the informational conception of the gene and genetic determinism (Oyama 2000/1985), a common element of the “gene talk” (Keller 2000) that pervades the media and the public opinion. With the central dogma, DNA became a sort of reservoir from where all “information” in a cell flows and to which it must be ultimately reduced. Through their connection with the doctrine of genetic determinism, the conceptual problems related to genes and genetic information have important consequences for public understanding of science and several socioscientific issues related to genetics and molecular biology (say, genetic testing, cloning, genetically modified organisms).

  11. 11.

    The ENCODE project is an international consortium of scientists trying to identify the functional elements in the human genome sequence, with significant impact on our understanding about genes and genomes. The ENCODE database can be reached at http://www.genome.gov/10005107#4. The participants of the ENCODE can be found at http://www.genome.gov/26525220. See also The ENCODE Project Consortium (2004).

  12. 12.

    For detailed discussion, see Meyer et al. (2013). When we consider these views about genes and their function, it is worth pondering about the school level to which they can be adequately transposed. This issue is also discussed by Meyer et al. (2013).

  13. 13.

    See, for example, El-Hani et al. (2006, 2009), Griffiths and Neumann-Held (1999), Keller (2005), and Neumann-Held (1999, 2001).

  14. 14.

    For more details, see Santos et al. (2012) and Pitombo et al. (2008).

  15. 15.

    Only 4 textbooks had a glossary. All other units of contexts were present in all textbooks.

  16. 16.

    A glossary was present in all the textbooks.

  17. 17.

    In both universities, the biology curriculum includes two courses on Genetics and one course on Cell and Molecular biology.

  18. 18.

    All translations of textbook passages from Portuguese were made by the authors of the present paper. Commentaries by the authors are shown in brackets.

  19. 19.

    It is worth noting, however, that none of the higher education cell and molecular biology textbooks offered such a discussion.

  20. 20.

    The answers were freely translated from Portuguese to English by the authors of the paper.

  21. 21.

    See, for example, Condit et al. (1998, 2001), Carver et al. (2008), Keller (2000), and Nelkin and Lindee (1995).

  22. 22.

    See, for example, El-Hani (2007), El-Hani et al. (2009), Fogle (1990), Keller (2000), Moss (2003), and Scherrer and Jost (2007a, b).

References

  • Abd-El-Khalick, F. & Lederman, N. G. (2000). Improving science teachers’ conceptions of nature of science: A critical review of the literature. International Journal of Science Education, 22, 665–701.

    Article  Google Scholar 

  • Adami, C. (2004). Information theory in molecular biology. Physics of Life Reviews, 1, 3–22.

    Article  Google Scholar 

  • Arthur, W. (2011). Evolution: A developmental approach. Chichester: Wiley-Blackwell.

    Google Scholar 

  • Artigue, M. (1988). Ingéniérie didactique. Recherches en didactique des mathemátiques, 9, 281–308.

    Google Scholar 

  • Barab, S. & Squire, K. (2004). Design-based research: putting a stake in the ground. Journal of the Learning Sciences, 13, 1–14.

    Article  Google Scholar 

  • Bardin, L. (2000). Análise de conteúdo (Content analysis). Lisboa: Edições 70.

    Google Scholar 

  • Baumgartner, E., Bell, P., Bophy, S. et al. (2003). Design-based research: An emerging paradigm for educational inquiry. Educational Researcher, 32, 5–8.

    Google Scholar 

  • Benzer, S. (1957). The elementary units of heredity. In W. McElroy and B. Glass (Eds.), The chemical basis of heredity (pp. 70–93). Baltimore, MD: John Hopkins Press.

    Google Scholar 

  • Black, D. L. (2003). Mechanisms of alternative pre-messenger RNA splicing. Annual Review of Biochemistry, 72, 291–336.

    Article  Google Scholar 

  • Black, M. (1962). Models and metaphors: Studies in language and philosophy. Ithaca, NY: Cornell University Press.

    Google Scholar 

  • Brown, A. (1992). Design experiments: Theoretical and methodological challenges in creating complex interventions in classroom settings. The Journal of the Learning Sciences, 2, 141–178.

    Article  Google Scholar 

  • Burian, R. M. (1985). On conceptual change in biology: The case of the gene. In D. J. Depew & B. H. Weber (Eds.), Evolution at a crossroads: The new biology and the new philosophy of science (pp. 21–24). Cambridge, MA: The MIT Press.

    Google Scholar 

  • Burian, R. M. (2004). Molecular epigenesis, molecular pleiotropy, and molecular gene definitions. History and Philosophy of Life Sciences, 26, 59–80.

    Article  Google Scholar 

  • Carlson, A. E. (1966). The gene. A critical history. Philadelphia, PA: W. B. Saunders.

    Google Scholar 

  • Carver, R., Waldahl, R. & Breivik, J. (2008). Frame that gene – A tool for analyzing and classifying the communication of genetics to the public. EMBO reports, 9, 943–947.

    Article  Google Scholar 

  • Celotto, A. & Graveley, B. (2001). Alternative splicing of the Drosophila DSCAM pre-mRNA is both temporally and spatially regulated. Genetics, 159, 599–608.

    Google Scholar 

  • Chevallard, Y. (1989). On didactic transposition theory: Some introductory notes. Paper presented at the International symposium on selected domains of research and development in mathematics education, Proceedings (pp. 51–62). Bratislava, Slovakia. Retrieved October 29, 2011 from: http://yves.chevallard.free.fr/spip/spip/article.php3?id_article=122

  • Chinn, A. C. & Samarapungavan, A. (2008). Learning to use scientific models: Multiple dimensions of conceptual change. In R.A. Duschl & R.E. Grandy (Eds.), Teaching scientific inquiry (pp. 191–225). Rotterdam: Sense Publishers.

    Google Scholar 

  • Condit, C.M., Ofulue, N. & Sheedy, K.M. (1998). Determinism and mass-media portrayals of genetics. American Journal of Human Genetics, 62, 979–984.

    Article  Google Scholar 

  • Condit, C. M., Ferguson, A., Kassel, R., Tadhani, C., Gooding, H. C. & Parrot, R. (2001). An explanatory study of the impact of news headlines on genetic determinism. Science Communication, 22, 379–395.

    Article  Google Scholar 

  • Cooper, M. D. & Alder, M. N. (2006). The evolution of adaptive immune systems. Cell, 124, 815–822.

    Article  Google Scholar 

  • Daston, L. & Galison, P. (2010). Objectivity. Brooklyn, NY: Zone Books.

    Google Scholar 

  • Develaki, M. (2007). The model-based view of scientific theories and the structuring of school science programs. Science & Education, 16 (7–8), 725–749.

    Article  Google Scholar 

  • El-Hani, C. N. (2007). Between the cross and the sword: The crisis of the gene concept. Genetics and Molecular Biology, 30, 297–307.

    Article  Google Scholar 

  • El-Hani, C. N., Queiroz, J. & Emmeche, C. (2006). A semiotic analysis of the genetic information system. Semiotica, 160, 1–68.

    Article  Google Scholar 

  • El-Hani, C. N., Queiroz, J. & Emmeche, C. (2009). Genes, Information, and Semiosis. Tartu: Tartu University Press, Tartu Semiotics Library.

    Google Scholar 

  • El-Hani, C. N., Roque, N. & Rocha, P. B. (2007). Brazilian high school biology textbooks: Results from a national program. In: Proceedings of the IOSTE International Meeting on Critical Analysis of School Science Textbook (pp. 505–516). Hammamet, Tunisia: University of Tunis.

    Google Scholar 

  • El-Hani, C. N., Roque, N. & Rocha, P. L. B. (2011). Livros didáticos de Biologia do ensino médio: Resultados do PNLEM/2007. Educação em Revista, 27, 211–240.

    Article  Google Scholar 

  • Falk, R. (1986). What is a gene? Studies in the History and Philosophy of Science, 17, 133–173.

    Article  Google Scholar 

  • Fleck, L. (1979/1935). Genesis and development of a scientific fact. Chicago, IL: The University of Chicago Press.

    Google Scholar 

  • Fogle, T. (1990). Are genes units of inheritance? Biology and Philosophy, 5, 349–371.

    Article  Google Scholar 

  • Fogle, T. (2000). The dissolution of protein coding genes. In P. Beurton, R. Falk & H-J. Rheinberger (Eds.), The concept of the gene in development and evolution (pp. 3–25). Cambridge: Cambridge University Press.

    Google Scholar 

  • Gelbart, W. (1998). Databases in genomic research. Science, 282, 659–661.

    Article  Google Scholar 

  • Gericke, N. M. & Hagberg, M. (2007). Definition of historical models of gene function and their relation to students’ understandings of genetics. Science & Education, 16, 849–881.

    Article  Google Scholar 

  • Gericke, N. M. & Hagberg, M. (2010a). Conceptual incoherence as a result of the use of multiple historical models in school textbooks. Research in Science Education, 40, 605–623.

    Article  Google Scholar 

  • Gericke, N. M. & Hagberg, M. (2010b). Conceptual variation in the depiction of gene function in upper secondary school textbooks. Science & Education, 19, 963–994.

    Article  Google Scholar 

  • Gericke, N. M., Hagberg, M., Santos, V. C., Joaquim, L. M. & El-Hani, C. N. (in press). Conceptual variation or Incoherence? Textbook discourse on genes in six countries. Science & Education.

    Google Scholar 

  • Gerstein, M. B., Bruce, C., Rozowsky, J. S., Zheng, D., Du, J., Korbel, J. O., Emanuelsson, O., Zhang, Z. D., Weissman, S., & Snyder, M. (2007). What is a gene, post-ENCODE? History and updated definition. Genome Research, 17, 669–681.

    Article  Google Scholar 

  • Grandy, R. E. (2003). What are models and why do we need them? Science & Education, 12(8), 773–777.

    Article  Google Scholar 

  • Graveley, B. R. (2001). Alternative splicing: Increasing diversity in the proteomic world. Trends in Genetics, 17, 100–107.

    Article  Google Scholar 

  • Griffiths, P. E. (2001). Genetic information: A metaphor in search of a theory. Philosophy of Science, 68, 394–403.

    Article  Google Scholar 

  • Griffiths, P.E. & Knight, R.D. (1998). What is the developmental challenge? Philosophy of Science, 65, 2, 253–258.

    Article  Google Scholar 

  • Griffiths, P. E. & Neumann-Held, E. (1999). The many faces of the gene. BioScience, 49, 656–662.

    Article  Google Scholar 

  • Hall, B. K. (2001). The gene is not dead, merely orphaned and seeking a home. Evolution and Development, 3, 225–228.

    Article  Google Scholar 

  • Halloun, I. A. (2004). Modeling theory in science education. Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Halloun, I. A. (2007). Mediated modeling in science education. Science & Education, 16, 653–697.

    Article  Google Scholar 

  • Hanson, M. R. (1996). Protein products of incompletely edited transcripts are detected in plant mitochondria. The Plant Cell, 8(1), 1–3.

    Article  Google Scholar 

  • Hesse, M. B. (1963). Models and analogies in science. London: Seed and Ward.

    Google Scholar 

  • Hoffmeyer, J. & Emmeche, C. (1991). Code-duality and the semiotics of nature. In M. Anderson & F. Merrell (Eds.), On semiotic modeling (pp. 117–166). Berlin: Mouton de Gruyter.

    Google Scholar 

  • Holmes, F. L. (2006). Reconceiving the gene: Seymour Benzer’s adventures in phage genetics. New Haven, CT: Yale University Press.

    Google Scholar 

  • Hull, D. L. (1974). Philosophy of biological science. Englewood Cliffs, NJ: Prentice-Hall.

    Google Scholar 

  • Jablonka, E. (2002). Information: Its interpretation, its inheritance, and its sharing. Philosophy of Science, 69, 578–605.

    Article  Google Scholar 

  • Johannsen, W. (1909). Elemente der exakten erblichkeitslehre. Jena: Gustav Fischer. Retrieved August 23, 2012 from: http://caliban.mpiz-koeln.mpg.de/johannsen/elemente/johannsen_elemente_der_exakten_erblichkeitslehre_2.pdf.

  • Justi, R. S. & Gilbert, J. K., (1999). A cause of ahistorical science teaching: Use of hybrid models. Science Education, 83, 163–177.

    Article  Google Scholar 

  • Kampa, D., Cheng, J., Kapranov, P., Yamanaka, M., Brubaker, S., Cawley, S., Drenkow, J., Piccolboni, A., Bekiranov, S., Helt, G., Tammana, H. & Gingeras, T. R. (2004). Novel RNAs identified from an in-depth analysis of the transcriptome of human chromosomes 21 and 22. Genome Research, 14, 331–342.

    Article  Google Scholar 

  • Kay, L. E. (2000). Who wrote the book of life? A history of the genetic code. Stanford, CA: Stanford University Press.

    Google Scholar 

  • Keller, E. F. (2000). The century of the gene. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Keller, E. F. (2005). The century beyond the gene. Journal of Biosciences, 30, 3–10.

    Article  Google Scholar 

  • Keller, E. F. & Harel, D. (2007). Beyond the gene. PLoS One, 2, e1231.

    Article  Google Scholar 

  • Kitcher, P. (1982). Genes. British Journal for the Philosophy of Science, 33, 337–359.

    Google Scholar 

  • Knight, R. (2007). Reports of the death of the gene are greatly exaggerated. Biology and Philosophy, 22, 293–306.

    Article  Google Scholar 

  • Larsson, S. (2009). A pluralist view of generalization in qualitative research. International Journal of Research & Method in Education, 32, 25–38.

    Article  Google Scholar 

  • Lave, J. & Wenger, E. (1991). Situated learning: Legitimate peripheral participation. New York, NY: Cambridge University Press.

    Book  Google Scholar 

  • LeCompte, M. & Goetz, J. (1982). Problems of reliability and validity in ethnographic research. Review of Educational Research, 52(1), 31–60.

    Article  Google Scholar 

  • Lev-Maor, G., Sorek, R., Levanon, E. Y., Paz, N., Eisenberg, E. & Ast, G. (2007). RNA-editing-mediated exon evolution. Genome Biology, 8, R29.

    Article  Google Scholar 

  • Matthews, M. R. (1998). In defense of modest goals when teaching about the nature of science. Journal of Research in Science Teaching, 35, 161–174.

    Article  Google Scholar 

  • Mayr, E. (1982). The growth of biological thought: Diversity, evolution and inheritance. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Méheut, M. (2005). Teaching-learning sequences tools for learning and/or research. In K. Boersma, M. Goedhart, O. De Jong & H. Eijkelhof (Eds.), Research and the quality of science education (pp. 195–207. Dordrecht: Springer.

    Chapter  Google Scholar 

  • Meyer, L. M. N., Bomfim, G. C. & El-Hani, C. N. (2013). How to understand the gene in the 21st century. Science & Education, 22, 345–374.

    Article  Google Scholar 

  • Mortimer, E. F. & Scott, P. H. (2003). Meaning making in secondary science classrooms. Maidenhead: Open University Press.

    Google Scholar 

  • Moss, L. (2001). Deconstructing the gene and reconstructing molecular developmental systems. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 85–97). Cambridge, MA: MIT Press.

    Google Scholar 

  • Moss, L. (2003). What genes can’t do. Cambridge, MA: The MIT Press.

    Google Scholar 

  • Murre, C. (2007). Epigenetics of Antigen-receptor gene assembly. Current Opinion in Genetics & Development, 17, 415–421.

    Article  Google Scholar 

  • Nelkin, D. & Lindee, S. M. (1995). The DNA mystique: The gene as a cultural icon. New York, NY: Freeman.

    Google Scholar 

  • Neumann-Held, E. (1999). The Gene is dead – Long live the gene: Conceptualizing genes the constructionist way. In P. Koslowski (Ed.). Sociobiology and bioeconomics: The theory of evolution in biological and economic thinking (pp. 105–137). Berlin: Springer.

    Chapter  Google Scholar 

  • Neumann-Held, E. (2001). Let’s talk about genes: The process molecular gene concept and its context. In S. Oyama, P. E. Griffiths & R. D. Gray (Eds.), Cycles of contingency: Developmental systems and evolution (pp. 69–84). Cambridge, MA: MIT Press.

    Google Scholar 

  • Nieveen, N., McKenney, S. & Van den Akker, J. (2006). Educational design research: The value of variety. In J. Van den Akker; K. Gravemeijer; S. McKenney & N. Nieveen (Eds). Educational design research (pp. 151–158). London: Routledge.

    Google Scholar 

  • Oyama, S. (2000/1985). The ontogeny of information: Developmental systems and evolution (2nd ed). Cambridge: Cambridge University Press.

    Google Scholar 

  • Pardini, M. I. M. C. & Guimarães, R. C. (1992). A systemic concept of the gene. Genetics and Molecular Biology, 15, 713–721.

    Google Scholar 

  • Pearson, H. (2006). What is a gene? Nature, 441, 399–401.

    Google Scholar 

  • Pitombo, M. A., Almeida, A. M. R., & El-Hani, C. N. (2008). Gene concepts in higher education cell and molecular biology textbooks. Science Education International, 19(2), 219–234.

    Google Scholar 

  • Plomp, T. (2009). Educational design research: An introduction. In: T. Plomp & N. Nieveen (Eds.). An introduction to educational design research (pp. 9–35). Enschede: SLO – Netherlands Institute for Curriculum Development.

    Google Scholar 

  • Portin, P. (1993). The concept of the gene: Short history and present status. Quarterly Review of Biology, 56, 173–223.

    Article  Google Scholar 

  • Reeves, T. C. (2006). Design research from a technology perspective. In J. Van den Akker, K. Gravemeijer, S. McKenney & N. Nieveen (Eds.). Educational design research (pp. 52–66). London, Routledge.

    Google Scholar 

  • Rheinberger, H.-J. (2000). Gene concepts: Fragments from the perspective of molecular biology. In: P. Beurton, R. Falk & H.-J. Rheinberger (Eds.). The concept of the gene in development and evolution (pp. 219–239). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Sadler, T. D. (Ed.). (2011). Socioscientific issues in the classroom: Teaching, learning and research. Dordrecht: Springer.

    Google Scholar 

  • Sadler, T. D. & Zeidler, D. L. (2005). The significance of content knowledge for informal reasoning regarding socioscientific issues: Applying genetics knowledge to genetic engineering issues. Science Education, 89, 71–93.

    Article  Google Scholar 

  • Santos, V. C., Joaquim, L. M. & El-Hani, C. N. (2012). Hybrid deterministic views about genes in biology textbooks: A key problem in genetics teaching. Science & Education, 21, 543–578.

    Article  Google Scholar 

  • Santos, W. L. P. & Mortimer, E. F. (2001). Tomada de decisão para ação social responsável no ensino de ciências (decision making for responsible social action in science teaching). Ciência e Educação, 7, 95–111.

    Google Scholar 

  • Scherrer, K. & Jost, J. (2007a). The gene and the genon concept: A functional and information-theoretic analysis. Molecular System Biology, 3, 1–11.

    Article  Google Scholar 

  • Scherrer, K. & Jost, J. (2007b). The gene and the genon concept: Coding versus regulation. A conceptual and information-theoretic analysis of genetic storage and expression in the light of modern molecular biology. Theory in Biosciences, 126, 65–113.

    Article  Google Scholar 

  • Schwab, J. (1964). Structure of the disciplines: Meaning & significances. In G. W. Ford & L. Pugno (eds.), The structure of knowledge & the curriculum (pp. 6–30). Chicago, IL: Rand, McNally & Co.

    Google Scholar 

  • Shannon, C. E. & Weaver, W. (1949). The mathematical theory of communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Simons, H.; Kushner, S.; Jones, K. & James, D. (2003). From evidence-based practice to practice-based evidence: the idea of situated generalization. Research Papers in Education, 18, 347–364.

    Article  Google Scholar 

  • Smith, M. U. & Adkison, L. R. (2010). Updating the model definition of the gene in the modern genomic era with implications for instruction. Science & Education, 19, 1–20.

    Article  Google Scholar 

  • Stotz, K., Griffiths, P. E. & Knight, R. (2004). How biologists conceptualize genes: An empirical study. Studies in the History and Philosophy of Biological & Biomedical Sciences, 35, 647–673.

    Article  Google Scholar 

  • Suppe, F. (1977). The structure of scientific theories. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • The ENCODE Project Consortium (2004). The ENCODE (ENCyclopedia Of DNA Elements) Project. Science, 306, 636–640.

    Article  Google Scholar 

  • van den Akker, J., Gravemeijer, K., McKenney, S. & Nieveen, N. (2006). Educational design research. London, Routledge.

    Google Scholar 

  • van Fraassen, B. (1980). The scientific image. Oxford: Clarendon Press.

    Book  Google Scholar 

  • Venter, J. C., Adams, M. D., Myers, E. W., Li, P. W., Mural, R. J., Sutton, G. G. et. al. (2001). The sequence of the human genome. Science, 291, 1305–1351.

    Article  Google Scholar 

  • Wang, W., Zhang, J., Alvarez, C., Llopart, A. & Long, M. (2000). The origin of the jingwei gene and the complex modular structure of its parental gene, yellow emperor, in Drosophila melanogaster. Molecular Biology and Evolution, 17, 1294–1301.

    Article  Google Scholar 

  • Wanscher, J. H. (1975). The history of Wilhelm Johannsen’s genetical terms and concepts from the period 1903 to 1926. Centaurus, 19(2), 125–147.

    Article  Google Scholar 

  • Watson, J. D. & Crick, F. H. C. (1953). A structure for deoxyribose nucleic acid. Nature, 171, 737–738.

    Article  Google Scholar 

  • Wenger, E. (1998). Communities of practice: Learning, meaning, and identity. New York, NY: Cambridge University Press.

    Book  Google Scholar 

Download references

Acknowledgments

We are thankful to the Brazilian National Council for Scientific and Technological Development (CNPq) and the Research Support Foundation of the State of Bahia (FAPESB) for support during the development of the research reported in this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charbel N. El-Hani .

Editor information

Editors and Affiliations

Appendices

Appendix 1: List of Analyzed Higher Education Textbooks

Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K. & Walter, P. (2002). Molecular biology of the cell (4th Ed). New York, NY: Garland.

Karp, G. (2004). Cell and molecular biology: Concepts and experiments (4th Ed). New York, NY: John Wiley and Sons.

Lodish, H., Kaiser, C. A., Berk, A., Krieger, M., Matsudaira, P. & Scott, M. P. (2003). Molecular cell biology (5th Ed). New York, NY: W. H Freeman.

Appendix 2: List of Analyzed High School Textbooks

T1 – Amabis, J. M. & Martho, G. R. (2005). Biologia. São Paulo: Moderna.

T2 – Borba, A. A. & Cançado, O. F. L. (2005). Biologia. Curitiba: Positivo.

T3 – Borba, A. A., Crozetta, M. A. S. & Lago, S. R. (2005). Biologia. São Paulo: IBEP.

T4 – Boschilia, C. (2005). Biologia sem segredos. São Paulo: RIDEEL.

T5 – Carvalho, W. (2005). Biologia em foco. São Paulo: FTD.

T6 – Cheida, L. E. (2005). Biologia integrada. São Paulo: FTD.

T7 – Coimbra, M. A. C., Rubio, P. C., Corazzini, R., Rodrigues, R. N. C. & Waldhelm, M. C. V. (2005). Biologia – Projeto escola e cidadania para todos. São Paulo: Editora do Brasil.

T8 – Faucz, F. R. & Quintilham, C. T. (2005). Biologia: Caminho da vida. Curitiba: Base.

T9 – Favaretto, J. A. & Mercadante, C. (2005). Biologia. São Paulo: Moderna.

T10 – Frota-Pessoa, O. (2005). Biologia. São Paulo: Scipione.

T11 – Gainotti, A. & Modelli, A. (2005). Biologia. São Paulo: Scipione.

T12 – Laurence, J. (2005). Biologia. São Paulo: Nova Geração.

T13 – Linhares, S. & Gewandsznajder, F. (2005). Biologia. São Paulo: Ática.

T14 – Lopes, S. & Rosso, S. (2005). Biologia. São Paulo: Saraiva.

T15 – Machado, S. W. S. (2005). Biologia. São Paulo: Scipione.

T16 – Morandini, C. & Bellinello, L. C. (2005). Biologia. São Paulo: Atual.

T17 – Paulino, W. R. (2005). Biologia. São Paulo: Ática.

T18 – Silva-Júnior, C. & Sasson, S. (2005). Biologia. São Paulo: Saraiva.

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

El-Hani, C.N. et al. (2014). The Contribution of History and Philosophy to the Problem of Hybrid Views About Genes in Genetics Teaching. In: Matthews, M. (eds) International Handbook of Research in History, Philosophy and Science Teaching. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7654-8_16

Download citation

Publish with us

Policies and ethics