Skip to main content

Electron Microscopy of Ordering in Alloys

  • Chapter
Alloy Phase Stability

Part of the book series: NATO ASI Series ((NSSE,volume 163))

Abstract

The aim of this contribution is certainly not to provide a general course in electron microscopy, other and more elaborated works can be consulted for this purpose, e.g. [1,2]. We will only try to clarify these aspects of electron microscopy which are useful in the study of ordered alloys or in the evolution towards ordering. First we will study the symmetry aspects of the ordered alloy and predict the number of orientation as well as translation variants of the ordered phase in the disordered matrix. Due to the usual lowering of symmetry upon ordering a number of orientation and translation interfaces will result in ordered alloys. Their number and internal relationship can be predicted based on simple symmetry rules. The two dimensional defects related to ordering can be identified from electron microscope observations and sometimes produce specific electron diffraction effects. High resolution microscopy combined with computer simulated images allow to obtain atomic scale information of ordering related defects. Important is that we can show that the minority atoms in a large range of alloys can be systematically imaged as bright dots; this provides us with an easy code to interpret sometimes complex high resolution images.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P.B. Hirsch, A. Howie, R.B. Nicholson, D.W. Pashley and M.J. Whelan, Electron Microscopy of Thin Crystals, Butterworths 1965.

    Google Scholar 

  2. Diffraction and Imaging Techniques in Material Science, Eds. S. Amelinckx, R. Gevers and J. Van Landuyt, North Holland Publishing Co., Amsterdam (1978).

    Google Scholar 

  3. G. Van Tendeloo, S. Amelinckx and D. de Fontaine, Acta Cryst. B41, 281 (1985).

    Google Scholar 

  4. G. Van Tendeloo, S. Amelinckx, Acta Cryst. A30, 431 (1974).

    Google Scholar 

  5. R. Portier and D. Gratias, Journal de Physique 43, C4–17 (1982).

    MathSciNet  Google Scholar 

  6. A. Finel, D. Gratias and R. Portier, in: L’ordre et le désordre dans les matériaux, Ecole d’Hiver (Aussois) 1984, Les Editions de Physique, Les Ulis Cedex (France).

    Google Scholar 

  7. J.W. Cahn and G. Kalonji in: “Solid-solid phase transformations”, eds. H.I. Aaronson, D.E. Laughlin, R.F. Sekerka and CM. Wayman, AIME publications (1982).

    Google Scholar 

  8. M.A. Melvin, Rev. Mod. Phys. 28, 18 (1956).

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. G. Van Tendeloo, S. Amelinckx, Phys. stat. sol. (a) 22, 621 (1974).

    Article  ADS  Google Scholar 

  10. C. Boulesteix, Phys. stat. sol. (a) 86, 11 (1984).

    Article  ADS  Google Scholar 

  11. R. Serneels, M. Snykers, P. Delavignette, R. Gevers, S. Amelinckx, Phys. stat. sol. (b) 58, 277 (1973).

    Article  ADS  Google Scholar 

  12. A.J. Morton, Phys. stat. sol. (a) 44, 205 (1977).

    Article  ADS  Google Scholar 

  13. A.J. Morton, Acta Metal. 27, 863 (1979).

    Article  Google Scholar 

  14. M. Snykers, P. Delavignette, S. Amelinckx, Phys. stat. sol. (a) 48, K1 (1971).

    Article  ADS  Google Scholar 

  15. J.W. Edington, Practical Electron Microscopy in Materials Science nr. 5, Philips (1975).

    Google Scholar 

  16. J.C.H. Spence, “Experimental High Resolution Electron Microscopy”, Clarendon Press Oxford (1981).

    Google Scholar 

  17. D. Van Dyck Diffraction and Imaging Techniques in Material Science, Eds. S. Amelinckx, R. Gevers and J. Van Landuyt, North Holland Publishing Co., Amsterdam (1978), p. 355.

    Google Scholar 

  18. D. Van Dyck, J. Microscopy 119, 141 (1980).

    Article  Google Scholar 

  19. D. Van Dyck, G. Van Tendeloo and S. Amelinckx, Ultramicroscopy 10, 263 (1982).

    Article  Google Scholar 

  20. G. Van Tendeloo, D. Van Dyck, S. Amelinckx, Ultramicroscopy 19, 235 (1986).

    Article  Google Scholar 

  21. I. Baele, G. Van Tendeloo and S. Amelinckx, Acta Metall. 35, 401 (1987).

    Article  Google Scholar 

  22. “Crystal growth and characterization of polytype structures” ed. P. Krishna, Pergamon Press (1983).

    Google Scholar 

  23. C.H. Johansson and J.O. Linde, Ann. Phys. 25, 1 (1936).

    Article  Google Scholar 

  24. J. Van Landuyt, R. De Ridder, R. Gevers and S. Amelinckx, Mat. Res. Bull. 5, 353 (1970).

    Article  Google Scholar 

  25. A.B. Glossop and D. Pashley, Proc. Royal Soc. A250, 132 (1959).

    Article  ADS  Google Scholar 

  26. D. Schryvers, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx, Phys. stat. sol. (a) 75, 607 (1983).

    Article  ADS  Google Scholar 

  27. A. Loiseau, G. Van Tendeloo, R. Portier and F. Ducastelle, J, Phys. (Paris) 46, 595 (1985).

    Article  Google Scholar 

  28. D. Broddin, G. Van Tendeloo, J. Van Landuyt, S. Amelinckx, R. Portier, M. Guymont and A. Loiseau, Phil. Mag. A 54, 395 (1986).

    Article  ADS  Google Scholar 

  29. J. Gjønnes, Acta Cryst. 20, 240 (1966).

    Article  Google Scholar 

  30. J. Cowley, R. Murray, Acta cryst. A24, 329 (1968).

    Google Scholar 

  31. R. De Ridder, G. Van Tendeloo, S. Amelinekx, Acta Cryst. A32, 216 (1976).

    Google Scholar 

  32. R. De Ridder, G. Van Tendeloo, D. Van Dyck, S. Amelinekx, Phys. stat. sol. (a) 38, 663 (1976)

    Article  ADS  Google Scholar 

  33. R. De Ridder, G. Van Tendeloo, D. Van Dyck, S. Amelinekx, Phys. stat. sol. (a) 43, 541 (1977).

    Article  ADS  Google Scholar 

  34. B. Chakravarti, C.J. Sparks, E.A. Starke, R.O. Williams, J. Phys. Chem. Solids 35, 1317 (1974).

    Article  ADS  Google Scholar 

  35. K. Ohshima, J. Harada, M. Matsui, K. Adachi, J. Magn. Mater. 54–57, 157 (1986).

    Google Scholar 

  36. N. Tanaka, J.M. Cowley and K. Ohshima, Acta Cryst. B43, 41 (1987).

    Google Scholar 

  37. G. Van Tendeloo, R. De Ridder, S. Amelinekx, Phys. stat. sol. (a) 49, 655 (1978).

    Article  ADS  Google Scholar 

  38. J. W. Steeds in “Introduction to Analytical Electron Microscopy” Eds. J.J. Hren, J.I. Goldstain, D.C. Joy, Plenum Press, New York, 1979.

    Google Scholar 

  39. “Principles of Analytical Electron Microscopy”, eds. D.C. Joy, A.D. Romig,Jr., J.I. Goldstein, Plenum Press, New York, 1986.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Van Tendeloo, G. (1989). Electron Microscopy of Ordering in Alloys. In: Stocks, G.M., Gonis, A. (eds) Alloy Phase Stability. NATO ASI Series, vol 163. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-0915-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-0915-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6901-4

  • Online ISBN: 978-94-009-0915-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics