Skip to main content

Part of the book series: Solid Earth Sciences Library ((SESL,volume 4))

Abstract

Heat may be transported in a number of different ways but the mechanisms fall into two classes — those that are of purely thermal origin and those that are not. In the latter class we would place advective processes — the movement of fluids driven by, for example, a hydraulic gradient; although of considerable importance in terrestrial heat-flow density work, these processes are not discussed in this chapter (but see Chapters 2.3., 5.5., 5.6., 9.4.3.). In the former class the three principal mechanisms are convection, radiation, and lattice (or phonon) conduction. The relative contributions from each of these three mechanisms depends upon the prevailing local conditions. For example, radiation transfer is not very significant below 1000 K (see also Chapter 4.3.) but above this temperature can be represented by a coefficient λ R where:

$$ {\lambda_R} = 16{n^2}\bar{\sigma }{{{{T^3}}} \left/ {{3\bar{\varepsilon }}} \right.} $$
((4.1))

where n = mean refraction index \( \\bar \varepsilon \) = mean extinction coefficient \( \bar \varepsilon \) = Stefan-Boltzmann constant T = absolute temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adler, D., Flora, L. P., and Sentura, S. D.: 1973, ‘Electrical Conductivity in Disordered Systems’, Solid State Comm. 12, 9–12.

    Article  Google Scholar 

  • Ångström, A. J.: 1863, ‘New Method of Determining the Thermal Conductivity of Bodies’, Phil. Mag. 25, 130–142.

    Google Scholar 

  • Beck, A. E.: 1957, ‘A Steady State Method for the Rapid Measurement of the Thermal Conductivity of Rocks’, J. Sci. Instr. 34, 185–189.

    Article  Google Scholar 

  • Beck, A. E.: 1977, ‘Geothermal Measurements in Five Small Lakes of Northwest Ontario: Discussion’, Can. J. Earth Sci. 14, 332–334.

    Article  Google Scholar 

  • Beck, A. E. and Beck, J. M.: 1958, ‘On the Measurement of the Thermal Conductivity of Rocks by Observations on a Divided Bar Apparatus’, Trans A.G.U. 30, 1111–1123.

    Google Scholar 

  • Beck, A. E., Anglin, F. M., and Sass, J. H.: 1971, ‘Analysis of Heat Flow data — in situ Thermal Conductivity Measurements’, Can. J. Earth Sci. 8, 1–19.

    Article  Google Scholar 

  • Benfield, A. E.: 1939, Terrestrial Heat in Great Britain’, Proe. Roy. Soc. A 173, 428–450.

    Article  Google Scholar 

  • Beyer, W. H.: 1968, Handbook of Tables for Probability and Statistics, Chemical Rubber Co. Cleveland.

    Google Scholar 

  • Birch, F.: 1950, ‘Flow of Heat in the Front Range, Colorado’, Bull. G.S.A. 61, 567–630.

    Article  Google Scholar 

  • Blackwell, J. H.: 1956, ‘The Axial Flow Error in the Thermal Conductivity Probe’, Can. J. Phys. 34, 412–417.

    Article  Google Scholar 

  • Bosanquet, C. H. and Aris, R.: 1954, ‘On the Application of Ångström’s Method of Measuring Thermal Conductivity’, Brit. J. Appl. Phys. 5, 252–255.

    Article  Google Scholar 

  • Brailsford, A. D. and Major, K. C: 1964, ‘The Thermal Conductivity of Aggregates of Several Phases, Including Porous Materials’, Brit. J. Appl. Phys. 15, 313–319.

    Article  Google Scholar 

  • Bullard, E. C: 1939, ‘Heat Flow in South Africa’, Proc. Roy. Soc. A 173, 474–502.

    Article  Google Scholar 

  • Carslaw, H. S. and Jaeger, J. C, 1959: Conduction of Heat in Solids, 2nd. edition, O.U.P., London, 510 p.

    Google Scholar 

  • Christoffel, D. A. and Calhaem, I. M.: 1969, ‘A Geothermal Heat Flow Probe for in situ Measurement of both Temperature Gradient and Thermal Conductivity’, J. Sci. Instr. 2 (2nd. series), 457–465.

    Article  Google Scholar 

  • Drury, M. J., Allen, V. S., and Jessop, A. M.: 1984, ‘The Measurement of Thermal Diffusivity of Rock Cores’, Tectonophysics 103, 321–333.

    Article  Google Scholar 

  • Elder, J. W.: 1965, ‘Physical Processes in Geothermal Areas’, in W. H. K. Lee (ed.) Terrestrial Heat Flow Monograph No. 8, A.G.U., Washington, 211–240.

    Chapter  Google Scholar 

  • Elder, J. W.: 1967, ‘Steady Free Convection in a Porous Medium Heated from Below’, J. Fluid. Mech. 27, 29–48.

    Article  Google Scholar 

  • Fodemisi, S. P.: 1980, ‘The Removal of Convective Effects Induced During Needle Probe Thermal Conductivity Measurements’, M.Sc. Thesis, University of Western Ontario, London, Canada, 129 p.

    Google Scholar 

  • Fodemisi, S. P. and Beck, A. E.: 1983, ‘Induced Convection During Cylindrical Probe Conductivity Measurements on Permeable Media’, in J. D. Hust (ed.) Proceedings of the Seventeenth International Thermal Conductivity Conference Plenum, N.Y. 619–634.

    Google Scholar 

  • Grubbe, K., Haenel, R., and Zoth, G.: 1983, ‘Determination of the Vertical Component of Thermal Conductivity by Line Source Methods’, Zbl. Geol. Paläont., Teil, I. H. 1/2, Stuttgart, 49–56.

    Google Scholar 

  • Genceli, O. F.: 1980, ‘The Onset of Manifest Convection from Suddenly Heated Horizontal Cylinders’, Wärme u. Stoffübertragung 13, 163–169.

    Article  Google Scholar 

  • Hanley, E. J., DeWitt, D. P., and Roy, R. F.: 1978, ‘The Thermal Diffusivity of Eight Well Characterized Rocks for the Temperature Range 300–1000 K’, Engineering Geol. 12, 31–47.

    Article  Google Scholar 

  • Hashin, Z. and Shtrickman, S.: 1962, ‘A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials’, J. Appl. Phys. 33, 3125–3133.

    Article  Google Scholar 

  • Hutchinson, H. P., Dixon, I. S., and Denbigh, K. G.: 1948, The Thermo-Osmosis of Liquids Through Porous Materials’, Discussions Faraday Soc. 3, 86–94.

    Article  Google Scholar 

  • Hyndman, R. D., Davis, E. E., and Wright, J. A.: 1979, ‘The Measurement of Marine Geothermal Heat Flow by a Multipenetration Probe with Digital Acoustic Telemetry and in situ Thermal Conductivity’, Marine Geophys. Res. 4, 181–205.

    Article  Google Scholar 

  • Jaeger, J. C: 1958, ‘The Measurement of Thermal Conductivity and Diffusivity with Cylindrical Probes’, Trans. A.G.U. 39, 708–710.

    Google Scholar 

  • Jaeger, J. C: 1959a, ‘The Analysis of Aquifer Test Data or Thermal Conductivity Measurements Which Use a Linear Source’, J. Geophys. Res. 64, 561–564.

    Article  Google Scholar 

  • Jaeger, J. C: 1959b, ‘The Use of Complete Temperature-time Curves for Determination of Thermal Conductivity with Particular Reference to Rocks’, Austral. J. Phys. 12, 203–217.

    Article  Google Scholar 

  • Kuzmak, J. M. and Sereda, P. J.: 1958a, ‘The Mechanism by Which Water Moves Through a Porous Material Subjected to a Temperature Gradient: 1. Introduction of a Vapour Gap into a Saturated System’, Soil Sci. 84, 291–299.

    Article  Google Scholar 

  • Kuzmak, J. M. and Sereda, P. J.: 1958b, ‘The Mechanism by Which Water Moves Through a Porous Material Subjected to a Temperature Gradient: 2. Salt Tracer and Streaming Potential to Detect Flow in the Liquid Phase’, Soil Sci. 84, 419–422.

    Article  Google Scholar 

  • Lapwood, E. R.: 1948, ‘Convection of a Fluid in a Porous Medium’, Proc. Cam. Phil. Soe. 44, 508–521.

    Article  Google Scholar 

  • Lister, C. R. B.: 1979, ‘The Pulse Probe Method of Conductivity measurement’, Geophys. J. Roy. Astr. Soc. 57, 451–461.

    Google Scholar 

  • Loddo, M.: 1970, ‘Temperature in an Insulated Slab Heated by a Plane Source: Application to Thermal Conductivity Measurements of Rocks’, Geothermics, Special Issue, No. 2, 437–442.

    Google Scholar 

  • Lubimova, E. A., Lusova, L. M., Firsov, F. V., Starikova, G. N., and Shushpanov, A. P.: 1961, ‘Determination of Surface Heat Flow in Mazesta (U.S.S.R.)’, Annali di Geophys. XIV, 157–167.

    Google Scholar 

  • Maxwell, J. C: 1954, A Treatise on Electricity and Magnetism 1891, New York, (Dover Publications).

    Google Scholar 

  • McElroy, D. L. and Moore, J. P.: 1969; ‘Radial Heat Flow Methods for the Measurement of the Thermal Conductivity of Solids’, in R. P. Tye (ed.), Thermal Conductivity, Vol. 1, Academic Press, New York.

    Google Scholar 

  • Minges, M. L., Beck, A. E., Berman, R., Cabannes, R., Shpilrain, E. E., Touloukian, Y. S., and White, G. K.: 1980, ‘Criteria for the Presentation in the Primary Literature of Scientific and Technical Information on Thermophysical Properties of Solids’, Int. J. Thermophys. 1, 135–140.

    Article  Google Scholar 

  • Misener, A. D. and Beck, A. E.: 1960, ‘The Measurement of Heat Flow over Land’, in S. K. Runcorn (ed.), Methods and Techniques in Geophysics, Vol. 1, Interscience, New York, 10–61.

    Google Scholar 

  • Mongelli, F.: 1968, ‘Un metodo per la determinazione in laboratorio delia conducibilità termica delle rocce’, Boll. Geof. Teor. Appl. X, 51–58.

    Google Scholar 

  • Ratcliffe, E. H.: 1959, ‘Thermal Conductivities of Fused and Crystalline Quartz’, Brit. J. Appl. Phys. 10, 22–25.

    Article  Google Scholar 

  • Roy, R. F., Beck, A. E., and Touloukian, Y. S.: 1981, ‘Thermophysical Properties of Rocks’, in Y. S. Touloukian, W. R. Judd and R. F. Roy (eds.), Physical Properties of Rocks and Minerals, McGraw-Hill, New York, 409–502.

    Google Scholar 

  • Sass, J. H., Lachenbruch, A. H., and Munroe, R. J.: 1971, ‘Thermal Conductivities of Rocks from Measurements on Fragments and its Application to Heat Flow Determinations’, J. Geophys. Res. 76, 3391–3401.

    Article  Google Scholar 

  • Sass, J. H., Kennelly, J. P. Jr., Wendt, W. E., Moses, T. H. Jr., and Ziagos, J. P.: 1981, ‘In situ Determination of Heat Flow in Unconsolidated Sediments’, Geophysics 48, 76–83.

    Article  Google Scholar 

  • Sass, J. H., Stone, C, and Munroe, R. J.: 1984, ‘Thermal Conductivity Determinations on Solid Rock: A Comparison Between a Steady-State Divided Bar Apparatus and a Commercial Transient Line-Source device’, J. Volcan. Geoth. Res. 20, 145–153.

    Article  Google Scholar 

  • Stiller, H., Vollstadt, H., and Scipold, U.: 1978, ‘Investigations of Thermal and Electric Properties of Rocks by Means of a Cubic Press’, Phys. Earth Planet. Int. 17, 31–34.

    Article  Google Scholar 

  • Stiller, H., Vollstädt, H., Scipold, U., and Wasch, R.: 1976, ‘Electrical and Thermal Investigations of Rocks and Minerals Under Extreme p,T — Conditions’, Pure and Appl. Geophys. 114, 263–272.

    Article  Google Scholar 

  • Straus, J. M.: 1974, ‘Large Amplitude Convection in Porous Media’, J. Fluid. Mech. 64, 51–63.

    Article  Google Scholar 

  • Wooding, R. A.: 1957, ‘Steady State Free Thermal Convection of Liquid in a Saturated Permeable Medium’, J. Fluid. Mech. 2, 273–285.

    Article  Google Scholar 

  • Zierfuss, H. and Van der Vliet, G.: 1956, ‘Laboratory Measurements of Heat Conductivity of Sedimentary Rocks’, Bull. G.S.A. 40, 2475–2488.

    Google Scholar 

  • Bajo, C.: 1980, ‘Extraction du Th et de l’U de granites Suisses’, Ph.D. Thesis ETH Zürich, No. 6738, 167 p.

    Google Scholar 

  • Birch, F.: 1954, ‘Heat from Radioactivity’, in H. Faul (ed.), Nuclear Geology, Wiley & Sons, New York, 148–174.

    Google Scholar 

  • Brunée, C. and Voshage, H.: 1964, Massenspektrometric, Thiemig, München, 316 p.

    Google Scholar 

  • Galson, D. A., Atkin, B. P., and Harvey, P. K.: 1983, ‘The Determination of low Concentrations of U, Th, and K by XRF Spectrometry’, Chem. Geol. 38, 225–237.

    Article  Google Scholar 

  • Granar, L.: 1982, The Impression of Computer-Made Coloured Geophysical Maps, Abstract, 8th European Geophysical Society Meeting, Uppsala, 119 p.

    Google Scholar 

  • Hart, R. J., Reid, D. L., and Welke, H. J.: 1980, ‘Comparison of Three Techniques for the Determinations of Uranium and Thorium in Rocks’, Chem. Geol. 29, 345–350.

    Article  Google Scholar 

  • Höhndorf, A.: 1973, ‘Auswertung von γ-Spektren zur quantitativen Analyse von Uran, Thorium und Kalium in Gesteinen’, Geol. Jb. E 1, 81–92.

    Google Scholar 

  • Hurley, P. M. and Fairbairn, H.: 1953, ‘Radiation Damage in Zircon: A Possible Age Method’, Bull. Geol. Soc. Amer. 64, 659–673.

    Article  Google Scholar 

  • Hyde, E. K., Perlman, I., and Seaborg, G. T.: 1964, The Nuclear Properties of the Heavy Elements. II. Detailed Radioactive Properties, Prentice Hall, Englewood Cliffs, N.J., 1107 p.

    Google Scholar 

  • Keil, R.: 1979, ‘Hochselektive spektralphotometrische Spurenbestimmung von Uran(VI) mit Arsenazo III nach Extraktionstrennung’, Fresenius Z. Anal. Chem. 297, 384–387.

    Article  Google Scholar 

  • Keil, R.: 1981, ‘Selektive spektralphotometrische Spurenbestimmung von Thorium mit Arsenazo III nach Extraktionstrennung’, Fresenius Z. Anal. Chem. 305, 374–378.

    Article  Google Scholar 

  • Leutz, H., Schultz, G., and Wenninger, H.: 1965, ‘Decay of Potassium 40’, Z. Physik 187, 151–172.

    Article  Google Scholar 

  • Lewis, T. J.: 1974, ‘Heat Production Measurement in Rocks Using a Gamma Ray Spectrometer with a Solid State Detector’, Can. J. Earth Sci. 11, 526–532.

    Article  Google Scholar 

  • Lucazeau, F.: 1982, ‘Flux de chaleur, production de chaleur et evolution geodynamique récente du Massif Central’, Ph.D. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, 181 p.

    Google Scholar 

  • Rieppo, R.: 1978, ‘A Method to Investigate the Secular Equilibrium of Natural Radioactive Series’, Geoexploration 16, 177–183.

    Article  Google Scholar 

  • Royer, J. J. and Cuney, M.: 1980, Le flux thermique par les granites de la Montagne Bourbonnais, 8e Reunion Annuelle des Sciences de la Terre, Marseille, 315. Soc. Géol. Fr. édit. Paris, 315–319.

    Google Scholar 

  • Rybach, L., von Raumer, J., and Adams, J. A. S.: 1966, ‘A Gamma Spectrometric Study of Mont-Blanc Granite Samples’, Pure Appl. Geophys. 63, 153–160.

    Article  Google Scholar 

  • Rybach, L.: 1971, ‘Radiometric Techniques’, in R. E. Wainerdi and E. A. Uken (eds.), Modern Methods of Geochemical Analysis, Plenum Press, New York, 271–318.

    Google Scholar 

  • Rybach, L.: 1973, Wärmeproduktionsbestimmungen an Gesteinen der Schweizer Alpen, Habilitationsschrift ETH Zürich, Dep. Hauptbibl. ETH Zürich, 95 p.

    Google Scholar 

  • Rybach, L.: 1976a, ‘Radioactive Heat Production in Rocks and Its Relation to Other Petrophysical Parameters’, Pure Appl. Geophys. 114, 309–318.

    Article  Google Scholar 

  • Rybach, L.: 1976b, ‘Radioactive Heat Production: A Physical Property Determined by the Chemistry of Rocks’, in R. G. J. Strens (ed.), The Physics and Chemistry of Minerals and Rocks, Wiley & Sons, London, 309–318.

    Google Scholar 

  • Rybach, L., Bodmer, Ph., Weber, R., and England, Ph. C: 1982, ‘Heat Flow and Heat Generation in the New Gotthard Tunnel, Swiss Alps’, in V. Čermàk and R. Haenel (eds.) Geothermics and Geothermal Energy, Schweizerbart’sche Verlagsbuchhandlung, Stuttgart, 63–70.

    Google Scholar 

  • Rybach, L. and Buntebarth, G.: 1982, ‘Relationships Between the Petrophysical Properties Density, Seismic, Velocity, Heat Generation and Mineralogical Constitution’, Earth Planet. Sci. Lett. 57, 367–376.

    Article  Google Scholar 

  • Rybach, L.: 1986, ‘Amount and Significance of Radioactive Heat Sources in Sediments’, in J. Burrus (ed.), Thermal Modeling in Sedimentary Basins, Editions Technip, Paris, 311–322.

    Google Scholar 

  • Schlumberger; 1982, Well Evaluation Developments — Continental Europe, 296 p.

    Google Scholar 

  • Smith, A. R. and Wollenberg, H. A.: 1972, ‘High-Resolution Gamma-Ray Spectrometry for Laboratory Analysis of the Uranium and Thorium Decay Series’, in J. A. S. Adams, W. M. Lowder, and T.F. Gesell (eds.), Proc. Second Int. Symp. on the Natural Radiation Environment, U.S. Dept. of Commerce, Springfield, Virginia, 181–231.

    Google Scholar 

  • Stuckless, J. H., Millard, H. T., Bunker, C. M., Nkomo, I. T., Rosholt, J. N., Bush, C. A., Hiffman, C., and Keil, R. J.: 1977, ‘A comparison of Some Analytical Techniques for Determining Uranium, Thorium, and Potassium in Granitic Rocks’, Research US Geol. Survey 5, 83–91.

    Google Scholar 

  • Tugsavul, A., Merten, D., and Suschny, O.: 1970, The Reliability of Low-Level Radiochemical Analysis, International Atomic Energy Agency, Vienna, 32 p.

    Google Scholar 

  • Watt, D. E. and Ramsden, D.: 1964, High Sensitivity Counting Techniques, Pergamon Press, London.

    Google Scholar 

  • West, F. G. and Laughlin, A. W.: 1976, ‘Spectral Gamma Logging in Crystalline Basement Rocks’, Geology 4, 616–617.

    Article  Google Scholar 

  • Wollenberg, H. A.: 1977, ‘Radiometric Methods’, in J. G. Morse (ed.), Nuclear Methods in Mineral Exploration,Elsevier, Amsterdam, 5–36.

    Google Scholar 

  • Wollenberg, H. A. and Smith, A. R.: 1968, ‘Radiogeologic Studies in the Central Part of the Sierra Nevada Batholith’, J. Geophys. Res. 73, 1481–1495.

    Article  Google Scholar 

  • Aronson, J. R., Emslie, A. G., McConell, R. K., Eckroad, S. W., and von Thiina, P. C: 1967, The Application of High-Temperature Radiative Thermal Conductivity of Minerals and Rocks to a Model of Lunar Volcanism, A.D. Little Inc., Final Rep., Contract NAS9–5840, NASA CR-916, 67 p.

    Google Scholar 

  • Aronson, J. R., Bellotti, L. H., Eckroad, S. W., Emslie, A. G., McConnell, R. K., and von Thiina, P. C: 1970, ‘Infrared Spectra and Radiative Thermal Conductivity of Minerals at High Temperatures’, J. Geophys. Res. 75(17), 3443–3456.

    Article  Google Scholar 

  • Balchan, A. S. and Drickamer, H. G.: 1959, ‘Effect of Pressure on the Spectra of Olivine and Garnet’, J. Appl. Phys. 30, 1446–1447.

    Article  Google Scholar 

  • Birch, F. and Clark, H.: 1940, ‘The Thermal Conductivity of Rocks and its Dependence upon Temperature and Composition, Part 2’, Amer. J. Sci. 238(9), 613–635.

    Article  Google Scholar 

  • Clark, S. P.: 1956, ‘Effect of Radiative Transfer on Temperatures in the Earth’, Geol. Soc. Am. Bull. 67, 1123–1124.

    Article  Google Scholar 

  • Clark, S. P.: 1957a, ‘Absorption Spectra of Some Silicates in the Visible and Near Infrared’, Am. Mineralogist 42, 732–742.

    Google Scholar 

  • Clark, S. P.: 1957b, ‘Radiative Transfer in the Earth’s Mantle’, Trans. Am. Geophys. Union 38(6), 931–938.

    Google Scholar 

  • Consolidated Index of Selected Property Values: 1962, Physical Chemistry and Thermodynamics, Publication 976, National Academy of Sciences-National Research Council, Washington, D.C. USA, XXIII+274 p.

    Google Scholar 

  • Dziewonski, A. M., Hales, A. L., and Lapwood, E. R.: 1975, ‘Parametrically Simple Earth Models Consistent with Geophysical Data’, Phys. Earth Planet. Interiors 10, 12–48.

    Article  Google Scholar 

  • Flynn, D. R.: 1969, ‘Thermal Conductivity of Ceramics’, in J. B. Wachtmann (ed.), Mechanical and Thermal Properties of Ceramics, Special Publication 303, National Bureau of Standards,Washington, D.C. 20234, USA, 63–123.

    Google Scholar 

  • Fukao, Y.: 1969, ‘On the Radiative Heat Transfer and the Thermal Conductivity in the Upper Mantle’, Bull. Earthquake Res. Inst. Tokyo Univ. 47, 549–569.

    Google Scholar 

  • Fukao, Y., Mizutani, H., and Uyeda, S.: 1968, ‘Optical Absorption Spectra at High Temperatures and Radiative Thermal Conductivity of Olivines’, Phys. Earth Planet. Interiors 1, 57–62.

    Article  Google Scholar 

  • Gable, C. W. and Shankland, T. J.: 1984, ‘Radiative Heat Transfer in Molten and Glassy Obsidian’, J. Geophys. Res. 89(B8) 7107–7110.

    Article  Google Scholar 

  • Gaffney, E. S.: 1972, ‘Crystal Field Effects in Mantle Minerals’, Phys. Earth Planet. Interiors, 6 385–390.

    Article  Google Scholar 

  • Gardon, R.: 1961, ‘A Review of Radiant Heat Transfer in Molten Glass’, J. Amer. Ceram. Soc. 44, 305–312.

    Article  Google Scholar 

  • Genzel, L.: 1953, ‘Der Anteil der Wärmestrahlung bei Wärmeleitungsvorgängen’, Z. Physik 135, 177–195.

    Article  Google Scholar 

  • Goto, T., Ahrens, T. J., Rossman, G. R., and Syono, Y.: 1980, ‘Absorption Spectrum of Shock-Compressed Fe2+-Bearing MgO and the Radiative Conductivity of the Lower Mantle’, Phys. Earth Planet. Interiors 22, 277–288.

    Article  Google Scholar 

  • Kanamori, H., Fujii, N., and Mizutani, H.: 1968, ‘Thermal Diffusivity Measurement of Rock-Forming Minerals from 300 K to 1100 K’, J. Geophys. Res. 73(2), 595–605.

    Article  Google Scholar 

  • Kellett, B. S.: 1952, ‘Transmission of Radiation through Glass in Tank Furnaces’, J. Soc. Glass Technol. 36(169), 115–123.

    Google Scholar 

  • Lawson, A. W. and Jamieson, J. C: 1958, ‘Energy Transfer in the Earth’s Mantle’, J. Geol. 66, 540–551.

    Article  Google Scholar 

  • Lubimova, E. A.: 1967, ‘Theory of the Thermal State of the Earth’, in T. F. Gaskell (ed.), The Earth’s Mantle, Academic Press, London, 231–323.

    Google Scholar 

  • MacPherson, W. R. and Schloessin, H. H.: 1983, ‘Apparent, Lattice, and Radiative Thermal Conductivity from 300 to 1500 K and Pressures up to 5.6 GPa: results for MgO and NaCl’, High Temperatures-High Pressures 15, 495–509.

    Google Scholar 

  • Mao, H. K.: 1976, ‘Charge Transfer Processes at High Pressure’, in R. G. J. Strens (ed.), The Physics and Chemistry of Minerals and Rocks, Wiley & Sons, London, 573–581.

    Google Scholar 

  • Mao, H. K. and Bell, P. M.: 1976, ‘Electrical Conductivity and the Red Shift of Absorption in Olivine and Spinel at High Pressure’, Science 176, 403–406.

    Article  Google Scholar 

  • Murase, T. and McBirney, A. R.: 1973, ‘Properties of Some Common Igneous Rocks and Their Melts at High Temperatures’, Geol. Soc. Am. Bull. 84, 3563–3592.

    Article  Google Scholar 

  • Nitsan, U.: 1974, ‘Stability Field of Olivine with Respect to Oxidation and Reduction’, J. Geophys. Res. 79(5), 706–711.

    Article  Google Scholar 

  • Nitsan, U.: 1976, The Effect of Scattering on Radiative Heat Transfer in the Earth’s Mantle’, EOS Trans. Am. Geophys. Union 57(12), 1005 p.

    Google Scholar 

  • Nitsan, U. and Shankland, T. J.: 1976, ‘Optical Properties and Electronic Structure of Mantle Silicates’, Geophys. J. Royal Astron. Soc. 45, 59–87.

    Google Scholar 

  • Pitt, G. D. and Tozer, D. C: 1970a, ‘Optical Absorption on Natural Ferromagnesian Minerals Subjected to High Pressure’, Phys. Earth Planet. Interiors 2, 179–188.

    Article  Google Scholar 

  • Pitt, G. D. and Tozer, D. C: 1970b, ‘Radiative Heat Transfer in dense Media and its Magnitude in Olivines and some other Ferromagnesian Minerals under Typical Mantle Conditions’, Phys. Earth Planet. Interiors 2, 189–199.

    Article  Google Scholar 

  • Raznjevic, K.: 1976, Handbook of Thermodynamic Tables and Charts, McGraw-Hill, New York, VIII+392 p.

    Google Scholar 

  • Richmond, J. C.: 1969, ‘Thermal Radiation Properties of Ceramic Materials’, in J. B. Wachtmann (ed.), Mechanical and Thermal Properties of Ceramics, Special Publication 303, National Bureau of Standards, Washington, D.C. 20234, USA, 125–137.

    Google Scholar 

  • Rosseland, S.: 1924, ‘Note on the Absorption of Radiation within a Star’, Monthly Notic. Roy. Astron. Soc. 84, 525–528.

    Google Scholar 

  • Rosseland, S.: 1930, ‘The Principles of Quantum Theory’, in G. Eberhard, A. Kohlschütter, and H. Ludendorff (eds.), Handbuch der Astrophysik, 3(1), Springer, Berlin-New York, 452–474.

    Google Scholar 

  • Runcorn, S. K.: 1956, ‘Experiments on the Displacement of the Ultraviolet Absorption Edge of Olivine at High Pressures’, J. Appl. Phys. 27, 598–602.

    Article  Google Scholar 

  • Schärmeli, G.: 1977, Experimentelle Bestimmung der thermischen Leitfähigkeiten von polykristallinem Olivin FO92 bei Drucken bis 25 kb und Temperaturen bis 1500 K und die Identifizierung des Beitrags der Temperatur-Strahlung zum Wärmetransport. Ph.D. Thesis, Ludwig-Maximilians Univ. München, 335 p.

    Google Scholar 

  • Schärmeli, G.: 1979, ‘Identification of Radiative Thermal Conductivity in Olivine up to 25 kbar and 1500 K’, in K. D. Timmerhauf and M. S. Barber (eds.), Proceedings 6th AIRAPT Conf., Plenum Press, New York, 60–74.

    Google Scholar 

  • Schatz, J. F. and Simmons, G.: 1972, Thermal Conductivity of Earth Materials’, J. Geophys. Res. 77(35), 6966–6983.

    Article  Google Scholar 

  • Schuster, A.: 1903, The Influence of Radiation on the Transmission of Heat’, Phil. Mag., Ser. 6, 5, 243–257.

    Article  Google Scholar 

  • Shankland, T. J.: 1970, ‘Pressure Shift of Infrared Absorption Bands in Minerals and the Effect on Radiative Heat Transport’, J. Geophys. Res. 75(2), 409–413.

    Article  Google Scholar 

  • Shankland, T. J., Duba, A. G., and Woronow, A.: 1974, ‘Pressure Shifts of Optical Absorption Bands in Iron-Bearing Garnet, Spinel, Olivine, and Periclase’, J. Geophys. Res. 79(23), 3273–3282.

    Article  Google Scholar 

  • Shankland, T. J., Nitsan, U., and Duba, A. G.: 1979, ‘Optical Absorption and Radiative Heat Transport in Olivine at High Temperature’, J. Geophys. Res. 84(B4), 1603–1610.

    Article  Google Scholar 

  • Smith, G. and Langer, K.: 1982a, ‘High Pressure Spectra of Olivines in the Range 40000–11 000 cm-1’, in W. Schreyer (ed.), High-Pressure Researches in Geoscience, Schweizerbart, Stuttgart, 259–268.

    Google Scholar 

  • Smith, G. and Langer, K.: 1982b, ‘Single Crystal Spectra of Olivines in the Range 40000–5000 cm-1 at Pressures to 200 kbar’, Am. Mineralogist 67, 343–348.

    Google Scholar 

  • Smith, G. and Langer, K.: 1983, ‘High Pressure Spectra up to 120 kbars of the Synthetic Garnet End Members Spessartine and Almandine’, N. Jb. Mineralogie Mh. 12, 541–555.

    Google Scholar 

  • Stein, J., Shankland, T. J., and Nitsan, U.: 1981, ‘Radiative Thermal Conductivity in Obsidian and Estimates of Heat Transfer in Magma Bodies’, J. Geophys. Res. 86(B5), 3684–3688.

    Article  Google Scholar 

  • Touloukian, Y. S. and De Witt, D. P.: 1972, ‘Thermal Radiative Properties — Nonmetallic Solids’, in Y S. Touloukian and C. Y Ho (eds.), Thermophysical Properties of Matter, 8, Plenum Press, New York, XXXIV+1856 p.

    Google Scholar 

  • Van der Held, E. F. M.: 1952, The Contribution of Radiation to the Conduction of Heat’, Appl. Sci. Res. A3, 237–247.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1988 Kluwer Academic Publishers

About this chapter

Cite this chapter

Beck, A.E. (1988). Thermal Properties. In: Haenel, R., Rybach, L., Stegena, L. (eds) Handbook of Terrestrial Heat-Flow Density Determination. Solid Earth Sciences Library, vol 4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-2847-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-2847-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-7780-4

  • Online ISBN: 978-94-009-2847-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics