Skip to main content

Electron Spectroscopic Determination of the Electronic, Geometric and Chemisorption Properties of Oxide Surfaces

  • Chapter
Surfaces and Interfaces of Ceramic Materials

Part of the book series: NATO ASI Series ((NSSE,volume 173))

Abstract

The electronic and geometric properties of both nearly perfect and defect metal oxide surfaces have been studied by using surface sensitive electron spectroscopic techniques such as photoemission, electron energy loss spectroscopy, low energy electron diffraction, etc. and single crystal samples cleaved in ultrahigh vacuum; surface defects are created by ion or electron bombardment or thermal treatment. The use of such well characterized ceramic samples permits a determination of the physical and chemical properties of their surfaces on the atomic scale. The geometric structure of defect free oxide surfaces is nearly a termination of the bulk crystal structure, and their electronic structure is usually similar to that of the bulk. Maximal valence oxides are quite inert with respect to molecular adsorption. The interaction of sub-oxide surfaces with molecules, on the other hand, exhibits a wide range of behavior. Point defects on surfaces are the active sites for chemisorption and exhibit electronic structures very different from those of perfect surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ‘The Surfaces of Metal Oxides,’ V.E. Henrich, Rep, on Prog, in Physics 48, 1481 (1985).

    Article  CAS  Google Scholar 

  2. ‘The Surface Electronic Structure of MgO and AI2O3 Ceramics,’ V.E. Henrich, Adv. in Ceramics 10, 205 (1984).

    CAS  Google Scholar 

  3. Modern Techniques of Surface Science. D.P. Woodruff and T.A. Delchar (Cambridge University Press, 1986).

    Google Scholar 

  4. ‘Energy-Dependent Electron-Energy Loss Spectroscopy: Application to the Surface and Bulk Electronic Structure ofr MgO,’ V.E. Henrich, G. Dresselhaus, and H.J. Zeiger, Phys. Rev. B 22, 4764 (1980).

    Article  CAS  Google Scholar 

  5. ‘Metallic Oxides,’ J.B. Goodenough, in Progress in Solid State Chemistry. Vol. 5, ed. H. Reiss (Pergamon, Oxford, 1972), p. 145.

    Google Scholar 

  6. ‘LEED Studies of the Structures of the (100) Surface of Divalent Metal Oxides,’ M. Prutton, J.A. Walker, M.R. Welton-Cook and R.C. Felton, Surf. Sci. 89, 95 (1979).

    Article  CAS  Google Scholar 

  7. ‘Surface Structure of. MgO (001) Surface Studied by LEED,’ T. Urano, T. Kanaji and M. Kaburagi, Surf. Sci. 134, 109 (1983).

    Article  CAS  Google Scholar 

  8. ‘Atomic Geometry of the Low-Index Surfaces of ZnO: LEED Analysis,’ A.R. Lubinsky, C.B. Duke, S.C. Chang, B.W. Lee and P. Mark, J. Vac. Sci. Technol. 13, 189 (1976).

    Article  CAS  Google Scholar 

  9. ‘Calculation of Low Energy Electron Diffraction Intensities from ZnO (1010): II. Influence of Calculational Procedure, Model Potential, and Second Layer Structural Distortions,’ C.B. Duke, R.J. Meyer, A. Paton and P. Mark, Phys. Rev. B 18, 4225 (1978).

    Article  CAS  Google Scholar 

  10. ‘The Surface Electronic Structure of Corundum Transition-Metal Oxides: Ti2O3,’ R.L. Kurtz and V.E. Henrich, Phys. Rev. B. 25, 3563 (1982).

    Article  CAS  Google Scholar 

  11. Chemisorption of H2O on the Surface of Ti2O3: Role of d-Electrons and Ligand Geometry,’ R.L. Kurtz and V.E. Henrich, Phys. Rev. B 26, 6682 (1982).

    Article  CAS  Google Scholar 

  12. ‘Preparation and Properties of the Ti2O3 (047) Surface,’ J.M. McKay and V.E. Henrich, Surf. Sci. 137, 463 (1984).

    Article  CAS  Google Scholar 

  13. ‘Surface Electronic Structure and Chemisorption on Corundum Transition-Metal Oxides: V2O3,’ R.L. Kurtz and V.E. Henrich, Phys. Rev. B 28, 6699 (1983).

    Article  CAS  Google Scholar 

  14. ‘The Surface Electronic Structure of TiO2: Atomic Geometry, Ligand Coordination, and the Effect of Adsorbed Hydrogen,’ V.E. Henrich and R.L. Kurtz, Phys. Rev. B 23, 6280 (1981).

    Article  CAS  Google Scholar 

  15. ‘Rh on TiO2: Model Catalyst Studies of the Strong Metal-Support Interaction,’ H.R. Sadeghi and V.E. Henrich, Appl. Surf. Sci. 19, 330 (1984).

    Article  CAS  Google Scholar 

  16. ‘Low Energy Electron Diffraction and Electron Spectroscopy Studies of the Clean (110) and (100) Titanium Dioxide (Rutile) Crystal Surfaces,’ Y.W. Chung, W.J. Lo and G.A. Somorjai, Surf. Sci. 64, 588 (1977).

    Article  CAS  Google Scholar 

  17. ‘Thermal Faceting of the Rutile TiO2 (001) Surface,’ L.E. Firment, Surf. Sci. 116, 205 (1982).

    Article  CAS  Google Scholar 

  18. ‘Surface Defects and the Electronic Structure of SrTiO3 Surfaces,’ V.E. Henrich, G. Dresselhaus and H.J. Zeiger, Phys. Rev. B 17, 4908 (1978).

    Article  CAS  Google Scholar 

  19. ‘Photoemission Study of BaTiO3 (100) Surfaces,’ B. Cord and R. Courths, Surf. Sci. 152/153, 1141 (1985).

    Article  Google Scholar 

  20. ‘The Nature of Defects on Solid Surfaces as Studied by Electron Spectroscopy,’ V.E. Henrich, in Defects in Solids - Modern Techniques.’ ed. A.V. Chadwick and M. Terenzi (Plenum, New York, 1986), p. 311.

    Google Scholar 

  21. ‘Interaction of CO, CO2 and O2 with Nonpolar, Stepped and Polar Zn Surfaces of ZnO,’ W.H. Cheng and H.H. Kung, Surf. Sci. 122, 21 (1982).

    Article  CAS  Google Scholar 

  22. ‘Defective Non-Planar Surfaces of MgO,’ E.A. Colbourn, J. Kendrick and W.C. Mackrodt, Surf. Sci. 126, 550 (1983).

    Article  CAS  Google Scholar 

  23. ‘Irregularities at the (001) Surface of MgO: Topography and Other Aspects,’ E.A. Colbourn and W.C. Mackrodt, Solid State Ionics 8, 221 (1983).

    Article  CAS  Google Scholar 

  24. ‘Surfaces of Magnesia and Alumina,’ P.W. Tasker, Adv. Ceramics 10, 176 (1984).

    CAS  Google Scholar 

  25. ‘The Structure and Properties of the Stepped Surfaces of MgO and NiO,’ P.W. Tasker and D.M. Duffy, Surf. Sci. 137, 91 (1984).

    Article  CAS  Google Scholar 

  26. ‘The Nature of Transition-Metal-Oxide Surfaces,’ V.E. Henrich, Prog. Surf. Sci. 14, 175 (1983).

    Article  CAS  Google Scholar 

  27. ‘Theoretical Electronic Properties of TiO2 (Rutile) (001) and (110) Surfaces,’ R.V. Kasowski and R.H. Tait, Phys. Rev. B 20, 5168 (1979).

    Article  CAS  Google Scholar 

  28. ‘Surface Electronic Structure of Rutile-Type Semiconductors: SnO2 (110) and TiO2 (110),’ S. Munnix and M. Schmeits, Surf. Sci. 126, 20 (1983).

    Article  CAS  Google Scholar 

  29. ‘Electronic Densities of States of Defect-Free TiO2 (110) and TiO2 (001) Surfaces,’ S. Munnix and M. Schmeits, Phys. Rev. B 28, 7342 (1983).

    Article  CAS  Google Scholar 

  30. ‘Electronic Structure of Ideal TiO2 (110), TiO2 (001) and TiO2 (100) Surfaces,’ S. Munnix and M. Schmeits, Phys. Rev. B 30, 2202 (1984).

    Article  CAS  Google Scholar 

  31. ‘Al-Al2O3 Interface Study Using Surface Soft-X-Ray Absorption and Photoemission Spectroscopy,’ A. Bianconi, R.Z. Bachrach, S.B.M. Hagstrom and S.A. Flodstrom, Phys. Rev. B 19, 2837 (1979).

    Article  CAS  Google Scholar 

  32. ‘Valence and Conduction Band Structure of the Sapphire (1102) Surface,’ W.J. Gignac, R.S. Williams and S.P. Kowalczyk, Phys. Rev. B 32, 1237 (1985).

    Article  CAS  Google Scholar 

  33. ‘Electronic Structure of α-Al2O3’, I.P. Batra, J. Phys. C 15, 5399 (1982).

    Article  CAS  Google Scholar 

  34. ‘The Electronic Structure of SrTiO3 and Some Simple Related Oxides (MgO, A12O3, SrO, TiO2),’ S.P. Kowalczyk, F.R. McFeely, L. Ley, V.T. Gritsyna and D.S. Shirley, Solid State Commun. 23, 161 (1977).

    Article  CAS  Google Scholar 

  35. ‘Structure of Valence and Conduction Levels in NiO,’ J.M. McKay and V.E. Henrich, Phys. Rev. Lett. 53, 2343 (1984).

    Article  CAS  Google Scholar 

  36. ‘Surface Electronic Structure of NiO: Defect States, O2 and H2O Interactions,’ J.M. McKay and V.E. Henrich, Phys. Rev. B 32, 6764 (1985).

    Article  CAS  Google Scholar 

  37. ‘Adsorption and Interaction of O2, H2O and CO on the NiO (100) Surface,’ J.M. McKay and V.E. Henrich, J. Vac. Sci. Technol. A 5, 722 (1987).

    Article  Google Scholar 

  38. ‘Surface Electronic Structure and Chemisorption Properties of MnO (100),’ R.J. Lad and V.E. Henrich, J. Vac. Sci. Technol. A 6, 781 (1988).

    Article  Google Scholar 

  39. ‘Electronic Structure of MnO Studied by Angle-Resolved and Resonant Photoemission,’ R.J. Lad and V.E. Henrich, Phys. Rev. B (in press).

    Google Scholar 

  40. ‘Electronic Properties of CoO (100) Surfaces: Defects and Chemisorption,’ J.L. Mackay and V.E. Henrich, Phys. Rev. B (submitted).

    Google Scholar 

  41. ‘Magnitude and Origin of the Bandgap in NiO,’ G.A. Sawatzky and J.W. Allen, Phys. Rev. Lett 53, 2339 (1984).

    Article  CAS  Google Scholar 

  42. ‘Transition-Metal Monoxides: Band or Mott Insulators?,’ K. Terakura, A.R. Williams, T. Oguchi and J. Kubler, Phys. Rev. Lett. 52, 1830 (1984).

    Article  CAS  Google Scholar 

  43. ‘Interaction of SO2 and CO with the Ti2O3 (1012) Surface,’ K.E. Smith and V.E. Henrich, Phys. Rev. B 32, 5384 (1985).

    Article  CAS  Google Scholar 

  44. ‘Adsorption and Reaction of SO2 on Titanium Oxide Surfaces,’ K.E. Smith, J.L. Mackay and V.E. Henrich, J. Vac. Sci. Technol. A 5, 689 (1987).

    Article  Google Scholar 

  45. ‘Valence Band Structure of V2O3 (10l2),’ K.E. Smith and V.E. Henrich, J. Vac. Sci. Technol. A 6, 831 (1988).

    Article  Google Scholar 

  46. ‘Molecular Orbital Effects in Resonant Photoemission from Ti2O3 and V203,’ K.E. Smith and V.E. Henrich, Solid State Commun. 68, 29 (1988).

    Article  CAS  Google Scholar 

  47. ‘Bulk Band Dispersion in Ti2O3 and V2O3,’ K.E. Smith and V.E. Henrich, Phys. Rev. B 38, 5965 (1988).

    Article  CAS  Google Scholar 

  48. ‘Resonant Photoemission in Ti2O3 and V2O3: Hybridization and Localization of Cation 3d Orbitals,’ K.E. Smith and V.E. Henrich, Phys. Rev. B (in press).

    Google Scholar 

  49. ‘Photoemission Study of the Interaction of SO2 and H2S with Titanium and Vanadium Oxides,’ K.E. Smith and V.E. Henrich, J. Vac. Sci. Technol. (in press).

    Google Scholar 

  50. ‘Discrete Variational Xα Cluster Calculations. II. Application to the Surface Electronic Structure of MgO,’ C. Satoko, M. Tsukada and H. Adachi, J. Phys. Soc. Jpn. 45, 1333 (1978).

    Article  CAS  Google Scholar 

  51. ‘Theory of Electronic Structure of Oxide Surfaces,’ M. Tsukada, H. Adachi and C. Satoko, Prog. Surf. Sci. 14, 113 (1983).

    Article  CAS  Google Scholar 

  52. ‘Observation of Two-Dimensional Phases Associated with Defect States on the Surface of TiO2,’ V.E. Henrich, G. Dresselhaus and H.J. Zeiger, Phys. Rev. Lett. 36, 1335 (1976).

    Article  CAS  Google Scholar 

  53. ‘The Surface Defect Peak in the Electron Energy Loss Spectrum of MgO (100),’ P.R. Underhill and T.E. Gallon, Solid State Commun. 43, 9 (1982).

    Article  CAS  Google Scholar 

  54. ‘Geometric Structure of α-Fe2O3 (001) Surface: A LEED and XPS Study,’ R.L. Kurtz and V.E. Henrich, Surf. Sci. 129, 345 (1983).

    Article  CAS  Google Scholar 

  55. ‘Surface Electronic Structure and Chemisorption on Corundum Transition Metal Oxides: α-Fe2O3,’ R.L. Kurtz and V.E. Henrich, Phys. Rev. B 36, 3413 (1987).

    Article  CAS  Google Scholar 

  56. ‘Structure of α-Fe2O3 Single Crystal Surfaces Following Ar+ Ion Bombardment and Annealing in O2,’ R.J. Lad and V.E. Henrich, Surf. Sci. 193, 81 (1988).

    Article  CAS  Google Scholar 

  57. ‘HREELS Studies of Adsorbates on Polar Solids: Water on SrTiO3 (100) ’ P.A. Cox, R.G. Egdell and P.D. Naylor, J. Electron Spectros. 29, 247 (1983).

    Article  CAS  Google Scholar 

  58. ‘Application of Fourier Transform Techniques to Deconvolution of HREEL Spectra’ PA. Cox, W.R. Flavell, A.A. Williams and R.G. Egdell, Surf. Sci. 152/153, 784 (1985).

    Article  Google Scholar 

  59. ‘Surface and Bulk Electronic Structure and Chemisorption Properties of Titanium and Vanadium Oxides’ K.E. Smith, Ph.D. Thesis, Yale University (unpublished).

    Google Scholar 

  60. ‘Chemisorbed Phases of O2 on TiO2 and SrTiO3,’ V.E. Henrich, G. Dresselhaus and H.J. Zeiger, J. Vac. Sci. Technol. 15, 534 (1978).

    Article  CAS  Google Scholar 

  61. ‘Interaction of SO2 with Nearly Perfect and Defect TiO2 (110) Surfaces’ K.E. Smith, J.L. Mackay and V.E. Henrich, Phys. Rev. B 35, 5822 (1987)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Kluwer Academic Publishers

About this chapter

Cite this chapter

Henrich, V.E. (1989). Electron Spectroscopic Determination of the Electronic, Geometric and Chemisorption Properties of Oxide Surfaces. In: Dufour, LC., Monty, C., Petot-Ervas, G. (eds) Surfaces and Interfaces of Ceramic Materials. NATO ASI Series, vol 173. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-1035-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-1035-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-6957-1

  • Online ISBN: 978-94-009-1035-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics