Skip to main content

Biological Control: Perspectives for Maintaining Provisioning Services in the Anthropocene

  • Chapter
  • First Online:
Integrated Pest Management

Abstract

Biological control is an essential component of sustainable crop management that attempts to maximize one ecosystem service—production of food and fiber—while concurrently contributing in a positive manor to other ecosystem services required for human health and wellbeing. Biological control techniques are both plant species and site specific, so efficacy of controls and specific methodologies will vary among crop species or for a single crop species over resource and climatic gradients. However, techniques to enhance food web diversity within croplands via maximizing spatial and temporal heterogeneity of these local landscapes appear to be the appropriate framework with which to attempt specific biological control techniques. Such a framework also provides an agricultural system with potential resilience to climatic extremes, emergent diseases, and other factors deleterious to food security.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alpers, J. (2004). The wicked weed of the West. Smithsonian Magazine, 35(7), 33–36.

    Google Scholar 

  • Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74, 19–31.

    Article  Google Scholar 

  • Altieri, M. A., Ponti, L., & Nicholls, C. I. (2012). Soil fertility, biodiversity and pest management. In G. M. Gurr, S. D. Wratten, W. E. Snyder, & D. M. Y. Read (Eds.)., Biodiversity and Insect Pests: Key Issues for Sustainable Management (pp. 72–84). Boston: Wiley-Blackwell.

    Google Scholar 

  • Andrews, M., Cripps, M. G., & Edwards, G. R. (2011). The potential of beneficial microorganisms in agricultural systems. Annals of Applied Biology, 160(1), 1–5.

    Article  Google Scholar 

  • Backman, P. A., & Sikora, R. A. (2008). Endophytes: An emerging tool for biological control. Biology Control, 46, 1–3.

    Article  Google Scholar 

  • Barbosa, P. (1998). Conservation Biological Control. San Diego, California, USA: Academic.

    Google Scholar 

  • Barton, J. (2012). Predictability of pathogen host range in classical biological control of weeds: An update. Biology Control, 57, 289–305.

    Google Scholar 

  • Blumenthal, D., Mitchell, C. E., PyÅ¡ek, P., & Jarošík, V. (2009). Synergy between pathogen release and resource availability in plant invasion. Proceedings of the National Academy of Sciences U S A, 106(19), 7899–7904.

    Article  CAS  Google Scholar 

  • Chapin, F. S. III, Kofinas, G. P., & Folke, C. (2009). Principles of Ecosystem Stewardship: Resilience-based Natural Resource Management in a Changing World. New York: Springer.

    Google Scholar 

  • Chapin, F. S. III, Power, M. E., Pickett, S. T. A., Freitag, A., Reynolds, J. A., Jackson, R. B., Lodge, D. M., Duke, C., Collins, S. L., Power, A. G., & Bartuska, A. (2011). Earth stewardship: Science for action to sustain the human-earth system. Ecosphere, 2(8), art89. doi:10.1890/ES11-00166.1.

    Google Scholar 

  • Cook, R. J., Bruckart, W. L., Coulson, J. R., Goettel, M. S., Humber, R. A., Lumsden, R. D., Maddox, J. V., McManus, M. L., Moore, L., Meyer, S. E., Quimby, P. C., Stack, J. P., & Vaughn, J. L. (1996). Safety of microorganisms intended for pest and plant disease control: A framework for scientific evaluation. Biology Control, 7, 333–351.

    Article  Google Scholar 

  • Davies, K. G., & Spiegel, Y. (2011). Biological Control of Plant-parasitic Nematodes, Building Coherence Between Microbial Ecology and Molecular Mechanisms. Dordrecht, Netherlands: Springer.

    Book  Google Scholar 

  • DeBach, P., & Rosen, D. (1991). Biological Control by Natural Enemies (2nd ed.). Cambridge: Cambridge University Press.

    Google Scholar 

  • Denoth, M., Frid, L., & Myers, J. H. (2002). Multiple agents in biological control: Improving the odds? Biological Conservation, 24, 20–30.

    Google Scholar 

  • Dooley, S. R., & Beckstead, J. (2010). Characterizing the interaction between a fungal seed pathogen and a deleterious rhizobacterium for biological control of cheatgrass. Biology Control, 53, 197–203.

    Article  Google Scholar 

  • Eilenberg, J., Hajek, A., & Lomer, C. (2001). Suggestions for unifying the terminology in biological control. Biology Control, 46, 387–400.

    Google Scholar 

  • Eilenberg, J., & Hokkanen, H. M. T. (2006). An Ecological and Societal Approach to Biological Control. Dordrecht, Netherlands: Springer.

    Book  Google Scholar 

  • Ellis, E. C., Goldewijk, K. K., Siebert, S., Lightman, D., & Ramankutty, N. (2010). Anthropogenic transformation of the biomes, 1700 to 2000. Global Ecology Biogeography, 19, 589–606.

    Google Scholar 

  • Faria, M. R. D., & Wraight, S. P. (2007). Mycoinsecticides and Mycoacaricides: A comprehensive list with worldwide coverage and international classification of formulation types. Biology Control, 43, 237–256.

    Article  Google Scholar 

  • Garratt, M. P. D., Wright, D. J., & Leather, S. R. (2011). The effects of farming system and fertilizers on pests and natural enemies: A synthesis of current research. Agriculture Ecosystem Environment, 141, 261–270.

    Article  Google Scholar 

  • Gould, S. J. (1997). An evolutionary perspective on strengths, fallacies, and confusions in the concept of native plants. In J. Wolschke-Bulmahn (Ed.)., Nature and Ideology: Natural Garden Design in the Twentieth Century (Vol. 18, pp. 11–19). Washington, D.C.: Dumbarton Oaks Research Library and Collection.

    Google Scholar 

  • Greenstone, M. H., Szendrei, Z., Payton, M. E., Rowley, D. L., Coudron, T. C., & Weber, D. C. (2010). Choosing natural enemies for conservation biological control: Use of the prey detectability half-life to rank key predators of Colorado potato beetle. Entomology Experiment Application, 136, 97–107.

    Article  Google Scholar 

  • Guo, B., Wang, Y., Sun, X., & Tang, K. (2008). Bioactive natural products from Endophytes: A review. Application Biochemical Micrology, 44(2), 153–158.

    CAS  Google Scholar 

  • Gurr, G. M., Wratten, S. D., & Altieri, M. A. (2004). Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods. Collingwood, Victoria, Australia: CSIRO Publishing.

    Google Scholar 

  • Gurr, G. M., Wratten, S. D., Snyder, W. W., & Read, M. Y. (2012). Biodiversity and Insect Pests: Key Issues for Sustainable Management. Boston: Wiley-Blackwell.

    Book  Google Scholar 

  • Hajek, A. E., McManus, M. L., & Delalibera, I. (2007). A review of introductions of pathogens and nematodes for classical biological control of insects and mites. Biology Control, 41, 1–13.

    Article  Google Scholar 

  • Hajek, A. E., & Tobin, P. C. (2010). Micro-managing arthropod invasions: Eradication and control of invasive arthropods with microbes. Biology Invasions, 12, 2895–2912.

    Article  Google Scholar 

  • Harris, P., Peschken, D., & Milroy, J. (1969). The status of biological control of the weed Hypericum perforatum in British Columbia. Canadian Entomologist, 101, 1–15.

    Article  Google Scholar 

  • Hartley, S. E., & Gange, A. C. (2009). Impacts of plant symbiotic fungi on insect herbivores: Mutualism in a multitrophic context. Annual Review of Entomology, 54, 323–342.

    Article  CAS  PubMed  Google Scholar 

  • Hokkanen, H. M. T., & Pimentel, D. (1989). New associations in biological control: Theory and practice. Canadian Entomologist, 95, 785–792.

    Google Scholar 

  • Jonsson, M., Wratten, S. D., Landis, D. A., & Gurr, G. M. (2008). Recent advances in conservation biological control of arthropods by arthropods. Biological Control, 45, 172–175.

    Article  Google Scholar 

  • Kalischuk, A. R., Bourchier, R. S., & McClay, A. S. (2004). Post hoc assessment of an operational biocontrol program: Efficacy of the flea beetle Aphthona lacertosa Rosenhauer (Chrysomelidae: Coleoptera), an introduced biocontrol agent for leafy spurge. Bioloigy Control, 29, 418–426.

    Article  Google Scholar 

  • Karieva, P. (1999). Coevolutionary arms races: Is victory possible? Proceedings of the National Academy of Sciences U S A, 96, 8–10.

    Google Scholar 

  • Knochel, D. G., & Seastedt, T. R. (2010). Field measurements of herbivory, resource limitation, and plant competition on the growth and reproduction of spotted knapweed (Centaurea stoebe). Ecology Application, 20, 1903–1912.

    Article  Google Scholar 

  • Landis, D., Wratten, S., & Gurr, G. M. (2000). Habitat management to conserve natural enemies of arthropod pests in agriculture. Annual Review of Entomology, 45, 175–201.

    Article  CAS  PubMed  Google Scholar 

  • Lodewyckx, C., Vangronsveld, J., Porteous, F., Moore, E. R. B., Taghavi, S., Mezgeay, M., & van der Lelie, D. (2002). Endophytic bacteria and their potential applications. CRC Critical Review Plant Science, 21, 583–606.

    Article  Google Scholar 

  • Lord, J. C. (2005). Mechnikoff to Monsanto and beyond: The path of microbial control. The Journal of Invertebrate Pathology, 89, 19–29.

    Article  Google Scholar 

  • Louda, S. M., Pemberton, R. W., Johnson, M. T., & Follett, P. A. (2003). Nontarget effects—The Achilles heel of biological control? Retrospective analyses to reduce risk associated with biocontrol introductions. Annual Review of Entomology, 48, 366–396.

    Article  Google Scholar 

  • Martin, H., Burgess, E. P. J., Masarik, M., Kramer, K. J., Beklova, M., Adam, V., & Kizek, R. (2010). Avidin and plant biotechnology to control pests. In E. Lichtfouse (Ed.)., Genetic Engineering, Biofertilisation, Soil Quality and Organic Farming Sustainable Agriculture Reviews, (Vol. 4, pp. 1–21). Dordrecht, Netherlands: Springer. http://appius.claudius.free.fr/Download/Agribio/divers/Genetic%20Engineering,%20Biofertilisation,%20Soil%20Quality%20and%20Organic%20Farming.pdf. Accessed 9 Nov 2012.

  • Matson, P. A., Parton, W. J., Power, A. G., & Swift, M. J. (1997). Agricultural intensification and ecosystem properties. Science, 277, 504–509.

    Article  CAS  PubMed  Google Scholar 

  • McEvoy, P. B., & Coombs, E. M. (2000). Why things bite back: Unintended consequences of biological weed control. In P. A. Follett & J. J. Duan (Eds.)., Nontarget Effects of Biological Control (pp. 167–194). Boston: Kluwer Academic.

    Google Scholar 

  • McFadyen, R. E. (1998). Biological control of weeds. Annual Review Entomology, 43, 369–393.

    Article  CAS  Google Scholar 

  • Meehan, T. D., Werling, B. P., Landis, D. A., & Gratton, C. (2011). Agricultural landscape simplification and insecticide use in the Midwestern United States. Proceedings of the National Academy of Sciences U S A, 108, 11500–11505.

    Google Scholar 

  • Mensah, R. K., & Sequeira, R. V. (2004). Habitat manipulation for insect pest management in cropping systems. In G. M. Gurr., S. D. Wratten, & M. A. Altieri (Eds.)., Ecological Engineering for Pest Management (pp. 187–197). Collingwood, Victoria, Australia: CSIRO Publishing.

    Google Scholar 

  • Montgomery, D. R. (2007). Soil erosion and agricultural sustainability. Proceedings of the National Academy of Sciences U S A, 104, 13268–13272.

    Google Scholar 

  • Muniappan, R., Reddy, G. V. P., & Raman, A. (2009). Biological Control of Tropical Weeds Using Arthropods. Cambridge: Cambridge Press.

    Book  Google Scholar 

  • Myers, J. H., Jackson, C., Quinn, H., White, S. R., & Cory, J. S. (2009). Successful biological control of diffuse knapweed, Centaurea diffusa, in British Columbia, Canada. Biology Control, 50, 66–72.

    Article  Google Scholar 

  • National Research Council (NRC) Board on Agriculture. (1996). Ecologically Based Pest Management: New Solutions for a New Century. Washington, D.C.: National Academy Press.

    Google Scholar 

  • Pfiffner, L., & Wyss, E. (2004). Use of sown wildflower strips to enhance natural enemies of agricultural pests. In G. M. Gurr., S. D. Wratten, & M. A. Altieri (Eds.)., Ecological Engineering for Pest Management: Advances in Habitat Manipulation for Arthropods (pp. 167–188). Collingwood, Victoria, Australia: CSIRO Publishing.

    Google Scholar 

  • Pimentel, D., Hepperly, P., Hanson, J., Douds, D., & Seidel, R. (2005). Environmental, energetic, and economic comparisons of organic and conventional farming systems. Bioscience, 55, 573–582.

    Article  Google Scholar 

  • Ratnadass, A., Fernades, P., Avelina, J., & Habib, R. (2012). Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: A review. Agronomy for Sustainable Development, 32, 273–303.

    Article  Google Scholar 

  • Rosenblueth, M., & Martinez-Romero, E. (2006). Bacterial endophytes and their interactions with hosts. Molecular Plant-Microbe Interactions, 19, 827–837.

    Article  CAS  PubMed  Google Scholar 

  • Schulz, B., Boyle, C., Draeger, S., Rommert, A. K., & Krohn, K. (2002). Endophytic fungi: A source of novel biologically active secondary metabolites. Mycological Research, 106, 996–1004.

    Article  CAS  Google Scholar 

  • Seastedt, T. R., Suding, K. N., & LeJeune, K. D. (2005). Understanding invasions: The rise and fall of diffuse knapweed (Centaurea diffusa) in North America. In S. Inderjit (Ed.), Invasive Plants: Ecological and Agricultural Aspects (pp. 129–139). Basal, Switzerland: Birkhauser-Verlag AG.

    Google Scholar 

  • Simon, S., Bouvier, J. C., Debras, J. F., & Sauphanor, B. (2010). Biodiversity and pest management in orchard systems: A review. Agronomy for Sustainable Development, 30, 139–152. doi: 10.1051/agro/2009013.

    Article  Google Scholar 

  • Smagghe, G., & Diaz, I. (2012). Arthropod-plant Interactions: Novel Insights and Approaches for IPM. Dordrecht, Netherlands: Springer.

    Book  Google Scholar 

  • Stirling, G. R. (2011). Biological control of plant-parasitic nematodes: An ecological perspective, a review of progress and opportunities for further research. Programm Biology Control, 11, 1–38.

    Google Scholar 

  • Swift, M. J., Izac, A. M. N., & van Noordwijk, M. (2004). Biodiversity and ecosystem services in agricultural landscapes—Are we asking the right questions? Agriculture Ecosystem Environment, 104, 113–134.

    Article  Google Scholar 

  • Tikhonovich, I. A., & Provorov, N. A. (2011). Microbiology is the basis of sustainable agriculture: An opinion. Annals of Applied Biology, 159, 155–168.

    Article  CAS  Google Scholar 

  • Van Driesche, R. G., Carruthers, R. I., Center, T., Hoddle, M. S., Hough-Goldstein, J., Morin, L., Smith, L., Wagner, D. L., Blossey, B., Brancatini, V., Casagrande, R., Causton, C. E., Coetzee, J. A., Cuda, J., Ding, J., Fowler, S. V., Frank, J. H., Fuester, R., Goolsby, J., Grodowitz, M. et al. (2010). Classical biological control for the protection of natural ecosystems. Biological Control, 54, S2–S33. http://ag.udel.edu/enwc/research/biocontrol/pdf/Van%20Driesche%20 et%20al.%202010.pdf. Accessed 9 Aug 2012.

    Article  Google Scholar 

  • Van Driesche, R. G., Hoddle, M., & Center, T. (2008). Control of Pests and Weeds by Natural Enemies: An Introduction to Biological Control. Malden, Massachusetts, USA: Blackwell Publishing.

    Google Scholar 

  • Vos, C., Geerinckx, K., Mkandawire, R., Panis, B., DeWaele, D., & Elsen, A. (2012). Arbuscular mycorrhizal fungi affect both penetration and further life stage development of root-knot nematodes in tomato. Mycorrhiza, 22, 157–163.

    Article  PubMed  Google Scholar 

  • Whipps, J. M. (2001). Microbial interactions and biocontrol in the rhizosphere. Journal of Experiment Botany, 52, 487–511. doi:10.1093/jexbot/52.suppl_1.487.

    Article  CAS  Google Scholar 

  • Zimmermann, H. G., & Moran, V. C. (1991). Biological control of prickly pear, Opuntia ficus-indica (Cactaceae) in South Africa. Agriculture, Ecosystem and Environment, 37, 29–35.

    Article  Google Scholar 

Download references

Acknowledgments

The author acknowledges a series of grants from the USDA invasive plant programs that led to the author’s affirmation of the value of biological control efforts in agriculture. I thank Meredith Chedsey for her help in editing and formatting this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timothy R. Seastedt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Seastedt, T. (2014). Biological Control: Perspectives for Maintaining Provisioning Services in the Anthropocene. In: Pimentel, D., Peshin, R. (eds) Integrated Pest Management. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-7796-5_11

Download citation

Publish with us

Policies and ethics