Skip to main content

Suppression of Premature Senescence and Promotion of Metastatic Transformation: Role of Reduced TGF-Beta Signaling in Human Cancer Progression

  • Chapter
  • First Online:
Tumor Dormancy, Quiescence, and Senescence, Volume 2

Part of the book series: Tumor Dormancy and Cellular Quiescence and Senescence ((DOQU,volume 2))

  • 1418 Accesses

Abstract

Transforming growth factor-beta (TGF-β) signaling pathway serves as a tumor suppressor by inhibiting cell cycle progression and stimulating senescence and apoptosis in normal and early-stages neoplastic tissues. As tumors progress, TGF-β signaling is often turned to drive multi-step metastasis processes by stimulating cell survival and epithelial-to-mesenchymal transition (EMT) leading to tumor cell migration and invasion. Many human carcinomas including triple-negative breast cancer, often show reduced or loss of key components of TGF-β signaling, indicating reduced tumor-suppressive TGF-β signaling may contribute to the cancer progression. However, molecular mechanisms that drive the switch of TGF-β are not well understood. Few molecular biomarkers have been identified as efficient indicators for the anti-TGF-β cancer therapy. In order to better understand the mechanism mediating the role of TGF-β during cancer progression, we will discuss the question of how the loss of control of cell proliferation and senescence by TGF-β promotes tumor invasion and metastasis and whether a set of transformation/metastasis-related genes are specifically regulated by TGF-β signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arteaga CL, Carty-Dugger T, Moses HL, Hurd SD, Pietenpol JA (1993) Transforming growth factor beta 1 can induce estrogen-independent tumorigenicity of human breast cancer cells in athymic mice. Cell Growth Differ 4:193–201

    PubMed  CAS  Google Scholar 

  • Bian Y, Hall B, Sun ZJ, Molinolo A, Chen W, Gutkind JS, Waes CV, Kulkarni AB (2012) Loss of TGF-beta signaling and PTEN promotes head and neck squamous cell carcinoma through cellular senescence evasion and cancer-related inflammation. Oncogene 31:3322–3332

    Article  PubMed  CAS  Google Scholar 

  • Carey LA, Perou CM, Livasy CA, Dressler LG, Cowan D, Conway K, Karaca G, Troester MA, Tse CK, Edmiston S, Deming SL, Geradts J, Cheang MC, Nielsen TO, Moorman PG, Earp HS, Millikan RC (2006) Race, breast cancer subtypes, and survival in the Carolina Breast Cancer Study. JAMA 295:2492–2502

    Article  PubMed  CAS  Google Scholar 

  • Chen CR, Kang Y, Siegel PM, Massague J (2002) E2F4/5 and p107 as Smad cofactors linking the TGFbeta receptor to c-myc repression. Cell 110:19–32

    Article  PubMed  CAS  Google Scholar 

  • Cipriano R, Kan CE, Graham J, Danielpour D, Stampfer M, Jackson MW (2011) TGF-beta signaling engages an ATM-CHK2-p53-independent RAS-induced senescence and prevents malignant transformation in human mammary epithelial cells. Proc Natl Acad Sci U S A 108:8668–8673

    Article  PubMed  CAS  Google Scholar 

  • Dang CV (1999) c-Myc target genes involved in cell growth, apoptosis, and metabolism. Mol Cell Biol 19:1–11

    PubMed  CAS  Google Scholar 

  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y, Wang XF (1995a) Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc Natl Acad Sci U S A 92:5545–5549

    Article  PubMed  CAS  Google Scholar 

  • Datto MB, Yu Y, Wang XF (1995b) Functional analysis of the transforming growth factor beta responsive elements in the WAF1/Cip1/p21 promoter. J Biol Chem 270:28623–28628

    Article  PubMed  CAS  Google Scholar 

  • de Jong JS, van Diest PJ, van der Valk P, Baak JP (1998) Expression of growth factors, growth inhibiting factors, and their receptors in invasive breast cancer. I: an inventory in search of autocrine and paracrine loops. J Pathol 184:44–52

    Article  PubMed  Google Scholar 

  • Derynck R, Zhang YE (2003) Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature 425:577–584

    Article  PubMed  CAS  Google Scholar 

  • Ding Z, Wu CJ, Chu GC, Xiao Y, Ho D, Zhang J, Perry SR, Labrot ES, Wu X, Lis R, Hoshida Y, Hiller D, Hu B, Jiang S, Zheng H, Stegh AH, Scott KL, Signoretti S, Bardeesy N, Wang YA, Hill DE, Golub TR, Stampfer MJ, Wong WH, Loda M, Mucci L, Chin L, DePinho RA (2011) SMAD4-dependent barrier constrains prostate cancer growth and metastatic progression. Nature 470:269–273

    Article  PubMed  CAS  Google Scholar 

  • Feng XH, Lin X, Derynck R (2000) Smad2, Smad3 and Smad4 cooperate with Sp1 to induce p15(Ink4B) transcription in response to TGF-beta. EMBO J 19:5178–5193

    Article  PubMed  CAS  Google Scholar 

  • Gorsch SM, Memoli VA, Stukel TA, Gold LI, Arrick BA (1992) Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res 52:6949–6952

    PubMed  CAS  Google Scholar 

  • Han SU, Kim HT, Seong DH, Kim YS, Park YS, Bang YJ, Yang HK, Kim SJ (2004) Loss of the Smad3 expression increases susceptibility to tumorigenicity in human gastric cancer. Oncogene 23:1333–1341

    Article  PubMed  CAS  Google Scholar 

  • Hannon GJ, Beach D (1994) p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature 371:257–261

    Article  PubMed  CAS  Google Scholar 

  • Jakowlew SB (2006) Transforming growth factor-beta in cancer and metastasis. Cancer Metastasis Rev 25:435–457

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Im YH, Markowitz SD, Bang YJ (2000) Molecular mechanisms of inactivation of TGF-beta receptors during carcinogenesis. Cytokine Growth Factor Rev 11:159–168

    Article  PubMed  CAS  Google Scholar 

  • Korpal M, Ell BJ, Buffa FM, Ibrahim T, Blanco MA, Celia-Terrassa T, Mercatali L, Khan Z, Goodarzi H, Hua Y, Wei Y, Hu G, Garcia BA, Ragoussis J, Amadori D, Harris AL, Kang Y (2011) Direct targeting of Sec23a by miR-200s influences cancer cell secretome and promotes metastatic colonization. Nat Med 17:1101–1108

    Article  PubMed  CAS  Google Scholar 

  • Levy L, Hill CS (2006) Alterations in components of the TGF-beta superfamily signaling pathways in human cancer. Cytokine Growth Factor Rev 17:41–58

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Yang J, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, Yeh IT, Agyin J, Tomlinson G, Sun LZ (2012) Attenuation of TGF-beta signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Mol Biol Cell 23:1569–1581

    Article  PubMed  CAS  Google Scholar 

  • Lu SL, Zhang WC, Akiyama Y, Nomizu T, Yuasa Y (1996) Genomic structure of the transforming growth factor beta type II receptor gene and its mutations in hereditary nonpolyposis colorectal cancers. Cancer Res 56:4595–4598

    PubMed  CAS  Google Scholar 

  • Markowitz S, Wang J, Myeroff L, Parsons R, Sun L, Lutterbaugh J, Fan RS, Zborowska E, Kinzler KW, Vogelstein B et al (1995) Inactivation of the type II TGF-beta receptor in colon cancer cells with microsatellite instability. Science 268:1336–1338

    Article  PubMed  CAS  Google Scholar 

  • Massague J (2008) TGFbeta in cancer. Cell 134:215–230

    Article  PubMed  CAS  Google Scholar 

  • Minn AJ, Kang Y, Serganova I, Gupta GP, Giri DD, Doubrovin M, Ponomarev V, Gerald WL, Blasberg R, Massague J (2005) Distinct organ-specific metastatic potential of individual breast cancer cells and primary tumors. J Clin Invest 115:44–55

    PubMed  CAS  Google Scholar 

  • Pierce DF Jr, Gorska AE, Chytil A, Meise KS, Page DL, Coffey RJ Jr, Moses HL (1995) Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc Natl Acad Sci U S A 92:4254–4258

    Article  PubMed  CAS  Google Scholar 

  • Pietenpol JA, Stein RW, Moran E, Yaciuk P, Schlegel R, Lyons RM, Pittelkow MR, Munger K, Howley PM, Moses HL (1990) TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell 61:777–785

    Article  PubMed  CAS  Google Scholar 

  • Riggins GJ, Thiagalingam S, Rozenblum E, Weinstein CL, Kern SE, Hamilton SR, Willson JK, Markowitz SD, Kinzler KW, Vogelstein B (1996) Mad-related genes in the human. Nat Genet 13:347–349

    Article  PubMed  CAS  Google Scholar 

  • Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, Hastie T, Eisen MB, van de Rijn M, Jeffrey SS, Thorsen T, Quist H, Matese JC, Brown PO, Botstein D, Eystein Lonning P, Borresen-Dale AL (2001) Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A 98:10869–10874

    Article  PubMed  CAS  Google Scholar 

  • Stuelten CH, Buck MB, Dippon J, Roberts AB, Fritz P, Knabbe C (2006) Smad4-expression is decreased in breast cancer tissues: a retrospective study. BMC Cancer 6:25

    Article  PubMed  Google Scholar 

  • Sun L (2004) Tumor-suppressive and promoting function of transforming growth factor beta. Front Biosci 9:1925–1935

    Article  PubMed  CAS  Google Scholar 

  • Tang B, de Castro K, Barnes HE, Parks WT, Stewart L, Bottinger EP, Danielpour D, Wakefield LM (1999) Loss of responsiveness to transforming growth factor beta induces malignant transformation of nontumorigenic rat prostate epithelial cells. Cancer Res 59:4834–4842

    PubMed  CAS  Google Scholar 

  • Wang J, Han W, Zborowska E, Liang J, Wang X, Willson JK, Sun L, Brattain MG (1996) Reduced expression of transforming growth factor beta type I receptor contributes to the malignancy of human colon carcinoma cells. J Biol Chem 271:17366–17371

    Article  PubMed  CAS  Google Scholar 

  • Xu X, Brodie SG, Yang X, Im YH, Parks WT, Chen L, Zhou YX, Weinstein M, Kim SJ, Deng CX (2000) Haploid loss of the tumor suppressor Smad4/Dpc4 initiates gastric polyposis and cancer in mice. Oncogene 19:1868–1874

    Article  PubMed  CAS  Google Scholar 

  • Yagi K, Furuhashi M, Aoki H, Goto D, Kuwano H, Sugamura K, Miyazono K, Kato M (2002) c-myc is a downstream target of the Smad pathway. J Biol Chem 277:854–861

    Article  PubMed  CAS  Google Scholar 

  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Piek E, Bottinger EP (2001) Genetic programs of epithelial cell plasticity directed by transforming growth factor-beta. Proc Natl Acad Sci U S A 98:6686–6691

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was in part supported by National Institutes of Health Grants R01CA75253 and R01CA79683.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lu-Zhe Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Lin, S., Sun, LZ. (2014). Suppression of Premature Senescence and Promotion of Metastatic Transformation: Role of Reduced TGF-Beta Signaling in Human Cancer Progression. In: Hayat, M. (eds) Tumor Dormancy, Quiescence, and Senescence, Volume 2. Tumor Dormancy and Cellular Quiescence and Senescence, vol 2. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7726-2_21

Download citation

Publish with us

Policies and ethics